
Secure Computation in Hybrid Network

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Engineering

IN

Faculty of Engineering

BY

Divya Ravi

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

July, 2017

Declaration of Originality

I, Divya Ravi, with SR No. 04-04-00-10-41-14-1-11144 hereby declare that the material

presented in the thesis titled

Secure Computation in Hybrid Network

represents original work carried out by me in the Deparment of Computer Science and

Automation at Indian Institute of Science during the years 2015-2016.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discusions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

1

c© Divya Ravi

July, 2017

All rights reserved

DEDICATED TO

My family and friends

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Dr. Arpita Patra for her

continuous guidance and motivation. I will always be grateful to her for introducing me to the

world of research in Computer Science. She has been a great source of inspiration for me, not

just in terms of academics but personally as well.

Besides my advisor, I am immensely thankful to all the teachers that I have come across at

IISc. All of them have been instrumental in developing my knowledge and skills to be able to

attempt this project. The opportunities and the encouraging environment of the institute has

truly made my journey at IISc, an invaluable learning experience.

I would also like to extend my sincere thanks to Dr. Ashish Choudhury, Professor at IIIT-

Bangalore for his collaboration in our project work and many fruitful discussions.

I also thank my fellow labmates: Ajith, Dheeraj and Pratik for the countless stimulating

discussions and making the working environment pleasant and lively. My experience at IISc

has been beautiful and memorable due to the presence of close friends. I would also like to

thank my parents and sister for their unconditional support.

i

Abstract

Secure multi-party computation (MPC) allows a set of parties to jointly compute an agreed

function over their inputs, while keeping these inputs private. Most MPC protocols are designed

for synchronous networks, where every message that is sent is assumed to arrive within a

constant time. However, asynchronous networks are more practical since arbitrary delays occur

in real-life applications like Internet. Constructing MPC protocols in asynchronous networks

has been found to be challenging and has certain limitations compared to their synchronous

counterparts. To achieve the best of both, a concept of hybrid (partial synchronous) network has

been introduced. There are well-known impossibility results in asynchronous networks which

are shown to be possible in hybrid network. Hybrid networks try to overcome the limitations of

fully-asynchronous networks on one hand while maintaining minimal synchronicity assumption

on the other. The intent of the project was to explore the potential that hybrid networks seem to

offer. Our major contribution during the project is a communication-efficient statistically-secure

MPC protocol in hybrid network. This work marks the first attempt in bridging the efficiency

gap between statistical MPC protocols in synchronous and asynchronous network. At the heart

of our MPC protocol, lies a novel statistical verifiable secret sharing (VSS) protocol. Though

the VSS has non-optimal resilience, it is the first protocol to achieve quadratic complexity over

point-to-point channels in four rounds. Additionally, the VSS has a very lucrative feature of

broadcast complexity being independent of the number of values shared. On the practical front,

it is efficient and therefore may be of independent interest.

ii

Publications based on this Thesis

Paper titled “VSS with a Quadratic Overhead” - (Authors: Ashish Choudhury, Arpita Pa-

tra, Divya Ravi) is currently under submission to DISC 2016 (International Symposium on

DIStributed Computing) Conference.

