Lecture 7: Singular Value Decomposition - II

November 8, 2017

• SVD: $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t} \mathbf{v_t^T}$. $\mathbf{v_t}$ orthonormal. Many uses.

- SVD: $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t} \mathbf{v_t}^T$. $\mathbf{v_t}$ orthonormal. Many uses.
- $AA^T = \left(\sum_{t_1=1}^r \sigma_{t_1} \mathbf{u}_{t_1} \mathbf{v}_{t_1}^T\right) \left(\sum_{t_2=1}^r \sigma_{t_2} \mathbf{v}_{t_2} \mathbf{u}_{t_2}^T\right) = \sum_{t=1}^r \sigma_t^2 \mathbf{u}_t \mathbf{u}_t^T,$ Caution: $\mathbf{v}_{t_1} \mathbf{v}_{t_2}^T \neq \text{all-zero matrix }!$

- SVD: $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t} \mathbf{v_t}^T$. $\mathbf{v_t}$ orthonormal. Many uses.
- $AA^T = \left(\sum_{t_1=1}^r \sigma_{t_1} \mathbf{u}_{t_1} \mathbf{v}_{t_1}^T\right) \left(\sum_{t_2=1}^r \sigma_{t_2} \mathbf{v}_{t_2} \mathbf{u}_{t_2}^T\right) = \sum_{t=1}^r \sigma_t^2 \mathbf{u}_t \mathbf{u}_t^T,$ Caution: $\mathbf{v}_{t_1} \mathbf{v}_{t_2}^T \neq \text{all-zero matrix }!$
- A invertible $\Rightarrow A^{-1} = \sum_{t=1}^{r} \frac{1}{\sigma_t} \mathbf{v_t} \mathbf{u_t}^T$. [check by multiplying.]

- SVD: $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t} \mathbf{v_t}^T$. $\mathbf{v_t}$ orthonormal. Many uses.
- $AA^T = \left(\sum_{t_1=1}^r \sigma_{t_1} \mathbf{u}_{t_1} \mathbf{v}_{t_1}^T\right) \left(\sum_{t_2=1}^r \sigma_{t_2} \mathbf{v}_{t_2} \mathbf{u}_{t_2}^T\right) = \sum_{t=1}^r \sigma_t^2 \mathbf{u}_t \mathbf{u}_t^T,$ Caution: $\mathbf{v}_{t_1} \mathbf{v}_{t_2}^T \neq$ all-zero matrix !
- A invertible $\Rightarrow A^{-1} = \sum_{t=1}^{r} \frac{1}{\sigma_t} \mathbf{v_t} \mathbf{u_t}^T$. [check by multiplying.]
- A singular: "pseudo-inverse" = $A^{\dagger} = \sum_{t=1}^{r} \frac{1}{\sigma_t} \mathbf{v_t u_t}^T$ $AA^{\dagger} = \sum_{t=1}^{r} \mathbf{u_t u_t}^T = \text{identity on space of } \mathbf{u_t}.$

- SVD: $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t} \mathbf{v_t}^T$. $\mathbf{v_t}$ orthonormal. Many uses.
- $AA^T = \left(\sum_{t_1=1}^r \sigma_{t_1} \mathbf{u}_{t_1} \mathbf{v}_{t_1}^T\right) \left(\sum_{t_2=1}^r \sigma_{t_2} \mathbf{v}_{t_2} \mathbf{u}_{t_2}^T\right) = \sum_{t=1}^r \sigma_t^2 \mathbf{u}_t \mathbf{u}_t^T,$ Caution: $\mathbf{v}_{t_1} \mathbf{v}_{t_2}^T \neq$ all-zero matrix !
- A invertible \Rightarrow $A^{-1} = \sum_{t=1}^{r} \frac{1}{\sigma_t} \mathbf{v_t u_t}^T$. [check by multiplying.]
- A singular: "pseudo-inverse" = $A^{\dagger} = \sum_{t=1}^{r} \frac{1}{\sigma_t} \mathbf{v_t u_t}^T$ $AA^{\dagger} = \sum_{t=1}^{r} \mathbf{u_t u_t}^T = \text{identity on space of } \mathbf{u_t}.$
- A symmetric \rightarrow Spectral Decomposition (SD): $A = \sum_{t=1}^{r} \lambda_t \mathbf{u_t} \mathbf{u_t}^T$:

- SVD: $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t} \mathbf{v_t}^T$. $\mathbf{v_t}$ orthonormal. Many uses.
- $AA^T = \left(\sum_{t_1=1}^r \sigma_{t_1} \mathbf{u}_{t_1} \mathbf{v}_{t_1}^T\right) \left(\sum_{t_2=1}^r \sigma_{t_2} \mathbf{v}_{t_2} \mathbf{u}_{t_2}^T\right) = \sum_{t=1}^r \sigma_t^2 \mathbf{u}_t \mathbf{u}_t^T,$ Caution: $\mathbf{v}_{t_1} \mathbf{v}_{t_2}^T \neq \text{all-zero matrix }!$
- A invertible $\Rightarrow A^{-1} = \sum_{t=1}^{r} \frac{1}{\sigma_t} \mathbf{v_t} \mathbf{u_t}^T$. [check by multiplying.]
- A singular: "pseudo-inverse" = $A^{\dagger} = \sum_{t=1}^{r} \frac{1}{\sigma_t} \mathbf{v_t} \mathbf{u_t}^T$ $AA^{\dagger} = \sum_{t=1}^{r} \mathbf{u_t} \mathbf{u_t}^T = \text{identity on space of } \mathbf{u_t}.$
- A symmetric \rightarrow Spectral Decomposition (SD): $A = \sum_{t=1}^{r} \lambda_t \mathbf{u_t u_t}^T$:
- **Proof** For A with no ties (except \pm) in SVD: $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t v_t}^T$. $A = A^T \Rightarrow A = \sum_{t=1}^{r} \sigma_t \mathbf{v_t u_t}^T$. "No ties" : $\mathbf{u_1} = \pm \mathbf{v_1}$. Repeat. [The \pm means $\lambda_t = \pm \sigma_t$]

- SVD: $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t} \mathbf{v_t}^T$. $\mathbf{v_t}$ orthonormal. Many uses.
- $AA^T = \left(\sum_{t_1=1}^r \sigma_{t_1} \mathbf{u}_{t_1} \mathbf{v}_{t_1}^T\right) \left(\sum_{t_2=1}^r \sigma_{t_2} \mathbf{v}_{t_2} \mathbf{u}_{t_2}^T\right) = \sum_{t=1}^r \sigma_t^2 \mathbf{u}_t \mathbf{u}_t^T,$ Caution: $\mathbf{v}_{t_1} \mathbf{v}_{t_2}^T \neq \text{all-zero matrix }!$
- A invertible $\Rightarrow A^{-1} = \sum_{t=1}^{r} \frac{1}{\sigma_t} \mathbf{v_t} \mathbf{u_t}^T$. [check by multiplying.]
- A singular: "pseudo-inverse" = $A^{\dagger} = \sum_{t=1}^{r} \frac{1}{\sigma_t} \mathbf{v_t} \mathbf{u_t}^T$ $AA^{\dagger} = \sum_{t=1}^{r} \mathbf{u_t} \mathbf{u_t}^T = \text{identity on space of } \mathbf{u_t}.$
- A symmetric \rightarrow Spectral Decomposition (SD): $A = \sum_{t=1}^{r} \lambda_t \mathbf{u_t u_t}^T$:
- **Proof** For A with no ties (except \pm) in SVD: $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t v_t}^T$. $A = A^T \Rightarrow A = \sum_{t=1}^{r} \sigma_t \mathbf{v_t u_t}^T$. "No ties" : $\mathbf{u_1} = \pm \mathbf{v_1}$. Repeat. [The \pm means $\lambda_t = \pm \sigma_t$]
- $A^s = \sum_{t=1}^r \lambda_t^s \mathbf{u_t} \mathbf{u_t}^T$. If $|\lambda_1| > |\lambda_t| \forall t \ge 2 \lim_{s \to \infty} \frac{1}{|\lambda_1|^s} A^s = \mathbf{u_1} \mathbf{u_1}^T$. Rank 1!

