Dimension Reduction- two methods

@ Dealing with high d not efficient. Will be nice if we can reduce
dimensions.

D October 31,2017 1/12

Dimension Reduction- two methods

@ Dealing with high d not efficient. Will be nice if we can reduce
dimensions.

@ Two Main methods of dimension reduction:

D October 31,2017 1/12

Dimension Reduction- two methods

@ Dealing with high d not efficient. Will be nice if we can reduce
dimensions.

@ Two Main methods of dimension reduction:
@ Random Projections: Oblivious to data. [This lecture.]

D October 31,2017 1/12

Dimension Reduction- two methods

@ Dealing with high d not efficient. Will be nice if we can reduce
dimensions.

@ Two Main methods of dimension reduction:

@ Random Projections: Oblivious to data. [This lecture.]

e Can be proved to (a) preserve EVERY length to 1 £+ ¢, (b)
essentially ¢ € Q(1).

D October 31,2017 1/12

Dimension Reduction- two methods

@ Dealing with high d not efficient. Will be nice if we can reduce
dimensions.

@ Two Main methods of dimension reduction:

@ Random Projections: Oblivious to data. [This lecture.]

e Can be proved to (a) preserve EVERY length to 1 £+ ¢, (b)

essentially ¢ € Q(1).
e Used extensively in theory, because of (a). But (b) is a bottleneck

for use in practice.

D October 31,2017 1/12

Dimension Reduction- two methods

@ Dealing with high d not efficient. Will be nice if we can reduce
dimensions.

@ Two Main methods of dimension reduction:

@ Random Projections: Oblivious to data. [This lecture.]

@ Can be proved to (a) preserve EVERY length to 1 4 ¢, (b)
essentially ¢ € Q(1).

e Used extensively in theory, because of (a). But (b) is a bottleneck
for use in practice.

@ Principal Component Analysis (PCA)

D October 31,2017 1/12

Dimension Reduction- two methods

@ Dealing with high d not efficient. Will be nice if we can reduce
dimensions.

@ Two Main methods of dimension reduction:

@ Random Projections: Oblivious to data. [This lecture.]
@ Can be proved to (a) preserve EVERY length to 1 4 ¢, (b)
essentially ¢ € Q(1).
e Used extensively in theory, because of (a). But (b) is a bottleneck
for use in practice.
@ Principal Component Analysis (PCA)

o Projection length behaves very well (better than Q(1) error) when
averaged over all data, but not guaranteed on each piece.

Dimension Reduction- two methods

@ Dealing with high d not efficient. Will be nice if we can reduce
dimensions.

@ Two Main methods of dimension reduction:
@ Random Projections: Oblivious to data. [This lecture.]
@ Can be proved to (a) preserve EVERY length to 1 4 ¢, (b)
essentially ¢ € Q(1).
e Used extensively in theory, because of (a). But (b) is a bottleneck
for use in practice.
@ Principal Component Analysis (PCA)
o Projection length behaves very well (better than Q(1) error) when
averaged over all data, but not guaranteed on each piece.
e Theoretical use mainly in stochastic/mixture models. But wide
practical use. Coming Soon.

Use of Dimension Reduction

@ High Dimensional Nearest Neighbour Search (NNS):

D October 31,2017 2/12

Use of Dimension Reduction

@ High Dimensional Nearest Neighbour Search (NNS):
e Given a database of n points in RY. Preprocess in poly time.

D October 31,2017 2/12

Use of Dimension Reduction

@ High Dimensional Nearest Neighbour Search (NNS):
e Given a database of n points in RY. Preprocess in poly time.
e Now, presented with a query point in RY, find (approximate) nearest
database point to query point in sub-linear (i.e., o(nd)) time (or
polylog time).

D October 31,2017 2/12

Use of Dimension Reduction

@ High Dimensional Nearest Neighbour Search (NNS):

e Given a database of n points in RY. Preprocess in poly time.

e Now, presented with a query point in RY, find (approximate) nearest
database point to query point in sub-linear (i.e., o(nd)) time (or
polylog time).

o Will see: projecting database points into a random polylog dim
space is a good solution. At query time, will also project query point
to same space and measure distances in the projection.

Use of Dimension Reduction

@ High Dimensional Nearest Neighbour Search (NNS):

e Given a database of n points in RY. Preprocess in poly time.

e Now, presented with a query point in RY, find (approximate) nearest
database point to query point in sub-linear (i.e., o(nd)) time (or
polylog time).

o Will see: projecting database points into a random polylog dim
space is a good solution. At query time, will also project query point
to same space and measure distances in the projection.

