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Using Orthogonality of singular vectors

@ SVD: A= 2;21 atutvtT. v orthonormal. Many uses.
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Using Orthogonality of singular vectors

@ SVD: A= 2;21 atutvtT. v orthonormal. Many uses.

T _ r T r T -5 2T
0 AA' = (Zt1:1 ot, ut1vt1) <212:1 UthtZUtz) =) i_10ruut’,

. . T .
Caution: vy, vy, # all-zero matrix !
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Using Orthogonality of singular vectors

@ SVD: A= Z§:1 atutvtT. v orthonormal. Many uses.

T _ (s T r T\ 5 200 T
0 AA' = (Zt1:1 ot, ut1vt1) (212:1 UthtZUtz) =) i_10ruut’,
Caution: vy, v{ # all-zero matrix !
. . _ r 1 . .
o Ainvertible = A~ =37, Lvyut’. [check by multiplying.]
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Using Orthogonality of singular vectors

@ SVD: A= Z§:1 atutvtT. v orthonormal. Many uses.

o AAT = <Z£:1 0t UhVE) (2;2:1 Utzvlzu;l;) = Z§:1 Ut?ututra
Caution: vy, v{ # all-zero matrix !

e Ainvertible = A~ =7 15 vtutT [check by multiplying.]

o Asingular: “pseudo-inverse” = A" = 7 ; Lveuy”
Af =31, uuy” = identity on space of u.

_ Lecture 7: Singular Value Decomposition - II November 8, 2017

2/7



Using Orthogonality of singular vectors

@ SVD: A= Z§:1 atutvtT. v orthonormal. Many uses.

o AAT = <Z£:1 0t UhVE) (2;2:1 Utzvlzu;l;) = Z§:1 Ut?ututra
Caution: vy, v{ # all-zero matrix !

e Ainvertible = A~ =7 15 vtutT [check by multiplying.]

@ Asingular: “pseudo-inverse” = AT = 3"} _, —vtut
Al = S uu;” = identity on space of u.
@ A symmetric — Spectral Decomposition (SD): A= >_7_; AUy
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Using Orthogonality of singular vectors

@ SVD: A= Z§:1 atutvtT. v orthonormal. Many uses.

o AAT = (Z;ﬂ It ut1vl) (2;2:1 Ufzvtzu;l;) = i1 UtzututTv
Caution: vy, v{ # all-zero matrix !
e Ainvertible = A~ =7 15 vtutT [check by multiplying.]

@ Asingular: “pseudo-inverse” = Al = Zt 1 —vtut
Al = S uu;” = identity on space of u.
@ A symmetric — Spectral Decomposition (SD): A= >_7_; AUy
@ Proof For A with no ties (except +) in SVD: A= >";_, oy’ .
A=AT = A=3"7_,ovu’. “No ties” :uy = +v4. Repeat. [The +
means \; = +oy]
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Using Orthogonality of singular vectors

@ SVD: A= Z§:1 atutvtT. v orthonormal. Many uses.

o AAT = (Z;ﬂ It ut1vl) (2;2:1 Ufzvtzu;l;) = i1 UtzututTv
Caution: vy, v{ # all-zero matrix !
e Ainvertible = A~ =7 15 vtutT [check by multiplying.]

@ Asingular: “pseudo-inverse” = Al = Zt 1 —vtut
Al = S uu;” = identity on space of u.

@ A symmetric — Spectral Decomposition (SD): A= >_7_; AUy

@ Proof For A with no ties (except +) in SVD: A= >";_, oy’ .
A=AT = A=3"7_,ovu’. “No ties” :uy = +v4. Repeat. [The +
means \; = +oy]

@ AS =31 ASuu Tl I [\ ] > [A|VE > 2 limsoe |A1TSAS =uquq’.
Rank 1!
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Using Orthogonality of singular vectors

@ SVD: A= Z§:1 atutvtT. v orthonormal. Many uses.

o AAT = (Z;ﬂ It ut1vl) (252:1 Ufzvtzu;l;) = i1 UtzututTv
Caution: vy, v{ # all-zero matrix !
e Ainvertible = A~ =7 15 vtutT [check by multiplying.]

@ Asingular: “pseudo-inverse” = Al = Zt 1 —vtut
Al = S uu;” = identity on space of u.

@ A symmetric — Spectral Decomposition (SD): A= >_7_; AUy

@ Proof For A with no ties (except +) in SVD: A= >";_, oy’ .
A=AT = A=3"7_,ovu’. “No ties” :uy = +v4. Repeat. [The +
means \; = +oy]

@ AS =31 ASuu Tl I [\ ] > [A|VE > 2 limsoe |A1TSAS =uquq’.
Rank 1!

@ Power Method, Fundamental Thm of Markov Chains
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Best Low-rank approximation

@ SVDof A= YI_, ouvy". Define for each k, Ax = K, orupwy”
(called the truncated SVD). Will show: for each k, A, is the best
approximation to A of rank at most k.
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Best Low-rank approximation

@ SVDof A= YI_, ouvy". Define for each k, Ax = K, orupwy”
(called the truncated SVD). Will show: for each k, A, is the best
approximation to A of rank at most k.

