Dealing with high d not efficient. Will be nice if we can reduce dimensions.

- Dealing with high d not efficient. Will be nice if we can reduce dimensions.
- Two Main methods of dimension reduction:

- Dealing with high d not efficient. Will be nice if we can reduce dimensions.
- Two Main methods of dimension reduction:
- Random Projections: Oblivious to data. [This lecture.]

- Dealing with high d not efficient. Will be nice if we can reduce dimensions.
- Two Main methods of dimension reduction:
- Random Projections: Oblivious to data. [This lecture.]
 - Can be proved to (a) preserve EVERY length to 1 $\pm \varepsilon$, (b) essentially $\varepsilon \in \Omega(1)$.

- Dealing with high d not efficient. Will be nice if we can reduce dimensions.
- Two Main methods of dimension reduction:
- Random Projections: Oblivious to data. [This lecture.]
 - Can be proved to (a) preserve EVERY length to 1 $\pm \varepsilon$, (b) essentially $\varepsilon \in \Omega(1)$.
 - Used extensively in theory, because of (a). But (b) is a bottleneck for use in practice.

- Dealing with high d not efficient. Will be nice if we can reduce dimensions.
- Two Main methods of dimension reduction:
- Random Projections: Oblivious to data. [This lecture.]
 - Can be proved to (a) preserve EVERY length to 1 $\pm \varepsilon$, (b) essentially $\varepsilon \in \Omega(1)$.
 - Used extensively in theory, because of (a). But (b) is a bottleneck for use in practice.
- Principal Component Analysis (PCA)

- Dealing with high d not efficient. Will be nice if we can reduce dimensions.
- Two Main methods of dimension reduction:
- Random Projections: Oblivious to data. [This lecture.]
 - Can be proved to (a) preserve EVERY length to 1 $\pm \varepsilon$, (b) essentially $\varepsilon \in \Omega(1)$.
 - Used extensively in theory, because of (a). But (b) is a bottleneck for use in practice.
- Principal Component Analysis (PCA)
 - Projection length behaves very well (better than $\Omega(1)$ error) when averaged over all data, but not guaranteed on each piece.

- Dealing with high d not efficient. Will be nice if we can reduce dimensions.
- Two Main methods of dimension reduction:
- Random Projections: Oblivious to data. [This lecture.]
 - Can be proved to (a) preserve EVERY length to 1 $\pm \varepsilon$, (b) essentially $\varepsilon \in \Omega(1)$.
 - Used extensively in theory, because of (a). But (b) is a bottleneck for use in practice.
- Principal Component Analysis (PCA)
 - Projection length behaves very well (better than $\Omega(1)$ error) when averaged over all data, but not guaranteed on each piece.
 - Theoretical use mainly in stochastic/mixture models. But wide practical use. Coming Soon.

High Dimensional Nearest Neighbour Search (NNS):

- High Dimensional Nearest Neighbour Search (NNS):
 - Given a database of n points in \mathbf{R}^d . Preprocess in poly time.

- High Dimensional Nearest Neighbour Search (NNS):
 - Given a database of n points in \mathbf{R}^d . Preprocess in poly time.
 - Now, presented with a query point in R^d, find (approximate) nearest database point to query point in sub-linear (i.e., o(nd)) time (or polylog time).

- High Dimensional Nearest Neighbour Search (NNS):
 - Given a database of n points in \mathbb{R}^d . Preprocess in poly time.
 - Now, presented with a query point in R^d, find (approximate) nearest database point to query point in sub-linear (i.e., o(nd)) time (or polylog time).
 - Will see: projecting database points into a random polylog dim space is a good solution. At query time, will also project query point to same space and measure distances in the projection.