iii

Contents

Acknowledgements i

Abstract ii

Publications based on this Thesis iii

Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Network Models in MPC . 1

1.2 Related Work . 3

1.3 Overview of VSS . 4

1.4 Our Contribution . 5

1.5 Preliminaries . 6

1.5.1 Definitions . 6

1.6 Organization . 8

2 Information Checking with Proof of Possession 9

2.1 The Protocol . 10

2.2 Appendix: Properties of Polynomials . 17

3 Statistical Verifiable Secret Sharing 19

3.1 Overview of the Protocol . 19

3.2 Statistical VSS with Quadratic Overhead . 20

3.2.1 Verifiably Distributing Values on Bivariate Polynomials of Degree at most t 21

iv

CONTENTS

3.2.2 Five Round Statistical VSS for a Single Secret 22

3.2.3 VSS for multiple secrets . 28

3.3 Appendix . 32

3.3.1 Protocol Poly-Check . 32

3.3.2 Pictorial Representation of the Protocols 33

4 Statistical Multiparty Computation in Hybrid Network 39

4.1 Design of MPC Protocol . 39

4.2 Tools used in constructing the MPC . 40

4.2.1 Existing Asynchronous Primitives . 40

4.2.2 The Asynchronous Triple Transformation Protocol 41

4.3 The Framework for the Offline Phase . 42

4.4 Statistical MPC Protocol in the Partially Synchronous Setting 46

5 Conclusion 48

Bibliography 49

v

List of Figures

2.1 Efficient ICPoP protocol where ` ≥ 1 and 1 ≤ pck ≤ n− t. 12

2.2 Pictorial representation of the information generated and communicated during

ICPoP protocol . 13

3.1 VSS for sharing a single secret. 25

3.2 Polycheck Protocol . 33

3.3 Pictorial representation of Sh-Single protocol . 34

3.4 Pictorial representation of Sh protocol that shares n− t secrets 35

3.5 Pictorial representation of Sh protocol that shares `× (n− t) secrets 37

vi

List of Tables

1.1 Current Feasibility and Efficiency Bounds of MPC in different networks 3

vii

Chapter 1

Introduction

The proliferation of the Internet has triggered tremendous opportunities for cooperative com-

putation, where people are cooperating with each other to conduct computation tasks based

on their individual inputs. These computations could occur between trusted partners, between

partially trusted partners, or even between competitors. For example, customers might send

queries that contain private information to a remote database, two competing financial orga-

nizations might jointly invest in a project that must satisfy both organizations private and

valuable constraints, and so on. Usually, to conduct these computations, one must know inputs

from all the participants; however if nobody can be trusted enough to know all the inputs,

privacy will become a primary concern. Secure multi-party computation (MPC) is an effective

solution in such scenarios. In secure multi-party computation (MPC), n parties wish to jointly

perform a computation on their private inputs in a secure way, so that no adversary Adv ac-

tively corrupting a coalition of t parties can learn more information than their outputs (privacy),

nor can they affect the outputs of the computation other than by choosing their own inputs

(correctness). The MPC problem dates back to Yao [42] and the first generic solutions were

presented in [30, 15]. Since then various dimensions of MPC have been explored in literature

based such as the nature of the adversary, underlying communication network, circuit model

of computation and so on. During this project we focused on the design of MPC protocols in

different communication network settings.

1.1 Network Models in MPC

In the literature, MPC has been explored in two prominent network settings: synchronous and

asynchronous networks. In the synchronous setting, it is assumed that the delay of messages in

the channels of the network is bounded by a known constant. This allows protocols to proceed

1

in rounds, with the strong delivery guarantee that every message sent in any given round are

delivered to all recipients in the same round. In contrast, in the asynchronous setting, the

channels in the network may have arbitrary delays and may deliver messages in any arbitrary

order, with the only restriction that every sent message must eventually be delivered. In order

to model the worst case, the adversary is allowed to control the scheduling of messages in

the network. The synchronous network is well-behaved and convenient, but not realistic and

inapplicable to many practical environments. Whereas, the asynchronous network can aptly

model real-life networks like Internet, but is difficult to deal with and less convenient. When the

channel delays are short, the protocols in asynchronous network may be faster than synchronous

protocols which have to allow each round to be long enough, such that all messages can get

through, even in the very worst case. On the downside, asynchronous protocols suffer from low

fault-tolerance, high communication complexity and input deprivation where the latter refers to

a property where inputs of t honest parties may be excluded from computation. All the above

are supposedly caused by the following inherent and trademark difficulty in the asynchronous

model.

In an asynchronous network, an honest party whose message is delayed in the network cannot

be told apart from a corrupt party who did not send a message at all. So an honest party in

an asynchronous protocol, unlike in a synchronous protocol, cannot wait for the messages from

all the parties, as it would potentially risk him to wait infinitely. To avoid the risk, an honest

party’s computation in an asynchronous protocol should be carried on with the receipt of (n−t)
parties at any given step. Unfortunately, this may risk ignoring the values of up to t potentially

honest parties at any given step. In what follows, we first define the security notions commonly

used in cryptography. Next, we highlight the well-known gaps in the feasibility and efficiency

results of the synchronous and asynchronous MPC protocols that corroborate with the above

discussed inherent difficulty faced in asynchronous protocols.

Security Notions. The security of a cryptosystem is broadly of two types: Information-

theoretic (unconditional) or cryptographic (computational). In the former, the computational

power of the adversary is assumed to be unbounded while the latter assumes a polynomially-

bounded adversary. There are two flavours of information-theoretic protocols: perfect (error-

free) and statistical (involves some probability of error).