@ Lemma The rows of A, are the projections of the (corres.) rows of
A onto Vg, the space spanned by vq,va, ..., vk.

_ Lecture 7: Singular Value Decomposition - II November 8, 2017 3/7



-]
Best Low-rank approximation

@ SVDof A= YI_, ouvy". Define for each k, Ax = K, orupwy”
(called the truncated SVD). Will show: for each k, A, is the best
approximation to A of rank at most k.

@ Lemma The rows of A are the projections of the (corres.) rows of
A onto Vg, the space spanned by vq,va, ..., vk.

@ Proof: For any row vector a, the proj of a onto Vj is given by
Z’t‘:1(a - Vt)Vt. So, projecting each row of A into Vi, we get
24(21 AViViT.
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Best Low-rank approximation

@ SVDof A= YI_, ouvy". Define for each k, Ax = K, orupwy”
(called the truncated SVD). Will show: for each k, A, is the best
approximation to A of rank at most k.

@ Lemma The rows of A are the projections of the (corres.) rows of
A onto Vg, the space spanned by vq,va, ..., vk.

@ Proof: For any row vector a, the proj of a onto Vj is given by
Z’t‘:1(a - Vt)Vt. So, projecting each row of A into Vi, we get
24(21 AViViT.

o YK AviviT = K ouviT = Ay, proving Lemma.
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Best rank k approximation

@ Theorem For any matrix B of rank at most k,
A= Allr < [[A= B¢
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Best rank k approximation

@ Theorem For any matrix B of rank at most k,
A= Allr < [[A= B¢

@ Let B minimize ||A — B||?_— among all rank k or less matrices. V =
row space of B.
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Best rank k approximation

@ Theorem For any matrix B of rank at most k,
A= Akllr < |A-Bllg

@ Let B minimize ||A — B||?_— among all rank k or less matrices. V =
row space of B.

@ Each row of B is the projection of the corresponding row of A onto
V (why?):
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Best rank k approximation

@ Theorem For any matrix B of rank at most k,
A= Allr < [[A= B¢

@ Let B minimize ||A — B||?_— among all rank k or less matrices. V =
row space of B.

@ Each row of B is the projection of the corresponding row of A onto
V (why?):

@ Otherwise replace row of B with the projection of the

corresponding row of A onto V. Keeps row space of BC V, so
rank(B) < k. But, ||A — BJ|% reduced. —+ (||A — BJ|r best).
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Best rank k approximation

@ Theorem For any matrix B of rank at most k,
A= Allr < [[A= B¢

@ Let B minimize ||A — B||?_— among all rank k or less matrices. V =
row space of B.

@ Each row of B is the projection of the corresponding row of A onto
V (why?):

@ Otherwise replace row of B with the projection of the

corresponding row of A onto V. Keeps row space of BC V, so
rank(B) < k. But, ||A — BJ|% reduced. —+ (||A — BJ|r best).

@ So, ||A— B||2 = sum of squared distances of rows of Ato V, so
|A— BIIZ > ||A— Al2. QED
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Best rank k approximation

@ Theorem For any matrix B of rank at most k,
A= Allr < [[A= B¢

@ Let B minimize ||A — B||?_— among all rank k or less matrices. V =
row space of B.

@ Each row of B is the projection of the corresponding row of A onto
V (why?):

@ Otherwise replace row of B with the projection of the

corresponding row of A onto V. Keeps row space of BC V, so
rank(B) < k. But, ||A — BJ|% reduced. —+ (||A — BJ|r best).

@ So, ||A— B||2 = sum of squared distances of rows of Ato V, so
|A~B|[2 >||A~ A2. QED
@ Will also prove Ay is best rank k approx in spectral norm.
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Left singular vectors are orthogonal

@ Theorem The left singular vectors are pairwise orthogonal.
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Left singular vectors are orthogonal

@ Theorem The left singular vectors are pairwise orthogonal.

@ Proof Suppose not. Let i be the smallest integer such that u; is
not orthogonal to some other u;.
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Left singular vectors are orthogonal

@ Theorem The left singular vectors are pairwise orthogonal.

@ Proof Suppose not. Let i be the smallest integer such that u; is
not orthogonal to some other u;.

@ Wig, u/uj=0>0. Ifuj"u; <0.....
il |
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Left singular vectors are orthogonal

@ Theorem The left singular vectors are pairwise orthogonal.

@ Proof Suppose not. Let i be the smallest integer such that u; is
not orthogonal to some other u;.

e Wig, u/u; =6 > 0. Ifu;"u; < 0.....
@ j > i since / smallest violation.

_ Lecture 7: Singular Value Decomposition - II November 8, 2017 5/7



Left singular vectors are orthogonal

@ Theorem The left singular vectors are pairwise orthogonal.

@ Proof Suppose not. Let i be the smallest integer such that u; is
not orthogonal to some other u;.

@ Wig, u/u; =4 > 0. If u;"y; < 0.....

@ j > i since / smallest violation.