- High Dimensional Nearest Neighbour Search (NNS):
 - Given a database of n points in \mathbb{R}^d . Preprocess in poly time.
 - Now, presented with a query point in R^d, find (approximate) nearest database point to query point in sub-linear (i.e., o(nd)) time (or polylog time).
 - Will see: projecting database points into a random polylog dim space is a good solution. At query time, will also project query point to same space and measure distances in the projection.
- (Over-determined) Linear Regression:

- High Dimensional Nearest Neighbour Search (NNS):
 - Given a database of n points in \mathbf{R}^d . Preprocess in poly time.
 - Now, presented with a query point in R^d, find (approximate) nearest database point to query point in sub-linear (i.e., o(nd)) time (or polylog time).
 - Will see: projecting database points into a random polylog dim space is a good solution. At query time, will also project query point to same space and measure distances in the projection.
- (Over-determined) Linear Regression:
 - Given $n \times d$ (n > d) matrix A and n vector \mathbf{b} , find \mathbf{x} minimizing $|A\mathbf{x} \mathbf{b}|$.

- High Dimensional Nearest Neighbour Search (NNS):
 - Given a database of n points in \mathbf{R}^d . Preprocess in poly time.
 - Now, presented with a query point in R^d, find (approximate) nearest database point to query point in sub-linear (i.e., o(nd)) time (or polylog time).
 - Will see: projecting database points into a random polylog dim space is a good solution. At query time, will also project query point to same space and measure distances in the projection.
- (Over-determined) Linear Regression:
 - Given $n \times d$ (n > d) matrix A and n vector \mathbf{b} , find \mathbf{x} minimizing $|A\mathbf{x} \mathbf{b}|$.
 - Take a random poly(d) × n matrix P. Solve instead |PAx − Pb| (no n. Only d gain if d << n)

- High Dimensional Nearest Neighbour Search (NNS):
 - Given a database of n points in \mathbb{R}^d . Preprocess in poly time.
 - Now, presented with a query point in R^d, find (approximate) nearest database point to query point in sub-linear (i.e., o(nd)) time (or polylog time).
 - Will see: projecting database points into a random polylog dim space is a good solution. At query time, will also project query point to same space and measure distances in the projection.
- (Over-determined) Linear Regression:
 - Given $n \times d$ (n > d) matrix A and n vector \mathbf{b} , find \mathbf{x} minimizing $|A\mathbf{x} \mathbf{b}|$.
 - Take a random poly(d) × n matrix P. Solve instead |PAx − Pb| (no n. Only d gain if d << n)
- Many other Examples: k-means Clustering. How about k-median? [Discussion later.]

• Want a random "length preserving" linear projection from $\mathbf{R}^d \to \mathbf{R}^k$, k << d:

- Want a random "length preserving" linear projection from $\mathbf{R}^d \to \mathbf{R}^k$, k << d:
- I.e., want $k \times d$ random P so that $\forall \mathbf{v} \in \mathbf{R}^d$, $\Pr(|P\mathbf{v}| = (1 \pm \varepsilon)|\mathbf{v}|) \ge 1 \delta$.

- Want a random "length preserving" linear projection from $\mathbf{R}^d \to \mathbf{R}^k$, k << d:
- I.e., want $k \times d$ random P so that $\forall \mathbf{v} \in \mathbf{R}^d$, $\Pr(|P\mathbf{v}| = (1 \pm \varepsilon)|\mathbf{v}|) \ge 1 \delta$.
- Note the placement of ∀ quantifier. What happens if I place it inside Pr (..)?

- Want a random "length preserving" linear projection from $\mathbf{R}^d \to \mathbf{R}^k$, k << d:
- I.e., want $k \times d$ random P so that $\forall \mathbf{v} \in \mathbf{R}^d$, $\Pr(|P\mathbf{v}| = (1 \pm \varepsilon)|\mathbf{v}|) \ge 1 \delta$.
- Note the placement of ∀ quantifier. What happens if I place it inside Pr (..)?
- Not true if quantifier is inside: since k < d, there is a non-zero v in null space of P...

- Want a random "length preserving" linear projection from $\mathbf{R}^d \to \mathbf{R}^k$, k << d:
- I.e., want $k \times d$ random P so that $\forall \mathbf{v} \in \mathbf{R}^d$, $\Pr(|P\mathbf{v}| = (1 \pm \varepsilon)|\mathbf{v}|) \ge 1 \delta$.
- Note the placement of ∀ quantifier. What happens if I place it inside Pr (..)?
- Not true if quantifier is inside: since k < d, there is a non-zero v in null space of P...
- Original projection: Project to a random kdimensional subspace. In terms of matrices, P is a random $k \times d$ matrix with orthonormal rows.