@ (Over-determined) Linear Regression:

Use of Dimension Reduction

@ High Dimensional Nearest Neighbour Search (NNS):

e Given a database of n points in RY. Preprocess in poly time.

e Now, presented with a query point in RY, find (approximate) nearest
database point to query point in sub-linear (i.e., o(nd)) time (or
polylog time).

o Will see: projecting database points into a random polylog dim
space is a good solution. At query time, will also project query point
to same space and measure distances in the projection.

@ (Over-determined) Linear Regression:
e Given n x d (n > d) matrix A and n vector b, find x minimizing
|Ax — b.

Use of Dimension Reduction

@ High Dimensional Nearest Neighbour Search (NNS):

e Given a database of n points in RY. Preprocess in poly time.

e Now, presented with a query point in RY, find (approximate) nearest
database point to query point in sub-linear (i.e., o(nd)) time (or
polylog time).

o Will see: projecting database points into a random polylog dim
space is a good solution. At query time, will also project query point
to same space and measure distances in the projection.

@ (Over-determined) Linear Regression:

e Given n x d (n > d) matrix A and n vector b, find x minimizing
|Ax — b.

e Take a random poly(d) x n matrix P. Solve instead |PAx — Pb| (no
n. Only d - gain if d << n)

Use of Dimension Reduction

@ High Dimensional Nearest Neighbour Search (NNS):

e Given a database of n points in RY. Preprocess in poly time.

e Now, presented with a query point in RY, find (approximate) nearest
database point to query point in sub-linear (i.e., o(nd)) time (or
polylog time).

o Will see: projecting database points into a random polylog dim
space is a good solution. At query time, will also project query point
to same space and measure distances in the projection.

@ (Over-determined) Linear Regression:

e Given n x d (n > d) matrix A and n vector b, find x minimizing
|Ax — b.

e Take a random poly(d) x n matrix P. Solve instead |PAx — Pb| (no
n. Only d - gain if d << n)

@ Many other Examples : k—means Clustering. How about
k—median ? [Discussion later.]

Length Preserving Projection

@ Want a random “length preserving” linear projection from
RY - Rk, k << d:

D October 31,2017 3/12

Length Preserving Projection

@ Want a random “length preserving” linear projection from
RY - Rk, k << d:

@ l.e., want k x d random P so that ¥v € R,
Pr(|Pv|=(1+¢e)lv|]) >1—0.

D October 31,2017 3/12

Length Preserving Projection

@ Want a random “length preserving” linear projection from
RY - Rk, k << d:

@ l.e., want k x d random P so that ¥v € R,
Pr(|Pv|=(1+¢e)lv|]) >1—0.

@ Note the placement of ¥ quantifier. What happens if | place it
inside Pr(..)?

D October 31,2017 3/12

Length Preserving Projection

@ Want a random “length preserving” linear projection from
RY — Rf k << d:

@ l.e., want k x d random P so that ¥v € R,
Pr(|Pv|=(1+¢e)lv|]) >1—0.

@ Note the placement of ¥ quantifier. What happens if | place it
inside Pr(..)?

@ Not true if quantifier is inside: since k < d, there is a non-zero v in
null space of P...

D October 31,2017 3/12

Length Preserving Projection

@ Want a random “length preserving” linear projection from
RY — Rf k << d:

@ l.e., want k x d random P so that ¥v € R,
Pr(|Pv|=(1+¢e)lv|]) >1—0.

@ Note the placement of ¥ quantifier. What happens if | place it
inside Pr(..)?

@ Not true if quantifier is inside: since k < d, there is a non-zero v in
null space of P...

@ Original projection: Project to a random kdimensional subspace.
In terms of matrices, P is a random k x d matrix with orthonormal
rows.

Length Preserving Projection

@ Want a random “length preserving” linear projection from

RY - Rk, k << d:

l.e., want k x d random P so that Vv € RY,

Pr(|Pv|=(1+¢e)lv|]) >1—0.

Note the placement of V quantifier. What happens if | place it
inside Pr(..)?

Not true if quantifier is inside: since k < d, there is a non-zero v in
null space of P...

Original projection: Project to a random kdimensional subspace.
In terms of matrices, P is a random k x d matrix with orthonormal
rows.

How does one pick such a random matrix ? Dependence. Also
proof of length-preserving property is hard because of the
orthonormal requirement.