- SVD: $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t} \mathbf{v_t}^\mathsf{T}$. $\mathbf{v_t}$ orthonormal. Many uses.
- $AA^T = \left(\sum_{t_1=1}^r \sigma_{t_1} \mathbf{u}_{t_1} \mathbf{v}_{t_1}^T\right) \left(\sum_{t_2=1}^r \sigma_{t_2} \mathbf{v}_{t_2} \mathbf{u}_{t_2}^T\right) = \sum_{t=1}^r \sigma_t^2 \mathbf{u}_t \mathbf{u}_t^T,$ Caution: $\mathbf{v}_{t_1} \mathbf{v}_{t_2}^T \neq \text{all-zero matrix }!$
- A invertible $\Rightarrow A^{-1} = \sum_{t=1}^{r} \frac{1}{\sigma_t} \mathbf{v_t} \mathbf{u_t}^T$. [check by multiplying.]
- A singular: "pseudo-inverse" = $A^{\dagger} = \sum_{t=1}^{r} \frac{1}{\sigma_t} \mathbf{v_t} \mathbf{u_t}^T$ $AA^{\dagger} = \sum_{t=1}^{r} \mathbf{u_t} \mathbf{u_t}^T = \text{identity on space of } \mathbf{u_t}.$
- A symmetric \rightarrow Spectral Decomposition (SD): $A = \sum_{t=1}^{r} \lambda_t \mathbf{u_t u_t}^T$:
- **Proof** For A with no ties (except \pm) in SVD: $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t} \mathbf{v_t}^T$. $A = A^T \Rightarrow A = \sum_{t=1}^{r} \sigma_t \mathbf{v_t} \mathbf{u_t}^T$. "No ties" : $\mathbf{u_1} = \pm \mathbf{v_1}$. Repeat. [The \pm means $\lambda_t = \pm \sigma_t$]
- $A^s = \sum_{t=1}^r \lambda_t^s \mathbf{u_t} \mathbf{u_t}^T$. If $|\lambda_1| > |\lambda_t| \forall t \ge 2 \lim_{s \to \infty} \frac{1}{|\lambda_1|^s} A^s = \mathbf{u_1} \mathbf{u_1}^T$. Rank 1!
- Power Method, Fundamental Thm of Markov Chains

• SVD of $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t} \mathbf{v_t}^T$. Define for each k, $A_k = \sum_{t=1}^{k} \sigma_t \mathbf{u_t} \mathbf{v_t}^T$ (called the **truncated SVD**). Will show: for each k, A_k is the best approximation to A of rank at most k.

- SVD of $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t} \mathbf{v_t}^T$. Define for each k, $A_k = \sum_{t=1}^{k} \sigma_t \mathbf{u_t} \mathbf{v_t}^T$ (called the **truncated SVD**). Will show: for each k, A_k is the best approximation to A of rank at most k.
- **Lemma** The rows of A_k are the projections of the (corres.) rows of A onto V_k , the space spanned by $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}$.

- SVD of $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t v_t}^T$. Define for each k, $A_k = \sum_{t=1}^{k} \sigma_t \mathbf{u_t v_t}^T$ (called the **truncated SVD**). Will show: for each k, A_k is the best approximation to A of rank at most k.
- **Lemma** The rows of A_k are the projections of the (corres.) rows of A onto V_k , the space spanned by $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}$.
- Proof: For any row vector \mathbf{a} , the proj of \mathbf{a} onto V_k is given by $\sum_{t=1}^k (\mathbf{a} \cdot \mathbf{v_t}) \mathbf{v_t}$. So, projecting each row of A into V_k , we get $\sum_{t=1}^k A \mathbf{v_i} \mathbf{v_i}^T$.

- SVD of $A = \sum_{t=1}^{r} \sigma_t \mathbf{u_t} \mathbf{v_t}^T$. Define for each k, $A_k = \sum_{t=1}^{k} \sigma_t \mathbf{u_t} \mathbf{v_t}^T$ (called the **truncated SVD**). Will show: for each k, A_k is the best approximation to A of rank at most k.
- **Lemma** The rows of A_k are the projections of the (corres.) rows of A onto V_k , the space spanned by $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}$.
- Proof: For any row vector \mathbf{a} , the proj of \mathbf{a} onto V_k is given by $\sum_{t=1}^k (\mathbf{a} \cdot \mathbf{v_t}) \mathbf{v_t}$. So, projecting each row of A into V_k , we get $\sum_{t=1}^k A \mathbf{v_i} \mathbf{v_i}^T$.
- $\sum_{i=1}^{k} A \mathbf{v_i} \mathbf{v_i}^T = \sum_{i=1}^{k} \sigma_i \mathbf{u_i} \mathbf{v_i}^T = A_k$, proving Lemma.

