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Using Orthogonality of singular vectors

SVD: A =
∑r

t=1 σtutvT
t . vt orthonormal. Many uses.

AAT =
(∑r

t1=1 σt1ut1vT
t1

) (∑r
t2=1 σt2vt2uT

t2

)
=
∑r

t=1 σ
2
t utut

T ,

Caution: vt1vT
t2
6= all-zero matrix !

A invertible⇒ A−1 =
∑r

t=1
1
σt

vtut
T . [check by multiplying.]

A singular: “pseudo-inverse” = A† =
∑r

t=1
1
σt

vtut
T

AA† =
∑r

t=1 utut
T = identity on space of ut.

A symmetric→ Spectral Decomposition (SD): A =
∑r

t=1 λtutut
T :

Proof For A with no ties (except ±) in SVD: A =
∑r

t=1 σtutvt
T .

A = AT ⇒ A =
∑r

t=1 σtvtut
T . “No ties” :u1 = ±v1. Repeat. [The ±

means λt = ±σt ]
As =

∑r
t=1 λ

s
t utut

T . If |λ1| > |λt |∀t ≥ 2 lims→∞
1
|λ1|s As = u1u1

T .

Rank 1!
Power Method, Fundamental Thm of Markov Chains
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Best Low-rank approximation

SVD of A =
∑r

t=1 σtutvt
T . Define for each k , Ak =

∑k
t=1 σtutvt

T

(called the truncated SVD). Will show: for each k , Ak is the best
approximation to A of rank at most k .

Lemma The rows of Ak are the projections of the (corres.) rows of
A onto Vk , the space spanned by v1,v2, . . . ,vk.
Proof: For any row vector a, the proj of a onto Vk is given by∑k

t=1(a · vt)vt. So, projecting each row of A into Vk , we get∑k
t=1 Avivi

T .∑k
i=1 Avivi

T =
∑k

i=1 σiuivi
T = Ak , proving Lemma.
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Best rank k approximation

Theorem For any matrix B of rank at most k ,
‖A− Ak‖F ≤ ‖A− B‖F

Let B minimize ‖A− B‖2F among all rank k or less matrices. V =
row space of B.
Each row of B is the projection of the corresponding row of A onto
V (why?):
Otherwise replace row of B with the projection of the
corresponding row of A onto V . Keeps row space of B ⊆ V , so
rank(B) ≤ k . But, ‖A− B‖2F reduced. →← (||A− B||F best).
So, ||A− B||2F = sum of squared distances of rows of A to V , so
||A− B||2F ≥ ||A− Ak ||2F . QED
Will also prove Ak is best rank k approx in spectral norm.
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Left singular vectors are orthogonal

Theorem The left singular vectors are pairwise orthogonal.

Proof Suppose not. Let i be the smallest integer such that ui is
not orthogonal to some other uj.
Wlg, uT

i uj = δ > 0. If ui
T uj < 0.....

j > i since i smallest violation.
For ε > 0, let v′i =

vi+εvj
|vi+εvj|

. |v′i| = 1 and Av′i =
σi ui+εσj uj√

1+ε2
has length

at least as large as its component along ui which is

uT
i

(
σi u1+εσi ui√

1+ε2

)
> (σi + εσiδ)

(
1− ε2

2

)
> σi − ε2

2 σi + εσiδ− ε3

2 σiδ >

σi , for sufficiently small ε, a contradiction since vi + εvj is
orthogonal to v1,v2, . . . ,vi−1 since j > i and σi is defined to be the
maximum of |Av| over such vectors.
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A Lemma

Lemma ‖A− Ak‖22 = σ2
k+1.

Proof: SVD: A =
r∑

i=1
σiuivi

T . item <3-> A− Ak =
r∑

i=k+1
σiuivi

T . Let

v be the top singular vector of A− Ak . Express v is a lin.

combination of v1,v2, . . . ,vr (Why?): v =
r∑

j=1
cjvj.

|(A− Ak )v| =

∣∣∣∣∣ r∑
i=k+1

σiuivi
T

r∑
j=1

cjvj

∣∣∣∣∣ =

∣∣∣∣∣ r∑
i=k+1

ciσiuivi
T vi

∣∣∣∣∣ =∣∣∣∣∣ r∑
i=k+1

ciσiui

∣∣∣∣∣ =

√
r∑

i=k+1
c2

i σ
2
i .

For v maximizing this, subject to |v|2 =
r∑

i=1
c2

i = 1, have ck+1 = 1,

rest ci = 0. QED
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combination of v1,v2, . . . ,vr (Why?): v =
r∑

j=1
cjvj.

|(A− Ak )v| =

∣∣∣∣∣ r∑
i=k+1

σiuivi
T

r∑
j=1

cjvj

∣∣∣∣∣ =

∣∣∣∣∣ r∑
i=k+1

ciσiuivi
T vi

∣∣∣∣∣ =∣∣∣∣∣ r∑
i=k+1

ciσiui

∣∣∣∣∣ =

√
r∑

i=k+1
c2

i σ
2
i .

For v maximizing this, subject to |v|2 =
r∑

i=1
c2

i = 1, have ck+1 = 1,

rest ci = 0. QED
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Finally: Ak best in spectral norm too

For B of rank ≤ k ‖A− Ak‖2 ≤ ‖A− B‖2 .

Proof: If A is of rank k or less, the theorem is obviously true since
‖A− Ak‖2 = 0.
Assume rank(A) ≥ k . ‖A− Ak‖22 = σ2

k+1.
Null space of B, has dimension ≥ d − k . Dimension counts imply
∃z 6= 0 in Null (B) ∩ Span {v1,v2, . . . ,vk+1} .. Scale z to be of
length one.
‖A− B‖22 ≥ |(A− B) z|2 .
Since Bz = 0, ‖A− B‖22 ≥ |Az|2 .
Since z ∈ Span {v1,v2, . . . ,vk+1}

|Az|2 =

∣∣∣∣ n∑
i=1

σiuivi
T z
∣∣∣∣2 =

n∑
i=1

σ2
i
(
vi

T z
)2

=
k+1∑
i=1

σ2
i
(
vi

T z
)2 ≥

σ2
k+1

k+1∑
i=1

(
vi

T z
)2

= σ2
k+1. QED
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