Projection with Gaussian Vectors

@ Pick k iid vectors uq, ug, ..., ug, each N(0,/).

D October 31,2017 4/12

Projection with Gaussian Vectors

@ Pick k iid vectors uq, ug, ..., ug, each N(0,/).

o Recall: Var-Cov matrix of random vector u is a d x d matrix with
(i,j) th entry equal to E((u; — E(ui))(u; — E(y;))). It equals | means
independent coordinates.

D October 31,2017 4/12

Projection with Gaussian Vectors

@ Pick k iid vectors uq, ug, ..., ug, each N(0,/).
o Recall: Var-Cov matrix of random vector u is a d x d matrix with
(i,j) th entry equal to E((u; — E(ui))(u; — E(y;))). It equals | means
independent coordinates.
@ Projection f : R — R¥ is given by f(X) = (X - uq,X - Up,...,X - Ug),
i.e., dot products of x with the k random vectors.

D October 31,2017 4/12

Projection with Gaussian Vectors

@ Pick k iid vectors uq, ug, ..., ug, each N(0,/).
o Recall: Var-Cov matrix of random vector u is a d x d matrix with
(i,j) th entry equal to E((u; — E(ui))(u; — E(y;))). It equals | means
independent coordinates.
@ Projection f : R? — R is given by f(X) = (X - uq,X - Ug, ..., X - U),
i.e., dot products of x with the k random vectors.
@ Will prove that for each v, whp, we have |f(v)| = (1 +)V/k|v|.
Why v/k? What is E((v - u1)?) OR at least an upper bound?

Projection with Gaussian Vectors

@ Pick k iid vectors uq, ug, ..., ug, each N(0,/).

o Recall: Var-Cov matrix of random vector u is a d x d matrix with
(i,j) th entry equal to E((u; — E(ui))(u; — E(y;))). It equals | means
independent coordinates.

@ Projection f : R? — R is given by f(X) = (X - uq,X - Ug, ..., X - U),
i.e., dot products of x with the k random vectors.

@ Will prove that for each v, whp, we have |f(v)| = (1 +)V/k|v|.
Why v/k? What is E((v - u1)?) OR at least an upper bound?

@ Upper bound: Ifv-uq = Z]‘-’:1(\/ju1j) is the sum of d independent
Gaussians; means and variances add up. So, v - uy ~ N(0, |v|?);
thus, whp, |v - uq| < c|v|. Note that c|v| = c|v| |uy|/V/d, so this is
an “equator” like bound - why ?

Random Projection Theorem

Theorem 1 Let f be as above. There is a constant ¢ > 0 such that for
e €(0,1),

wweRY: Pr (’]f(v)| - \/ﬂv\‘ > eVkV|) < 3ok,

|F(v) |~ VIV

where the probability is taken over the random draws of vectors u;
used to construct f.

Theorem 2 For any 0 < ¢ < 1 and any integer n, let k > % Innforc
as in Theorem 1. Suppose V1, Va, ..., Vy is any set of n points.

Pr(vij € {1,2,...,} |f(w) = f(v))] = VK |vi—vi|) > 1 -2,

Remarks on the Theorems

@ Note: The claim is for EVERY v. What if | just wanted a weaker
statement - for MOST v? Is it simpler? Would the weaker
statement - for MOST be enough if we want to solve the NNS
problem when the input is a RANDOM set of points?

Remarks on the Theorems

@ Note: The claim is for EVERY v. What if | just wanted a weaker
statement - for MOST v? Is it simpler? Would the weaker
statement - for MOST be enough if we want to solve the NNS
problem when the input is a RANDOM set of points?

@ Advantage of Linearity of f: Estimate distance between two points
vy,V2 € R%is whp (1 £) times distance between f(v4) and

f(v2), since f(vq — Vv2) = f(vq) — f(V2).

A%_“
=

Remarks on the Theorems

@ Note: The claim is for EVERY v. What if | just wanted a weaker
statement - for MOST v? Is it simpler? Would the weaker
statement - for MOST be enough if we want to solve the NNS
problem when the input is a RANDOM set of points?

@ Advantage of Linearity of f: Estimate distance between two points
vi,Va € R%is whp (1 + e)ﬁ times distance between f(v¢) and
f(v2), since f(vq — Vv2) = f(vq) — f(V2).

@ k being in the exponent in Theorem 1 is crucial to get k € O(In n)
in Theorem 2.

