
Dimension Reduction- two methods

Dealing with high d not efficient. Will be nice if we can reduce
dimensions.

Two Main methods of dimension reduction:
Random Projections: Oblivious to data. [This lecture.]

Can be proved to (a) preserve EVERY length to 1± ε, (b)
essentially ε ∈ Ω(1).
Used extensively in theory, because of (a). But (b) is a bottleneck
for use in practice.

Principal Component Analysis (PCA)

Projection length behaves very well (better than Ω(1) error) when
averaged over all data, but not guaranteed on each piece.
Theoretical use mainly in stochastic/mixture models. But wide
practical use. Coming Soon.
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Use of Dimension Reduction

High Dimensional Nearest Neighbour Search (NNS):

Given a database of n points in Rd . Preprocess in poly time.
Now, presented with a query point in Rd , find (approximate) nearest
database point to query point in sub-linear (i.e., o(nd)) time (or
polylog time).
Will see: projecting database points into a random polylog dim
space is a good solution. At query time, will also project query point
to same space and measure distances in the projection.

(Over-determined) Linear Regression:

Given n × d (n > d) matrix A and n vector b, find x minimizing
|Ax− b|.
Take a random poly(d)× n matrix P. Solve instead |PAx− Pb| (no
n. Only d - gain if d << n)

Many other Examples : k−means Clustering. How about
k−median ? [Discussion later.]
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Length Preserving Projection

Want a random “length preserving” linear projection from
Rd → Rk , k << d :

I.e., want k × d random P so that ∀v ∈ Rd ,
Pr (|Pv| = (1± ε)|v|) ≥ 1− δ.
Note the placement of ∀ quantifier. What happens if I place it
inside Pr (..)?
Not true if quantifier is inside: since k < d , there is a non-zero v in
null space of P...
Original projection: Project to a random kdimensional subspace.
In terms of matrices, P is a random k × d matrix with orthonormal
rows.
How does one pick such a random matrix ? Dependence. Also
proof of length-preserving property is hard because of the
orthonormal requirement.
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Projection with Gaussian Vectors

Pick k iid vectors u1,u2, . . . ,uk, each N(0, I).

Recall: Var-Cov matrix of random vector u is a d × d matrix with
(i , j) th entry equal to E((ui − E(ui ))(uj − E(uj ))). It equals I means
independent coordinates.

Projection f : Rd → Rk is given by f (x) = (x · u1,x · u2, . . . ,x · uk),
i.e., dot products of x with the k random vectors.
Will prove that for each v, whp, we have |f (v)| = (1± ε)

√
k |v|.

Why
√

k? What is E((v · u1)2) OR at least an upper bound?
Upper bound: If v · u1 =

∑d
j=1(vju1j) is the sum of d independent

Gaussians; means and variances add up. So, v · u1 ∼ N(0, |v|2);
thus, whp, |v · u1| ≤ c|v|. Note that c|v| ≈ c|v| |u1|/

√
d , so this is

an “equator” like bound - why ?
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Random Projection Theorem

Theorem 1 Let f be as above. There is a constant c > 0 such that for
ε ∈ (0,1),

∀v ∈ Rd : Pr
(∣∣∣|f (v)| −

√
k |v|

∣∣∣ ≥ ε√k |v|
)

︸ ︷︷ ︸
|f (v)|≈ε

√
k |v|

≤ 3e−ckε2
,

where the probability is taken over the random draws of vectors ui
used to construct f .
Theorem 2 For any 0 < ε < 1 and any integer n, let k ≥ 3

cε2 ln n for c
as in Theorem 1. Suppose v1,v2, . . . ,vn is any set of n points.
Pr
(
∀i , j ∈ {1,2, . . . ,n}

∣∣f (vi)− f (vj)
∣∣ ≈ε √k

∣∣vi − vj
∣∣) ≥ 1− 2

n .
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Remarks on the Theorems

Note: The claim is for EVERY v. What if I just wanted a weaker
statement - for MOST v? Is it simpler? Would the weaker
statement - for MOST be enough if we want to solve the NNS
problem when the input is a RANDOM set of points?