• **Theorem** For any matrix B of rank at most k, $||A - A_k||_F \le ||A - B||_F$

- **Theorem** For any matrix *B* of rank at most *k*, $\|A A_k\|_F \le \|A B\|_F$
- Let B minimize $||A B||_F^2$ among all rank k or less matrices. V = row space of B.

- **Theorem** For any matrix B of rank at most k, $||A A_k||_F \le ||A B||_F$
- Let B minimize $||A B||_F^2$ among all rank k or less matrices. V = row space of B.
- Each row of B is the projection of the corresponding row of A onto V (why?):

- **Theorem** For any matrix B of rank at most k, $||A A_k||_F \le ||A B||_F$
- Let B minimize $||A B||_F^2$ among all rank k or less matrices. V = row space of B.
- Each row of B is the projection of the corresponding row of A onto V (why?):
- Otherwise replace row of B with the projection of the corresponding row of A onto V. Keeps row space of $B \subseteq V$, so $\operatorname{rank}(B) \leq k$. But, $\|A B\|_F^2$ reduced. $\rightarrow \leftarrow (||A B||_F \text{ best})$.

- **Theorem** For any matrix B of rank at most k, $||A A_k||_E \le ||A B||_E$
- Let B minimize $||A B||_F^2$ among all rank k or less matrices. V = row space of B.
- Each row of B is the projection of the corresponding row of A onto V (why?):
- Otherwise replace row of *B* with the projection of the corresponding row of *A* onto *V*. Keeps row space of $B \subseteq V$, so $\operatorname{rank}(B) \leq k$. But, $\|A B\|_F^2$ reduced. $\rightarrow \leftarrow (||A B||_F)$ best).
- So, $||A B||_F^2 = \text{sum of squared distances of rows of } A \text{ to } V$, so $||A B||_F^2 \ge ||A A_k||_F^2$. QED

- **Theorem** For any matrix *B* of rank at most k, $||A A_k||_F \le ||A B||_F$
- Let B minimize $||A B||_F^2$ among all rank k or less matrices. V = row space of B.
- Each row of B is the projection of the corresponding row of A onto V (why?):
- Otherwise replace row of *B* with the projection of the corresponding row of *A* onto *V*. Keeps row space of $B \subseteq V$, so rank(B) $\leq k$. But, $||A B||_F^2$ reduced. $\rightarrow \leftarrow (||A B||_F)$ best).
- So, $||A B||_F^2 = \text{sum of squared distances of rows of } A \text{ to } V$, so $||A B||_F^2 \ge ||A A_k||_F^2$. QED
- Will also prove A_k is best rank k approx in spectral norm.

• **Theorem** The left singular vectors are pairwise orthogonal.

- Theorem The left singular vectors are pairwise orthogonal.
- Proof Suppose not. Let i be the smallest integer such that ui is not orthogonal to some other ui.

- Theorem The left singular vectors are pairwise orthogonal.
- Proof Suppose not. Let i be the smallest integer such that ui is not orthogonal to some other ui.
- Wlg, $\mathbf{u_i}^T \mathbf{u_j} = \delta > 0$. If $\mathbf{u_i}^T \mathbf{u_j} < 0$

- Theorem The left singular vectors are pairwise orthogonal.
- Proof Suppose not. Let i be the smallest integer such that ui is not orthogonal to some other ui.
- Wlg, $\mathbf{u_i}^T \mathbf{u_j} = \delta > 0$. If $\mathbf{u_i}^T \mathbf{u_j} < 0$
- j > i since i smallest violation.

- Theorem The left singular vectors are pairwise orthogonal.
- Proof Suppose not. Let i be the smallest integer such that ui is not orthogonal to some other ui.
- Wlg, $\mathbf{u_i}^T \mathbf{u_j} = \delta > 0$. If $\mathbf{u_i}^T \mathbf{u_j} < 0$
- j > i since i smallest violation.
- For $\varepsilon>0$, let $\mathbf{v}_{\mathbf{i}}'=\frac{\mathbf{v_i}+\epsilon\mathbf{v_j}}{|\mathbf{v_i}+\epsilon\mathbf{v_j}|}$. $|\mathbf{v}_{\mathbf{i}}'|=1$ and $A\mathbf{v}_{\mathbf{i}}'=\frac{\sigma_i\mathbf{u_i}+\varepsilon\sigma_j\mathbf{u_j}}{\sqrt{1+\varepsilon^2}}$ has length at least as large as its component along $\mathbf{u_i}$ which is