@ Fore >0, letv, = y=h |v/| = 1 and Av] = ““=7 has length

T vitevy|® 1+e

at least as large as its component along u; which is
U:r (o,-u1+eo,-ui > (O’,‘ +€O','5) (1 — %) >0 — %U;+60’;5— %U,‘é >

i V42
aj, for sufficiently small ¢, a contradiction since v; + vj is
orthogonal to v4, Vs, ..., Vj_q since j > i and o; is defined to be the
maximum of |Av| over such vectors. O
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A Lemma

o Lemma |A— A5 =02, ,.
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A Lemma

o Lemma |A— A5 =02, ,.

r r
@ Proof: SVD: A= Y oujv;’. item <3->A— Ac = > ouv;’. Let
i=1 i=k+1
v be the top singular vector of A — Ak. Express vis a lin.
r

combination of v4,Va, ..., vy (Why?): v = 3" ¢V;.
j=1
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A Lemma

o Lemma |A— A5 =02, ,.

r r
@ Proof: SVD: A= Y oujv;’. item <3->A— Ac = > ouv;’. Let
i=1 i=k+1
v be the top singular vector of A — Ak. Express vis a lin.
r

combination of v4,Va, ..., vy (Why?): v = 3" ¢V;.
j=1
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A Lemma

2

o Lemma |A— A5 =02, ,.

.
@ Proof: SVD: A= )" oiu;v;
i=1

.
T item<3->A— A= > ojuyv;
=k 1

v be the top singular vector of A — Ak. Express vis a lin.
r

combination of vq,va,.. .,

Ve (Why?): v =3 ¢v;.
j=1

,
@ [(A—AnVv|= E oiU;Vj ZC]V] = > couvivi| =
i=k+1 i=k+1
,
Z CiUIU| -
i=k+1
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A Lemma

o Lemma |A— A5 =02, ,.

r r
@ Proof: SVD: A= Y oujv;’. item <3->A— Ac = > ouv;’. Let
i=1 i=k+1
v be the top singular vector of A — Ak. Express vis a lin.
r

combination of v4,Va, ..., vy (Why?): v = 3" ¢V;.
j=1
r T r r T
@ [(A—-AV|= | X awvi' Y qvj| =| > Ciouv;'vi| =
i=k+1 j=1 i=k+1
,
Y. Ciojli| =
i=k+1

r
@ For v maximizing this, subject to |v|> = 3" ¢? = 1, have ¢, 1 = 1,
i=1
rest c; = 0. QED
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Finally: Ak best in spectral norm too

@ For Bofrank < k ||[A— Axll, < ||A—-B|, .
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Finally: Ak best in spectral norm too
@ For Bofrank < k ||[A— Axll, < ||A—-B|, .

@ Proof: If Ais of rank k or less, the theorem is obviously true since
1A= Acll, = 0.
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Finally: Ak best in spectral norm too

@ For Bofrank < k ||[A— Axll, < ||A—-B|, .

@ Proof: If Ais of rank k or less, the theorem is obviously true since
|A—Agllz = 0.

o Assume rank(A) > k. [|A— Ag|5 = o2, .

@ Null space of B, has dimension > d — k. Dimension counts imply
Jz # 0in Null (B) n Span {v{,Va,...,Vki1} .. Scale z to be of
length one.
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Finally: Ak best in spectral norm too

@ For Bofrank < k ||[A— Axll, < ||A—-B|, .

@ Proof: If Ais of rank k or less, the theorem is obviously true since
|A—Agllz = 0.

o Assume rank(A) > k. [|A— Ag|5 = o2, .

@ Null space of B, has dimension > d — k. Dimension counts imply
Jz # 0in Null (B) n Span {v{,Va,...,Vki1} .. Scale z to be of
length one.

o |A-B|3>|(A-B)z.
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Finally: Ak best in spectral norm too

@ For Bofrank < k ||[A— Axll, < ||A—-B|, .

@ Proof: If Ais of rank k or less, the theorem is obviously true since
|A—Agllz = 0.

o Assume rank(A) > k. [|A— Ag|5 = o2, .

@ Null space of B, has dimension > d — k. Dimension counts imply
Jz # 0in Null (B) n Span {v{,Va,...,Vki1} .. Scale z to be of
length one.

° |A-Bl3>|(A-B)z.

@ Since Bz =0, |A— B3 > |Az|*.
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Finally: Ak best in spectral norm too

@ For Bofrank < k ||[A— Axll, < ||A—-B|, .

@ Proof: If Ais of rank k or less, the theorem is obviously true since
|A—Agllz = 0.

o Assume rank(A) > k. [|A— Ag|5 = o2, .

@ Null space of B, has dimension > d — k. Dimension counts imply

Jz # 0in Null (B) n Span {v{,Va,...,Vki1} .. Scale z to be of
length one.

o |A-B|5>|(A-B)z.
@ Since Bz =0, |A— B3 > |Az|*.

@ Since z € Span{v{,Va,...,Vki1}
5 n 2 n 2 k+1 2
Az|” = | ouvi’z] =Y 02 (viT2)" =3 o2 (vi'2)" >
=1 i=1 =1

o2 kif (vi 7-2)2 =02, ,.QED
ket 2 Vi = Tkt
j=
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