- Want a random "length preserving" linear projection from $\mathbf{R}^d \to \mathbf{R}^k$, k << d:
- I.e., want $k \times d$ random P so that $\forall \mathbf{v} \in \mathbf{R}^d$, $\Pr(|P\mathbf{v}| = (1 \pm \varepsilon)|\mathbf{v}|) \ge 1 \delta$.
- Note the placement of ∀ quantifier. What happens if I place it inside Pr (..)?
- Not true if quantifier is inside: since k < d, there is a non-zero v in null space of P...
- Original projection: Project to a random kdimensional subspace. In terms of matrices, P is a random $k \times d$ matrix with orthonormal rows.
- How does one pick such a random matrix? Dependence. Also proof of length-preserving property is hard because of the orthonormal requirement.

• Pick k iid vectors $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_k}$, each $N(\mathbf{0}, I)$.

- Pick k iid vectors $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_k}$, each $N(\mathbf{0}, I)$.
 - Recall: Var-Cov matrix of random vector \mathbf{u} is a $d \times d$ matrix with (i,j) th entry equal to $E((u_i E(u_i))(u_j E(u_j)))$. It equals I means independent coordinates.

- Pick k iid vectors $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_k}$, each $N(\mathbf{0}, I)$.
 - Recall: Var-Cov matrix of random vector \mathbf{u} is a $d \times d$ matrix with (i,j) th entry equal to $E((u_i E(u_i))(u_j E(u_j)))$. It equals I means independent coordinates.
- Projection $f: \mathbf{R}^d \to \mathbf{R}^k$ is given by $f(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{u_1}, \mathbf{x} \cdot \mathbf{u_2}, \dots, \mathbf{x} \cdot \mathbf{u_k})$, i.e., dot products of \mathbf{x} with the k random vectors.

- Pick k iid vectors $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_k}$, each $N(\mathbf{0}, I)$.
 - Recall: Var-Cov matrix of random vector \mathbf{u} is a $d \times d$ matrix with (i,j) th entry equal to $E((u_i E(u_i))(u_j E(u_j)))$. It equals I means independent coordinates.
- Projection $f: \mathbf{R}^d \to \mathbf{R}^k$ is given by $f(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{u_1}, \mathbf{x} \cdot \mathbf{u_2}, \dots, \mathbf{x} \cdot \mathbf{u_k})$, i.e., dot products of \mathbf{x} with the k random vectors.
- Will prove that for each \mathbf{v} , whp, we have $|f(\mathbf{v})| = (1 \pm \varepsilon)\sqrt{k}|\mathbf{v}|$. Why \sqrt{k} ? What is $E((\mathbf{v} \cdot \mathbf{u_1})^2)$ OR at least an upper bound?

- Pick k iid vectors $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_k}$, each $N(\mathbf{0}, I)$.
 - Recall: Var-Cov matrix of random vector \mathbf{u} is a $d \times d$ matrix with (i,j) th entry equal to $E((u_i E(u_i))(u_j E(u_j)))$. It equals I means independent coordinates.
- Projection $f: \mathbf{R}^d \to \mathbf{R}^k$ is given by $f(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{u_1}, \mathbf{x} \cdot \mathbf{u_2}, \dots, \mathbf{x} \cdot \mathbf{u_k})$, i.e., dot products of \mathbf{x} with the k random vectors.
- Will prove that for each \mathbf{v} , whp, we have $|f(\mathbf{v})| = (1 \pm \varepsilon)\sqrt{k}|\mathbf{v}|$. Why \sqrt{k} ? What is $E((\mathbf{v} \cdot \mathbf{u_1})^2)$ OR at least an upper bound?
- Upper bound: If $\mathbf{v} \cdot \mathbf{u_1} = \sum_{j=1}^d (v_j u_{1j})$ is the sum of d independent Gaussians; means and variances add up. So, $\mathbf{v} \cdot \mathbf{u_1} \sim N(0, |\mathbf{v}|^2)$; thus, whp, $|\mathbf{v} \cdot \mathbf{u_1}| \leq c|\mathbf{v}|$. Note that $c|\mathbf{v}| \approx c|\mathbf{v}| |\mathbf{u_1}|/\sqrt{d}$, so this is an "equator" like bound why?