Synchronous and Asynchronous MPC Protocols. Unconditional perfect asynchronous

MPC requires t < n/4 [11], whereas perfect synchronous MPC is feasible with t < n/3 [8].

Statistical and computational asynchronous MPC protocols require t < n/3 [10, 32, 33], whereas

their synchronous counterparts are feasible with t < n/2 [41, 31]. The best known perfect MPC

2

Table 1.1: Current Feasibility and Efficiency Bounds of MPC in different networks

Security Network Resilience 1 Comm Complexity

Perfect
Synchronous t < n/3 [8] O(|C|n|F|) [6]

Asynchronous t < n/4 [11] O(|C|n2|F|) [38]

Statistical
Synchronous t < n/2 [41] O(|C|nµ) [12]

Asynchronous t < n/3 [10] O(|C|n5µ) [40]

Cryptographic
Synchronous t < n/2 [21, 31] O(|C|nκ) [31]

Asynchronous t < n/3 [32, 33] O(|C|nκ) [16]

protocol in the synchronous and asynchronous network achieves a communication complexity

O(|C|n|F|) [6] respectively O(|C|n2|F|) [38] bits. Here |C| denotes the number of multiplication

gates in the arithmetic circuit C representing the function to be computed and F denotes

the underlying field. The gap is noticeably wider in the statistical case. For a statistical

security parameter µ, it is O(|C|nµ) bits [12] versus O(|C|n5µ) bits [40]. The situation is

slightly promising in the cryptographic setting. For a security parameter denoted as κ, the best

protocols in both the worlds achieve O(|C|nκ) bits of communication complexity [31, 16]. But

while the synchronous protocol of [31] relies on homomorphic encryption, the protocol of [16]

uses somewhat homomorphic encryption (SHE). A summary of the above results is given in

Table 1.1.

1.2 Related Work

Several efforts have been made to close the gaps in fault-tolerance and communication efficiency

of synchronous and asynchronous MPC protocols and to regain back input provision where all

the honest parties’ input will be counted in for the computation. The literature has seen

these efforts resorting to three different assumptions: (i) a few synchronous rounds with or

without access to broadcast oracles in the beginning of protocol execution [32, 5, 6, 17], (ii)

a synchronisation point2 at a strategic point during the protocol execution [23, 18] and (iii)

non-equivocation technique [19, 2]3. With the goal to enforce input provision, [32] introduced a

special network which they term as hybrid network that supports a few synchronous rounds in

the start of a protocol execution before turning to asynchronous mode. Specifically, [32] used

seven initial synchronous rounds to ensure input provision in their cryptographic MPC protocol

with t < n/3. [5] ensured input provision in their perfect MPC protocol using one synchronous

2The synchronisation point models a certain time-out such that all messages sent by honest players before
the deadline will be delivered before the deadline.

3Non-equivocation is a message authentication mechanism to restrict a corrupt sender from making con-
flicting statements to different (honest) parties.

3

round which is clearly optimal. However, both the above protocols contribution remain in

regaining input provision in asynchronous protocols. The first attempt to bridge the feasibility

gap between synchronous and asynchronous MPC is made by [7]. Their cryptographic MPC

protocol not only provides input provision but also works with t < n/2 which is the same bound

necessary and sufficient for synchronous cryptographic MPC. This is achieved at the expense

of one initial synchronous round that allows access to broadcast oracle.In yet another first

of its kind of work, [17] shows that the communication complexity gap between synchronous

and asynchronous MPC protocols with perfect security can be closed with the help of a single

synchronous round (without any access to broadcast). Namely, the protocol of [17] achieves a

perfect asynchronous MPC with O(|C|n|F|) communication complexity.