Remarks on the Theorems

@ Note: The claim is for EVERY v. What if | just wanted a weaker
statement - for MOST v? Is it simpler? Would the weaker
statement - for MOST be enough if we want to solve the NNS
problem when the input is a RANDOM set of points?

@ Advantage of Linearity of f: Estimate distance between two points
vy,v2 € R%iswhp (1 £ e)ﬁ times distance between f(v4) and
f(v2), since f(vq — Vv2) = f(vq) — f(V2).

@ k being in the exponent in Theorem 1 is crucial to get k € O(In n)
in Theorem 2.

@ Many other random projections are now known. For example, the
u; can be taken as +1 vectors. Intuitively, if d is large, then v - y;
behaves as if it is a Gaussian r.v. But for small d, we need more
care to argue this.

Proof of Theorem 1

@ Want to prove: |f(v)| ~. Vk|v|. Scale both sides and assume
v| = 1.

Proof of Theorem 1

@ Want to prove: |f(v)| ~. Vk|v|. Scale both sides and assume
v =1.

o uj-v= Z}L u;v; = sum of d independent r.v.'s ujV; distributed
N(0, v?) respectively.

Proof of Theorem 1

@ Want to prove: |f(v)| ~. Vk|v|. Scale both sides and assume
v| = 1.

o uj-v= Z}L u;v; = sum of d independent r.v.'s ujV; distributed
N(0, v?) respectively.

@ Sum of independent Gaussian r.v.s’ - means and variances just
add up. So, uj - v ~ N(0,>_; v; 2) = N(0,1).

Proof of Theorem 1

@ Want to prove: |f(v)| ~. Vk|v|. Scale both sides and assume
v| = 1.

o uj-v= Z}L u;v; = sum of d independent r.v.'s ujV; distributed
N(0, v?) respectively.

@ Sum of independent Gaussian r.v.s’ - means and variances just
add up. So, u; - v ~ N(0, > /) N(0,1).

@ Uy -V,Uz-V,... Ug-Vareindependent. f(v) ~ N(O, lxxx)- Apply
Gaussian Annulus Theorem:

Proof of Theorem 1

@ Want to prove: |f(v)| ~. Vk|v|. Scale both sides and assume
v| = 1.

o uj-v= Z}L u;v; = sum of d independent r.v.'s ujV; distributed
N(0, v?) respectively.

@ Sum of independent Gaussian r.v.s’ - means and variances just
add up. So, u; - v ~ N(0, > /) N(0,1).

@ Uy -V,Uz-V,... Ug-Vareindependent. f(v) ~ N(O, lxxx)- Apply
Gaussian Annulus Theorem:

o Let g == Vk. Pr(|f(v)| ~. Vk) =
Pr(f(v)| € WK — VK +5]) 21— eoF =1 - e=ok”

Theorem 2

Union Bound: O(n?) pairs. Prob of failure for each is at most gk,
So with k € Q(In n/£?), the failure probability is driven down to
<1/m...

Very Important: Exponential in k failure prob means we need k to grow
only logarithmically.

I
k—means Clustering
@ The Problem: Given n points in RY, k, partition into k clusters to

minimize the sum of squared distances of points to nearest cluster
center.

k—means Clustering
@ The Problem: Given n points in RY, k, partition into k clusters to
minimize the sum of squared distances of points to nearest cluster

center.
@ Cluster center=mean of cluster. [Only for k—means!]

k—means Clustering

@ The Problem: Given n points in RY, k, partition into k clusters to
minimize the sum of squared distances of points to nearest cluster
center.

@ Cluster center=mean of cluster. [Only for k—means!]

@ ?7? Obvious: Project to O(In n/<?) dimensional subspace; find best
clustering in projection. Will do? Since all distances are preserved
to1+te.

k—means Clustering

@ The Problem: Given n points in RY, k, partition into k clusters to
minimize the sum of squared distances of points to nearest cluster
center.

@ Cluster center=mean of cluster. [Only for k—means!]

@ ?7? Obvious: Project to O(In n/<?) dimensional subspace; find best
clustering in projection. Will do? Since all distances are preserved
to1+te.

@ How Many distances need to be preserved? Crudely: How many
possible cluster centers could there be ? 2" since every subset of
n points may form a cluster. Bad.

k—means Clustering

@ The Problem: Given n points in RY, k, partition into k clusters to
minimize the sum of squared distances of points to nearest cluster
center.