Random Projection Theorem

Theorem 1 Let f be as above. There is a constant c > 0 such that for $\epsilon \in (0, 1)$,

$$\forall \mathbf{v} \in \mathbf{R}^d : \Pr \underbrace{\left(\left| |f(\mathbf{v})| \ - \ \sqrt{k} |\mathbf{v}| \right| \ \geq \varepsilon \sqrt{k} |\mathbf{v}| \right)}_{|f(\mathbf{v})| \approx_\varepsilon \sqrt{k} |\mathbf{v}|} \leq 3e^{-ck\varepsilon^2},$$

where the probability is taken over the random draws of vectors $\mathbf{u_i}$ used to construct f.

Theorem 2 For any $0 < \varepsilon < 1$ and any integer n, let $k \ge \frac{3}{c\varepsilon^2} \ln n$ for c as in Theorem 1. Suppose $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ is any set of n points.

$$\Pr\left(\forall i, j \in \{1, 2, \dots, n\} \left| f(\mathbf{v_i}) - f(\mathbf{v_j}) \right| \approx_{\varepsilon} \sqrt{k} \left| \mathbf{v_i} - \mathbf{v_j} \right| \right) \ge 1 - \frac{2}{n}.$$

 Note: The claim is for EVERY v. What if I just wanted a weaker statement - for MOST v? Is it simpler? Would the weaker statement - for MOST be enough if we want to solve the NNS problem when the input is a RANDOM set of points?

- Note: The claim is for EVERY v. What if I just wanted a weaker statement - for MOST v? Is it simpler? Would the weaker statement - for MOST be enough if we want to solve the NNS problem when the input is a RANDOM set of points?
- Advantage of Linearity of f: Estimate distance between two points $\mathbf{v_1}, \mathbf{v_2} \in \mathbf{R}^d$ is whp $(1 \pm \varepsilon) \frac{1}{\sqrt{k}}$ times distance between $f(\mathbf{v_1})$ and $f(\mathbf{v_2})$, since $f(\mathbf{v_1} \mathbf{v_2}) = f(\mathbf{v_1}) f(\mathbf{v_2})$.

- Note: The claim is for EVERY v. What if I just wanted a weaker statement - for MOST v? Is it simpler? Would the weaker statement - for MOST be enough if we want to solve the NNS problem when the input is a RANDOM set of points?
- Advantage of Linearity of f: Estimate distance between two points $\mathbf{v_1}, \mathbf{v_2} \in \mathbf{R}^d$ is whp $(1 \pm \varepsilon) \frac{1}{\sqrt{k}}$ times distance between $f(\mathbf{v_1})$ and $f(\mathbf{v_2})$, since $f(\mathbf{v_1} \mathbf{v_2}) = f(\mathbf{v_1}) f(\mathbf{v_2})$.
- k being in the exponent in Theorem 1 is crucial to get $k \in O(\ln n)$ in Theorem 2.

- Note: The claim is for EVERY v. What if I just wanted a weaker statement - for MOST v? Is it simpler? Would the weaker statement - for MOST be enough if we want to solve the NNS problem when the input is a RANDOM set of points?
- Advantage of Linearity of f: Estimate distance between two points $\mathbf{v_1}, \mathbf{v_2} \in \mathbf{R}^d$ is whp $(1 \pm \varepsilon) \frac{1}{\sqrt{k}}$ times distance between $f(\mathbf{v_1})$ and $f(\mathbf{v_2})$, since $f(\mathbf{v_1} \mathbf{v_2}) = f(\mathbf{v_1}) f(\mathbf{v_2})$.
- k being in the exponent in Theorem 1 is crucial to get $k \in O(\ln n)$ in Theorem 2.
- Many other random projections are now known. For example, the u_i can be taken as ±1 vectors. Intuitively, if d is large, then v · u_i behaves as if it is a Gaussian r.v. But for small d, we need more care to argue this.