$$\mathbf{u_i^T}\left(\frac{\sigma_i\mathbf{u_1}+\varepsilon\sigma_i\mathbf{u_i}}{\sqrt{1+\varepsilon^2}}\right) > \left(\sigma_i+\varepsilon\sigma_i\delta\right)\left(1-\frac{\varepsilon^2}{2}\right) > \sigma_i-\frac{\varepsilon^2}{2}\sigma_i+\varepsilon\sigma_i\delta-\frac{\varepsilon^3}{2}\sigma_i\delta > \sigma_i, \text{ for sufficiently small } \epsilon, \text{ a contradiction since } \mathbf{v_i}+\varepsilon\mathbf{v_j} \text{ is orthogonal to } \mathbf{v_1},\mathbf{v_2},\ldots,\mathbf{v_{i-1}} \text{ since } j>i \text{ and } \sigma_i \text{ is defined to be the maximum of } |A\mathbf{v}| \text{ over such vectors.}$$

• Lemma $||A - A_k||_2^2 = \sigma_{k+1}^2$.

- Lemma $||A A_k||_2^2 = \sigma_{k+1}^2$.
- Proof: SVD: $A = \sum_{i=1}^{r} \sigma_i \mathbf{u_i} \mathbf{v_i}^T$. item <3-> $A A_k = \sum_{i=k+1}^{r} \sigma_i \mathbf{u_i} \mathbf{v_i}^T$. Let ${\bf v}$ be the top singular vector of ${\bf A}-{\bf A}_k$. Express ${\bf v}$ is a lin.

combination of
$$\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_r}$$
 (Why?): $\mathbf{v} = \sum_{j=1}^r c_j \mathbf{v_j}$.

- Lemma $||A A_k||_2^2 = \sigma_{k+1}^2$.
- Proof: SVD: $A = \sum_{i=1}^{r} \sigma_i \mathbf{u_i} \mathbf{v_i}^T$. item <3-> $A A_k = \sum_{i=k+1}^{r} \sigma_i \mathbf{u_i} \mathbf{v_i}^T$. Let ${\bf v}$ be the top singular vector of ${\bf A}-{\bf A}_k$. Express ${\bf v}$ is a lin.

combination of
$$\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_r}$$
 (Why?): $\mathbf{v} = \sum_{j=1}^r c_j \mathbf{v_j}$.

- Lemma $||A A_k||_2^2 = \sigma_{k+1}^2$.
- Proof: SVD: $A = \sum_{i=1}^{r} \sigma_i \mathbf{u_i} \mathbf{v_i}^T$. item <3-> $A A_k = \sum_{i=k+1}^{r} \sigma_i \mathbf{u_i} \mathbf{v_i}^T$. Let \mathbf{v} be the top singular vector of $A A_k$. Express \mathbf{v} is a lin. combination of $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_r}$ (Why?): $\mathbf{v} = \sum_{i=k+1}^{r} c_i \mathbf{v_j}$.
- $\bullet |(A A_k)\mathbf{v}| = \left| \sum_{i=k+1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T \sum_{j=1}^r c_j \mathbf{v}_j \right| = \left| \sum_{i=k+1}^r c_i \sigma_i \mathbf{u}_i \mathbf{v}_i^T \mathbf{v}_i \right| = \left| \sum_{i=k+1}^r c_i \sigma_i \mathbf{u}_i \right| = \sqrt{\sum_{i=k+1}^r c_i^2 \sigma_i^2}.$