1.3 Overview of VSS

Verifiable Secret Sharing (VSS) is a fundamental building block for many distributed tasks,

including MPC and Byzantine Agreement (BA) [14, 37]. Informally, VSS is a two phase proto-

col (Sharing and Reconstruction) carried out among n parties in the presence of an adversary

who can corrupt upto t parties. The goal of VSS is to share a secret s among n parties during

the sharing phase in a way that would later allow for unique reconstruction of this secret in

the reconstruction phase, while preserving the secrecy of s until the reconstruction phase. The

extensive use of VSS in the above mentioned domains of distributed cryptography makes the

study of communication complexity of VSS important and necessary. It is well known that

perfectly-secure VSS is possible if and only if t < n/3 [24], while statistically-secure VSS is pos-

sible if and only if t < n/2 [41]. The use of broadcast channel in VSS protocols irrespective of

the settings are standard and well-known. The communication complexity of any VSS therefore

has two components: communication over the point-to-point channels and communication over

the broadcast channel. We use PC() and BC() respectively to denote these communication com-

plexities. We emphasize that the use of a broadcast channel in a VSS protocol is a simplifying

abstraction. The broadcast calls need to be replaced with protocols to obtain communication

complexity over point-to-point channels. Quite unfortunately, the best communication com-

plexity that can be achieved by any broadcast protocol for a single bit is PC(Ω(n2)) bits [36].

A communication complexity of PC(O(n`)) bits can be achieved for an `-bit message when `

is Ω(n7) bits and Ω(n3) bits in t < n/2 setting [25] and in t < n/3 setting [39] respectively.

The above results put forth the importance of making the broadcast communication in a VSS

protocol independent of the number of shared secrets. As cited below, the best known VSS

protocols do not achieve the goal. With t < n/3, the best known communication efficient VSS

protocol [29] has communication complexity PC(O(n2`)) and BC(O(n2`)) for sharing ` secrets.

4

With t < n/2, communication efficient VSS are presented in [35, 28] with broadcast complexity

of the order BC(Ω(n2`)). All these protocols have broadcast communication dependent on the

number of secrets.

1.4 Our Contribution

Motivation. We have seen that hybrid networks seem to offer immense potential in bridg-

ing the feasibility and efficiency gap between synchronous and asynchronous MPC in various

settings. Consequently, a practically motivated approach would be to improve the communica-

tion complexity of MPC by considering networks that allow partial synchrony. As we saw in

table 1.1, the efficiency gap is noticeably wider in the statistical case. For a statistical security

parameter µ, it is O(nµ) bits [12] (synchronous) versus O(n5µ) bits [40] (asynchronous) per

multiplication gate. During this project, we made the first attempt in the direction to over-

come this gap using a hybrid network. Also, we have seen that the communication done over

broadcast channels during VSS is dependent on the number of secrets to be shared and inflates

proportional to the latter. This motivated us to design a statistical VSS protocol (to be used as

a building block of MPC) with broadcast communication independent of the number of shared

secrets.

Our Approach and Results. Since VSS is one of the main building blocks of MPC, we at-

tempted to bridge the efficiency gap between statistical MPC in synchronous and asynchronous

networks via VSS. Our main results during the project are:

Result 1. We designed a four round statistical VSS protocol with t < n/3, which shares

Θ(n`) secrets with communication complexity PC(O(n3`)) and BC(O(n3)). So the broadcast

complexity is independent of `. Though our protocol has non-optimal resilience, it is the first

protocol to achieve amortized quadratic complexity over point-to-point channels in four rounds.

Result 2. We designed a communication efficient statistically-secure MPC protocol in the

partially synchronous (hybrid) setting. Specifically in a network that is asynchronous post four

initial synchronous broadcast rounds, we give an MPC protocol with O(n2) communication per

multiplication gate. The MPC is constructed by plugging in our VSS in the efficient framework

of [17] to get the result.

We have submitted a paper “VSS with Quadratic Overhead” with the above results, to the

DISC 2016 conference.

5

1.5 Preliminaries

We consider a set P = {P1, . . . , Pn} of n parties, connected by pair-wise private and authentic

channels; in addition they have access to a broadcast channel. For simplicity we assume n =

3t + 1, so t = Θ(n). There exists a computationally unbounded centralized adversary Adv

who can maliciously corrupt any t out of the n parties and may force them to behave in any

arbitrary fashion during the execution of a protocol. The adversary is static, who decides

the set of corrupted parties at the beginning of the protocol execution. For simplicity, we

consider a completely synchronous communication setting, where the parties are assumed to be

synchronised by a global clock and where there are strict upper bounds on the message delivery.