• Want to prove: $|f(\mathbf{v})| \approx_{\varepsilon} \sqrt{k} |\mathbf{v}|$. Scale both sides and assume $|\mathbf{v}| = 1$.

- Want to prove: $|f(\mathbf{v})| \approx_{\varepsilon} \sqrt{k} |\mathbf{v}|$. Scale both sides and assume $|\mathbf{v}| = 1$.
- $\mathbf{u_i} \cdot \mathbf{v} = \sum_{j=1}^d u_{ij} v_j = \text{sum of } d \text{ independent r.v.'s } u_{ij} v_j \text{ distributed } N(0, v_i^2) \text{ respectively.}$

- Want to prove: $|f(\mathbf{v})| \approx_{\varepsilon} \sqrt{k} |\mathbf{v}|$. Scale both sides and assume $|\mathbf{v}| = 1$.
- $\mathbf{u_i} \cdot \mathbf{v} = \sum_{j=1}^d u_{ij} v_j = \text{sum of } d \text{ independent r.v.'s } u_{ij} v_j \text{ distributed } N(0, v_i^2) \text{ respectively.}$
- Sum of independent Gaussian r.v.s' means and variances just add up. So, $\mathbf{u_i} \cdot \mathbf{v} \sim N(0, \sum_i v_i^2) \equiv N(0, 1)$.

- Want to prove: $|f(\mathbf{v})| \approx_{\varepsilon} \sqrt{k} |\mathbf{v}|$. Scale both sides and assume $|\mathbf{v}| = 1$.
- $\mathbf{u_i} \cdot \mathbf{v} = \sum_{j=1}^d u_{ij} v_j = \text{sum of } d \text{ independent r.v.'s } u_{ij} v_j \text{ distributed } N(0, v_i^2) \text{ respectively.}$
- Sum of independent Gaussian r.v.s' means and variances just add up. So, $\mathbf{u_i} \cdot \mathbf{v} \sim N(0, \sum_i v_i^2) \equiv N(0, 1)$.
- $\mathbf{u_1} \cdot \mathbf{v}, \mathbf{u_2} \cdot \mathbf{v}, \dots, \mathbf{u_k} \cdot \mathbf{v}$ are independent. $f(\mathbf{v}) \sim N(\mathbf{0}, I_{k \times k})$. Apply Gaussian Annulus Theorem:

Proof of Theorem 1

- Want to prove: $|f(\mathbf{v})| \approx_{\varepsilon} \sqrt{k} |\mathbf{v}|$. Scale both sides and assume $|\mathbf{v}| = 1$.
- $\mathbf{u_i} \cdot \mathbf{v} = \sum_{j=1}^d u_{ij} v_j = \text{sum of } d \text{ independent r.v.'s } u_{ij} v_j \text{ distributed } N(0, v_i^2) \text{ respectively.}$
- Sum of independent Gaussian r.v.s' means and variances just add up. So, $\mathbf{u_i} \cdot \mathbf{v} \sim N(0, \sum_i v_i^2) \equiv N(0, 1)$.
- $\mathbf{u_1} \cdot \mathbf{v}, \mathbf{u_2} \cdot \mathbf{v}, \dots, \mathbf{u_k} \cdot \mathbf{v}$ are independent. $f(\mathbf{v}) \sim N(\mathbf{0}, I_{k \times k})$. Apply Gaussian Annulus Theorem:
- Let $\beta = \varepsilon \sqrt{k}$. Pr $\left(|f(\mathbf{v})| \approx_{\varepsilon} \sqrt{k} \right) =$ Pr $\left(|f(\mathbf{v})| \in [\sqrt{k} - \beta, \sqrt{k} + \beta] \right) \ge 1 - e^{-c\beta^2} = 1 - e^{-ck\varepsilon^2}$.