- Lemma $||A A_k||_2^2 = \sigma_{k+1}^2$.
- Proof: SVD: $A = \sum_{i=1}^{r} \sigma_i \mathbf{u_i} \mathbf{v_i}^T$. item <3-> $A A_k = \sum_{i=k+1}^{r} \sigma_i \mathbf{u_i} \mathbf{v_i}^T$. Let \mathbf{v} be the top singular vector of $A A_k$. Express \mathbf{v} is a lin. combination of $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_r}$ (Why?): $\mathbf{v} = \sum_{i=k+1}^{r} c_i \mathbf{v_i}$.
- $|(A A_k)\mathbf{v}| = \left| \sum_{i=k+1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T \sum_{j=1}^r c_j \mathbf{v}_j \right| = \left| \sum_{i=k+1}^r c_i \sigma_i \mathbf{u}_i \mathbf{v}_i^T \mathbf{v}_i \right| = \left| \sum_{i=k+1}^r c_i \sigma_i \mathbf{u}_i \right| = \sqrt{\sum_{i=k+1}^r c_i^2 \sigma_i^2}.$
- For **v** maximizing this, subject to $|\mathbf{v}|^2 = \sum_{i=1}^r c_i^2 = 1$, have $c_{k+1} = 1$, rest $c_i = 0$. QED

• For *B* of rank $\leq k \|A - A_k\|_2 \leq \|A - B\|_2$.

- For *B* of rank $\leq k \|A A_k\|_2 \leq \|A B\|_2$.
- Proof: If A is of rank k or less, the theorem is obviously true since $||A A_k||_2 = 0$.

- For *B* of rank $\leq k \|A A_k\|_2 \leq \|A B\|_2$.
- Proof: If A is of rank k or less, the theorem is obviously true since $\|A A_k\|_2 = 0$.
- Assume rank(A) $\geq k$. $||A A_k||_2^2 = \sigma_{k+1}^2$.
- Null space of B, has dimension ≥ d k. Dimension counts imply ∃z ≠ 0 in Null (B) ∩ Span {v₁, v₂, ..., v_{k+1}} .. Scale z to be of length one.

- For *B* of rank $\leq k \|A A_k\|_2 \leq \|A B\|_2$.
- Proof: If A is of rank k or less, the theorem is obviously true since $\|A A_k\|_2 = 0$.
- Assume rank(A) $\geq k$. $||A A_k||_2^2 = \sigma_{k+1}^2$.
- Null space of B, has dimension ≥ d k. Dimension counts imply ∃z ≠ 0 in Null (B) ∩ Span {v₁, v₂, ..., v_{k+1}} .. Scale z to be of length one.
- $||A B||_2^2 \ge |(A B)\mathbf{z}|^2$.

- For *B* of rank $\leq k \|A A_k\|_2 \leq \|A B\|_2$.
- Proof: If A is of rank k or less, the theorem is obviously true since $||A A_k||_2 = 0$.
- Assume rank(A) $\geq k$. $||A A_k||_2^2 = \sigma_{k+1}^2$.
- Null space of B, has dimension ≥ d k. Dimension counts imply ∃z ≠ 0 in Null (B) ∩ Span {v₁, v₂, ..., v_{k+1}} .. Scale z to be of length one.
- $||A B||_2^2 \ge |(A B)\mathbf{z}|^2$.
- Since $B\mathbf{z} = 0$, $||A B||_2^2 \ge |A\mathbf{z}|^2$.

- For *B* of rank $\leq k \|A A_k\|_2 \leq \|A B\|_2$.
- Proof: If A is of rank k or less, the theorem is obviously true since $||A A_k||_2 = 0$.
- Assume rank(A) $\geq k$. $||A A_k||_2^2 = \sigma_{k+1}^2$.
- Null space of B, has dimension ≥ d k. Dimension counts imply ∃z ≠ 0 in Null (B) ∩ Span {v₁, v₂, ..., v_{k+1}} .. Scale z to be of length one.
- $||A B||_2^2 \ge |(A B)\mathbf{z}|^2$.
- Since $B\mathbf{z} = 0$, $||A B||_2^2 \ge |A\mathbf{z}|^2$.
- Since $z \in \text{Span}\{v_1, v_2, \dots, v_{k+1}\}$

$$|\mathbf{A}\mathbf{z}|^2 = \left|\sum_{i=1}^n \sigma_i \mathbf{u_i} \mathbf{v_i}^T \mathbf{z}\right|^2 = \sum_{i=1}^n \sigma_i^2 \left(\mathbf{v_i}^T \mathbf{z}\right)^2 = \sum_{i=1}^{k+1} \sigma_i^2 \left(\mathbf{v_i}^T \mathbf{z}\right)^2 \ge$$

$$\sigma_{k+1}^2 \sum_{i=1}^{k+1} \left(\mathbf{v_i}^T \mathbf{z} \right)^2 = \sigma_{k+1}^2$$
. QED