@ Cluster center=mean of cluster. [Only for k—means!]

@ ?7? Obvious: Project to O(In n/<?) dimensional subspace; find best
clustering in projection. Will do? Since all distances are preserved
to1+te.

@ How Many distances need to be preserved? Crudely: How many
possible cluster centers could there be ? 2" since every subset of
n points may form a cluster. Bad.

° Luckily For any m points: Sum of squared distances to the mean
is \3| times the sum of all pairwise distances among S. Useful?

k—means Clustering

The Problem: Given n points in RY k, partition into k clusters to
minimize the sum of squared distances of points to nearest cluster
center.

Cluster center=mean of cluster. [Only for k—means!]

?? Obvious: Project to O(In n/e?) dimensional subspace; find best
clustering in projection. Will do? Since all distances are preserved
to1+te.

How Many distances need to be preserved? Crudely: How many
possible cluster centers could there be ? 2" since every subset of
n points may form a cluster. Bad.

Luckily For any m points: Sum of squared distances to the mean
is \3| times the sum of all pairwise distances among S. Useful?

Only need to preserve O(n?) pairwise distances, not 2”.

k—means Clustering

@ The Problem: Given n points in RY k, partition into k clusters to
minimize the sum of squared distances of points to nearest cluster
center.

@ Cluster center=mean of cluster. [Only for k—means!]

@ ?7? Obvious: Project to O(In n/<?) dimensional subspace; find best
clustering in projection. Will do? Since all distances are preserved
to1+te.

@ How Many distances need to be preserved? Crudely: How many
possible cluster centers could there be ? 2" since every subset of
n points may form a cluster. Bad.

° Luckily For any m points: Sum of squared distances to the mean
is \3| times the sum of all pairwise distances among S. Useful?

@ Only need to preserve O(n?) pairwise distances, not 2”.
@ How about k—median clustering: Minimize sum of distances to
cluster centers?

Gaussian Mixtures

@ Gaussian Mixture is a probability density which is a convex
combination of Gaussians.

D October 31,2017 10/12

Gaussian Mixtures

@ Gaussian Mixture is a probability density which is a convex
combination of Gaussians.
@ For example, a mixture of k standard spherical Gaussians:

p(x) = Z;(:1 WTW exp (—|X—,ut|2/2). w; >0;> =1.

Gaussian Mixtures

@ Gaussian Mixture is a probability density which is a convex
combination of Gaussians.

@ For example, a mixture of k standard spherical Gaussians:
p(X) = S{ 4 Weggrjars o0 (—Ix — ml?/2). we > 0; 30 = 1.

@ Samples from the mixture: X4, Xa, ... Xq i.i..d., each drawn
according to p(x).

]
Gaussian Mixtures

@ Gaussian Mixture is a probability density which is a convex
combination of Gaussians.

@ For example, a mixture of k standard spherical Gaussians:
p(X) = S{ 4 Weggrjars o0 (—Ix — ml?/2). we > 0; 30 = 1.

@ Samples from the mixture: X4, Xa, ... Xq i.i..d., each drawn
according to p(x).

@ Equivalent: Fori=1,2,...,n: Pick t € [k] acc to prob.s

Wy, W, ..., Wx. Then, pick X; ~ W exp (—|x — ut2/2) .

Gaussian Mixtures

@ Gaussian Mixture is a probability density which is a convex
combination of Gaussians.

@ For example, a mixture of k standard spherical Gaussians:
p(X) = S{ 4 Weggrjars o0 (—Ix — ml?/2). we > 0; 30 = 1.

@ Samples from the mixture: X4, Xa, ... Xq i.i..d., each drawn
according to p(x).

@ Equivalent: Fori=1,2,...,n: Pick t € [k] acc to prob.s
Wy, W, ..., Wx. Then, pick X; ~ W exp (—|x — ut2/2) .

@ Learning Problem Given only samples x;,i = 1,2, ..., n, find the
t for each i. Clustering problem.

Gaussian Mixtures

@ Gaussian Mixture is a probability density which is a convex
combination of Gaussians.

@ For example, a mixture of k standard spherical Gaussians:
p(X) = S{ 4 Weggrjars o0 (—Ix — ml?/2). we > 0; 30 = 1.

@ Samples from the mixture: X4, Xa, ... Xq i.i..d., each drawn
according to p(x).

@ Equivalent: Fori=1,2,...,n: Pick t € [k] acc to prob.s
Wy, W, ..., Wx. Then, pick X; ~ W exp (—|x — ut2/2) .