Theorem 2

Union Bound: $O(n^2)$ pairs. Prob of failure for each is at most $e^{-ck\varepsilon^2}$. So with $k \in \Omega(\ln n/\varepsilon^2)$, the failure probability is driven down to $< 1/n^2...$

Very Important: Exponential in k failure prob means we need k to grow only logarithmically.

• The Problem: Given n points in \mathbf{R}^d , k, partition into k clusters to minimize the sum of squared distances of points to nearest cluster center.

- The Problem: Given n points in \mathbf{R}^d , k, partition into k clusters to minimize the sum of squared distances of points to nearest cluster center.
- Cluster center=mean of cluster. [Only for k-means!]

- The Problem: Given n points in \mathbf{R}^d , k, partition into k clusters to minimize the sum of squared distances of points to nearest cluster center.
- Cluster center=mean of cluster. [Only for k-means!]
- ?? Obvious: Project to $O(\ln n/\varepsilon^2)$ dimensional subspace; find best clustering in projection. Will do? Since all distances are preserved to $1 \pm \varepsilon$.

- The Problem: Given n points in \mathbf{R}^d , k, partition into k clusters to minimize the sum of squared distances of points to nearest cluster center.
- Cluster center=mean of cluster. [Only for k-means!]
- ?? Obvious: Project to $O(\ln n/\varepsilon^2)$ dimensional subspace; find best clustering in projection. Will do? Since all distances are preserved to $1 \pm \varepsilon$.
- How Many distances need to be preserved? Crudely: How many possible cluster centers could there be ? 2ⁿ since every subset of n points may form a cluster. Bad.

- The Problem: Given n points in R^d, k, partition into k clusters to minimize the sum of squared distances of points to nearest cluster center.
- Cluster center=mean of cluster. [Only for k-means!]
- ?? Obvious: Project to $O(\ln n/\varepsilon^2)$ dimensional subspace; find best clustering in projection. Will do? Since all distances are preserved to $1 \pm \varepsilon$.
- How Many distances need to be preserved? Crudely: How many possible cluster centers could there be ? 2ⁿ since every subset of n points may form a cluster. Bad.
- Luckily: For any m points: Sum of squared distances to the mean is $\frac{1}{|S|}$ times the sum of all pairwise distances among S. Useful?

- The Problem: Given n points in R^d, k, partition into k clusters to minimize the sum of squared distances of points to nearest cluster center.
- Cluster center=mean of cluster. [Only for k-means!]
- ?? Obvious: Project to $O(\ln n/\varepsilon^2)$ dimensional subspace; find best clustering in projection. Will do? Since all distances are preserved to $1 \pm \varepsilon$.
- How Many distances need to be preserved? Crudely: How many possible cluster centers could there be ? 2ⁿ since every subset of n points may form a cluster. Bad.
- Luckily: For any m points: Sum of squared distances to the mean is $\frac{1}{|S|}$ times the sum of all pairwise distances among S. Useful?
- Only need to preserve $O(n^2)$ pairwise distances, not 2^n .

- The Problem: Given n points in \mathbf{R}^d , k, partition into k clusters to minimize the sum of squared distances of points to nearest cluster center.
- Cluster center=mean of cluster. [Only for k-means!]
- ?? Obvious: Project to $O(\ln n/\varepsilon^2)$ dimensional subspace; find best clustering in projection. Will do? Since all distances are preserved to $1 \pm \varepsilon$.
- How Many distances need to be preserved? Crudely: How many possible cluster centers could there be ? 2ⁿ since every subset of n points may form a cluster. Bad.
- Luckily: For any m points: Sum of squared distances to the mean is ¹/_{|S|} times the sum of all pairwise distances among S. Useful?
- Only need to preserve $O(n^2)$ pairwise distances, not 2^n .
- How about k—median clustering: Minimize sum of distances to cluster centers?

 Gaussian Mixture is a probability density which is a convex combination of Gaussians.