Advantage of Linearity of f : Estimate distance between two points
v1,v2 ∈ Rd is whp (1± ε) 1√

k
times distance between f (v1) and

f (v2), since f (v1 − v2) = f (v1)− f (v2).
k being in the exponent in Theorem 1 is crucial to get k ∈ O(ln n)
in Theorem 2.
Many other random projections are now known. For example, the
ui can be taken as ±1 vectors. Intuitively, if d is large, then v · ui
behaves as if it is a Gaussian r.v. But for small d , we need more
care to argue this.
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Proof of Theorem 1

Want to prove: |f (v)| ≈ε
√

k |v|. Scale both sides and assume
|v| = 1.

ui · v =
∑d

j=1 uijvj = sum of d independent r.v.’s uijvj distributed
N(0, v2

j ) respectively.
Sum of independent Gaussian r.v.s’ - means and variances just
add up. So, ui · v ∼ N(0,

∑
j v2

j ) ≡ N(0,1).
u1 · v,u2 · v, . . . ,uk · v are independent. f (v) ∼ N(0, Ik×k ). Apply
Gaussian Annulus Theorem:
Let β = ε

√
k . Pr

(
|f (v)| ≈ε

√
k
)

=

Pr
(
|f (v)| ∈ [

√
k − β,

√
k + β]

)
≥ 1− e−cβ2

= 1− e−ckε2
.
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add up. So, ui · v ∼ N(0,

∑
j v2

j ) ≡ N(0,1).

u1 · v,u2 · v, . . . ,uk · v are independent. f (v) ∼ N(0, Ik×k ). Apply
Gaussian Annulus Theorem:
Let β = ε

√
k . Pr

(
|f (v)| ≈ε

√
k
)

=

Pr
(
|f (v)| ∈ [

√
k − β,

√
k + β]

)
≥ 1− e−cβ2

= 1− e−ckε2
.
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Theorem 2

Union Bound: O(n2) pairs. Prob of failure for each is at most e−ckε2
.

So with k ∈ Ω(ln n/ε2), the failure probability is driven down to
< 1/n2...
Very Important: Exponential in k failure prob means we need k to grow
only logarithmically.
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k−means Clustering

The Problem: Given n points in Rd , k , partition into k clusters to
minimize the sum of squared distances of points to nearest cluster
center.

Cluster center=mean of cluster. [Only for k−means!]
?? Obvious: Project to O(ln n/ε2) dimensional subspace; find best
clustering in projection. Will do? Since all distances are preserved
to 1± ε.
How Many distances need to be preserved? Crudely: How many
possible cluster centers could there be ? 2n since every subset of
n points may form a cluster. Bad.
Luckily: For any m points: Sum of squared distances to the mean
is 1
|S| times the sum of all pairwise distances among S. Useful?

Only need to preserve O(n2) pairwise distances, not 2n.
How about k−median clustering: Minimize sum of distances to
cluster centers?
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Gaussian Mixtures

Gaussian Mixture is a probability density which is a convex
combination of Gaussians.

For example, a mixture of k standard spherical Gaussians:
p(x) =

∑k
t=1 wt

1
(2π)d/2 exp

(
−|x− µt|2/2

)
. wt ≥ 0;

∑
= 1.

Samples from the mixture: x1,x2, . . .xn i.i..d., each drawn
according to p(x).
Equivalent: For i = 1,2, . . . ,n : Pick t ∈ [k ] acc to prob.s
w1,w2, . . . ,wk . Then, pick xi ∼ 1

(2π)d/2 exp
(
−|x− µt|2/2

)
.

Learning Problem Given only samples xi, i = 1,2, . . . ,n, find the
t for each i . Clustering problem.
Desired Solution: For k ∈ O(1), want: “Can solve learning
problem if the means of each pair of Gaussians are separated by
Ω(1) (standard deviations) (which is 1 in here).
Will see that “distance-based” clustering can do this if inter-mean
separation is Ω(d1/4). Next chapter: SVD, can do with Ω(1) S.D.’s
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Figure: (a) indicates that two randomly chosen points in high dimension are
surely almost nearly orthogonal. (b) indicates that the distance between a
pair of random points from two different unit balls approximating the annuli of
two Gaussians.
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Two spherical Gaussians with unit variance (in every
direction)

If x,y are two (indep) samples from the first Gaussian, then:
|x− y|2 = |x|2 + |y|2 − 2x · y =
(d ±O(

√
d)) + (d ±O(

√
d))±O(

√
d) = 2d ±O(

√
d).

If the two centers are ∆ apart and x, z are respectively from the
two Gaussians, then

|x−z|2 = |(x−µ1) + (µ1−µ2) + (µ2−z)|2 = d±O(
√

d)+∆2+d±
√

d+O(
√

d+∆) ≈ 2d±O(
√

d)+∆2.

Want: Whp, two points from the same Gaussian are closer to
each other than 2 points from different Gaussians for
“distance-based” clustering to succeed.
Suffices to have ∆2 > c

√
d or ∆ > cd1/4.

If we want all pair of points to behave well (union bound) suffices
to have ∆ > cd1/4

√
ln n.
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