@ Learning Problem Given only samples x;,i = 1,2, ..., n, find the
t for each i. Clustering problem.

@ Desired Solution: For k € O(1), want: “Can solve learning
problem if the means of each pair of Gaussians are separated by
Q(1) (standard deviations) (which is 1 in here).

Gaussian Mixtures

@ Gaussian Mixture is a probability density which is a convex
combination of Gaussians.

@ For example, a mixture of k standard spherical Gaussians:

p(X) = S{ 4 Weggrjars o0 (—Ix — ml?/2). we > 0; 30 = 1.

@ Samples from the mixture: X4, Xa, ... Xq i.i..d., each drawn
according to p(x).

@ Equivalent: Fori=1,2,...,n: Pick t € [k] acc to prob.s
Wy, W, ..., Wx. Then, pick X; ~ W exp (—|x — ut2/2) .

@ Learning Problem Given only samples x;,i = 1,2, ..., n, find the
t for each i. Clustering problem.

@ Desired Solution: For k € O(1), want: “Can solve learning
problem if the means of each pair of Gaussians are separated by
Q(1) (standard deviations) (which is 1 in here).

@ Will see that “distance-based” clustering can do this if inter-mean
separation is Q(d'/4). Next chapter: SVD, can do with Q(1) S.D’s

X A z d
(a) (b)
Figure: (a) indicates that two randomly chosen points in high dimension are

surely almost nearly orthogonal. (b) indicates that the distance between a
pair of random points from two different unit balls approximating the annuli of

two Gaussians.

Two spherical Gaussians with unit variance (in every
direction)

@ If x,y are two (indep) samples from the first Gaussian, then:

X —yPP = x>+ [y -2x-y=
(d+ O(Vd)) + (d+0O(Vd)) + O(Vd) = 2d + O(V/d).

D October 31,2017 12/12

Two spherical Gaussians with unit variance (in every
direction)

@ If x,y are two (indep) samples from the first Gaussian, then:
X~y =[x +|y[* —2x -y =
(d+ O(Vd)) + (d+0O(Vd)) + O(Vd) = 2d + O(V/d).

@ If the two centers are A apart and X, z are respectively from the
two Gaussians, then

X2 = [(X—p21) + (j11—p12) + (2—2)|? = d=O(VA)+A%+d=Vd+

D October 31,2017 12/12

Two spherical Gaussians with unit variance (in every
direction)

@ If x,y are two (indep) samples from the first Gaussian, then:
X~y =[x +|y[* —2x -y =
(d+ O(Vd)) + (d+ O0(Vd)) + O(Vd) = 2d + O(/d).

@ If the two centers are A apart and X, z are respectively from the
two Gaussians, then

X2 = [(X—p21) + (j11—p12) + (2—2)|? = d=O(VA)+A%+d=Vd+

@ Want: Whp, two points from the same Gaussian are closer to
each other than 2 points from different Gaussians for
“distance-based” clustering to succeed.

Two spherical Gaussians with unit variance (in every
direction)

@ If x,y are two (indep) samples from the first Gaussian, then:
X~y =[x +|y[* —2x -y =
(d+ O(Vd)) + (d+ O0(Vd)) + O(Vd) = 2d + O(/d).

@ If the two centers are A apart and X, z are respectively from the
two Gaussians, then

X2 = [(X—p21) + (j11—p12) + (2—2)|? = d=O(VA)+A%+d=Vd+

@ Want: Whp, two points from the same Gaussian are closer to
each other than 2 points from different Gaussians for
“distance-based” clustering to succeed.

@ Suffices to have A2 > ¢v/d or A > cd'/%.

Two spherical Gaussians with unit variance (in every
direction)

@ If x,y are two (indep) samples from the first Gaussian, then:
X~y =[x +|y[* —2x -y =
(d+ O(Vd)) + (d+ O0(Vd)) + O(Vd) = 2d + O(/d).

@ If the two centers are A apart and X, z are respectively from the
two Gaussians, then

X2 = [(X—p21) + (j11—p12) + (2—2)|? = d=O(VA)+A%+d=Vd+

@ Want: Whp, two points from the same Gaussian are closer to
each other than 2 points from different Gaussians for
“distance-based” clustering to succeed.

@ Suffices to have A? > ¢v/d or A > cd'/4.
@ If we want all pair of points to behave well (union bound) suffices
to have A > cd'/4V/Inn.