- Gaussian Mixture is a probability density which is a convex combination of Gaussians.
- For example, a mixture of k standard spherical Gaussians: $p(\mathbf{x}) = \sum_{t=1}^k w_t \frac{1}{(2\pi)^{d/2}} \exp\left(-|\mathbf{x} \mu_{\mathbf{t}}|^2/2\right)$. $w_t \ge 0$; $\sum = 1$.

10 / 12

- Gaussian Mixture is a probability density which is a convex combination of Gaussians.
- For example, a mixture of k standard spherical Gaussians: $p(\mathbf{x}) = \sum_{t=1}^k w_t \frac{1}{(2\pi)^{d/2}} \exp\left(-|\mathbf{x} \mu_t|^2/2\right)$. $w_t \ge 0$; $\sum = 1$.
- Samples from the mixture: x₁, x₂,...x_n i.i..d., each drawn according to p(x).

- Gaussian Mixture is a probability density which is a convex combination of Gaussians.
- For example, a mixture of k standard spherical Gaussians: $p(\mathbf{x}) = \sum_{t=1}^{k} w_t \frac{1}{(2\pi)^{d/2}} \exp\left(-|\mathbf{x} \mu_{\mathbf{t}}|^2/2\right)$. $w_t \ge 0$; $\sum = 1$.
- Samples from the mixture: x₁, x₂,...x_n i.i..d., each drawn according to p(x).
- Equivalent: For $i=1,2,\ldots,n$: Pick $t\in[k]$ acc to prob.s w_1,w_2,\ldots,w_k . Then, pick $\mathbf{x_i}\sim\frac{1}{(2\pi)^{d/2}}\exp\left(-|\mathbf{x}-\mu_{\mathbf{t}}|^2/2\right)$.

10 / 12

- Gaussian Mixture is a probability density which is a convex combination of Gaussians.
- For example, a mixture of k standard spherical Gaussians: $p(\mathbf{x}) = \sum_{t=1}^{k} w_t \frac{1}{(2\pi)^{d/2}} \exp\left(-|\mathbf{x} \mu_{\mathbf{t}}|^2/2\right)$. $w_t \ge 0$; $\sum = 1$.
- Samples from the mixture: x₁, x₂,...x_n i.i..d., each drawn according to p(x).
- Equivalent: For $i=1,2,\ldots,n$: Pick $t\in[k]$ acc to prob.s w_1,w_2,\ldots,w_k . Then, pick $\mathbf{x_i}\sim\frac{1}{(2\pi)^{d/2}}\exp\left(-|\mathbf{x}-\mu_{\mathbf{t}}|^2/2\right)$.
- Learning Problem Given only samples x_i , i = 1, 2, ..., n, find the t for each i. Clustering problem.

- Gaussian Mixture is a probability density which is a convex combination of Gaussians.
- For example, a mixture of k standard spherical Gaussians: $p(\mathbf{x}) = \sum_{t=1}^{k} w_t \frac{1}{(2\pi)^{d/2}} \exp\left(-|\mathbf{x} \mu_{\mathbf{t}}|^2/2\right)$. $w_t \ge 0$; $\sum = 1$.
- Samples from the mixture: x₁, x₂,...x_n i.i..d., each drawn according to p(x).
- Equivalent: For $i=1,2,\ldots,n$: Pick $t\in[k]$ acc to prob.s w_1,w_2,\ldots,w_k . Then, pick $\mathbf{x_i}\sim\frac{1}{(2\pi)^{d/2}}\exp\left(-|\mathbf{x}-\mu_{\mathbf{t}}|^2/2\right)$.
- Learning Problem Given only samples x_i , i = 1, 2, ..., n, find the t for each i. Clustering problem.
- Desired Solution: For $k \in O(1)$, want: "Can solve learning problem if the means of each pair of Gaussians are separated by $\Omega(1)$ (standard deviations) (which is 1 in here).

- Gaussian Mixture is a probability density which is a convex combination of Gaussians.
- For example, a mixture of k standard spherical Gaussians: $p(\mathbf{x}) = \sum_{t=1}^k w_t \frac{1}{(2\pi)^{d/2}} \exp\left(-|\mathbf{x} \mu_t|^2/2\right)$. $w_t \ge 0$; $\sum = 1$.
- Samples from the mixture: x₁, x₂,...x_n i.i..d., each drawn according to p(x).
- Equivalent: For $i=1,2,\ldots,n$: Pick $t\in[k]$ acc to prob.s w_1,w_2,\ldots,w_k . Then, pick $\mathbf{x_i}\sim\frac{1}{(2\pi)^{d/2}}\exp\left(-|\mathbf{x}-\mu_{\mathbf{t}}|^2/2\right)$.
- Learning Problem Given only samples x_i , i = 1, 2, ..., n, find the t for each i. Clustering problem.
- Desired Solution: For $k \in O(1)$, want: "Can solve learning problem if the means of each pair of Gaussians are separated by $\Omega(1)$ (standard deviations) (which is 1 in here).
- Will see that "distance-based" clustering can do this if inter-mean separation is $\Omega(d^{1/4})$. Next chapter: SVD, can do with $\Omega(1)$ S.D.'s

Figure: (a) indicates that two randomly chosen points in high dimension are surely almost nearly orthogonal. (b) indicates that the distance between a pair of random points from two different unit balls approximating the annuli of two Gaussians.

• If **x**, **y** are two (indep) samples from the first Gaussian, then:

$$|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y} = (d \pm O(\sqrt{d})) + (d \pm O(\sqrt{d})) \pm O(\sqrt{d}) = 2d \pm O(\sqrt{d}).$$

• If **x**, **y** are two (indep) samples from the first Gaussian, then:

$$|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y} = (d \pm O(\sqrt{d})) + (d \pm O(\sqrt{d})) \pm O(\sqrt{d}) = 2d \pm O(\sqrt{d}).$$

 If the two centers are Δ apart and x, z are respectively from the two Gaussians, then

$$|\mathbf{x} - \mathbf{z}|^2 = |(\mathbf{x} - \mu_1) + (\mu_1 - \mu_2) + (\mu_2 - \mathbf{z})|^2 = d \pm O(\sqrt{d}) + \Delta^2 + d \pm \sqrt{d} + d$$

• If x, y are two (indep) samples from the first Gaussian, then:

$$|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y} = (d \pm O(\sqrt{d})) + (d \pm O(\sqrt{d})) \pm O(\sqrt{d}) = 2d \pm O(\sqrt{d}).$$

 If the two centers are ∆ apart and x, z are respectively from the two Gaussians, then

 Want: Whp, two points from the same Gaussian are closer to each other than 2 points from different Gaussians for "distance-based" clustering to succeed.

• If x, y are two (indep) samples from the first Gaussian, then:

$$|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y} = (d \pm O(\sqrt{d})) + (d \pm O(\sqrt{d})) \pm O(\sqrt{d}) = 2d \pm O(\sqrt{d}).$$

 If the two centers are Δ apart and x, z are respectively from the two Gaussians, then

- Want: Whp, two points from the same Gaussian are closer to each other than 2 points from different Gaussians for "distance-based" clustering to succeed.
- Suffices to have $\Delta^2 > c\sqrt{d}$ or $\Delta > cd^{1/4}$.

• If x, y are two (indep) samples from the first Gaussian, then:

$$|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y} = (d \pm O(\sqrt{d})) + (d \pm O(\sqrt{d})) \pm O(\sqrt{d}) = 2d \pm O(\sqrt{d}).$$

 If the two centers are ∆ apart and x, z are respectively from the two Gaussians, then

$$|\mathbf{x} - \mathbf{z}|^2 = |(\mathbf{x} - \mu_1) + (\mu_1 - \mu_2) + (\mu_2 - \mathbf{z})|^2 = d \pm O(\sqrt{d}) + \Delta^2 + d \pm \sqrt{d} + d$$

- Want: Whp, two points from the same Gaussian are closer to each other than 2 points from different Gaussians for "distance-based" clustering to succeed.
- Suffices to have $\Delta^2 > c\sqrt{d}$ or $\Delta > cd^{1/4}$.
- If we want all pair of points to behave well (union bound) suffices to have $\Delta > cd^{1/4}\sqrt{\ln n}$.