Later we will discuss the adaptation of our protocols in a partially synchronous setting. Our

protocols will operate over a finite field F, where |F| > 2n. We assume that there exists 2n

distinct non-zero elements α1, . . . , αn, β1, . . . , βn in F. Each element of F can be represented

by O(log |F|) bits. The communication complexity of any protocol is defined to be the total

number of field elements communicated by the honest parties in that protocol. For simplicity

and without loss of generality, we assume that the parties want to securely compute the function

f : Fn → F, where f(x1, . . . , xn) = y, such that xi ∈ F is the input of Pi and every party is

supposed to receive the output y ∈ F. The function f is assumed to be represented by a publicly

known arithmetic circuit C over F. The circuit C consists of n input gates, two-input addition

(linear) and multiplication (non-linear) gates, zero-input random gates (for generating random

values during the computation) and one output gate. We denote by cM and cR the number of

multiplication and random gates in C respectively. By [X] and [X, Y] for Y ≥ X, we denote the

sets {1, . . . , X} and {X,X + 1, . . . , Y }, respectively. We use i ∈ [k] to denote that i can take a

value from the set {1, 2 . . . k}. We will also require that |F| > 4n4(cM + cR)(3t+ 1)2κ to ensure

that the error-probability of our MPC protocol is at most 2−κ, for a given error parameter κ.

1.5.1 Definitions

Definition 1.1 (d-sharing [4, 22, 6]) A value s is said to be d-shared if there exists a poly-

nomial over F, say f(·), of degree at most d, such that f(0) = s and every (honest) party

Pi ∈ P holds a share si of s, where si = f(αi). We denote by [s]d, the vector of shares of s

corresponding to the parties in P.

A vector ~S = (s(1), . . . , s(`)) ∈ F` is said to be d-shared if each s(i) is d-shared. Note that

d-sharings are linear: given [a]d and [b]d, then [a + b]d = [a]d + [b]d and [c · a]d = c · [a]d

holds, for a public constant c. In general, given ` sharings [x(1)]d, . . . , [x
(`)]d and a pub-

lic linear function g : F` → Fm, where g(x(1), . . . , x(`)) = (y(1), . . . , y(m)), then g([x(1)]d, . . . ,

6

[x(`)]d) = ([y(1)]d, . . . , [y
(m)]d). We say that the parties locally compute ([y(1)]d, . . . , [y

(m)]d) =

g([x(1)]d, . . . , [x
(`)]d) to mean that every Pi (locally) computes (y

(1)
i , . . . , y

(m)
i) = g(x

(1)
i , . . . , x

(`)
i),

where y
(l)
i and x

(l)
i denotes the ith share of y(l) and x(l).

Definition 1.2 ((Polynomial-based) Verifiable Secret Sharing (VSS)) Let the set of L

values that a dealer D ∈ P wants to t-share among P be denoted as ~S = (s(1), . . . , s(L)) ∈ FL.

Let Sh be a synchronous protocol for the n parties, where D has the input ~S. Then Sh is a VSS

scheme if the following holds for every possible Adv, on all possible inputs: (1) Correctness:

If D is honest then ~S is t-shared among P at the end of Sh. Moreover even if D is corrupted

there exists a set of L values, say (s(1), . . . , s(L)), which is t-shared among P at the end of Sh.

(2) Privacy: If D is honest then Sh reveals no information about ~S to Adv in the information-

theoretic sense; i.e. Adv’s view is identically distributed for all possible ~S. If Sh satisfies all its

properties without any error then it is called perfectly-secure. If the correctness is satisfied with

probability at least 1− ε, for a given error parameter ε, then it is called statistically-secure.

Information Checking with Succinct Proof of Possession (ICPoP): An ICPoP protocol

involves three entities: a designated dealer D ∈ P who holds a set of L private values S =

{s(1), . . . , s(L)}, an intermediary INT ∈ P and the set of parties P acting as verifiers (note that

D and INT will also play the role of verifiers, apart from their designated role of dealer and

intermediary respectively). The protocol proceeds in three phases, each of which is implemented

by a dedicated sub-protocol: (1) Distribution Phase: Here D, sends S to INT along with

some auxiliary information. For the purpose of verification, some verification information

is additionally sent to each individual verifier. (2) Authentication Phase: This phase is

initiated by INT who interacts with D and the verifiers to ensure that the information it received

from D is consistent with the verification information distributed to the individual verifiers. If D

wants it can publicly abort this phase, which is interpreted as if D is accusing INT of malicious

behaviour. (3) Revelation Phase: This phase is carried out by INT and the verifiers in P only

if D has not aborted the previous phase. Here INT reveals a proof of possession of the values

received from D. The verifiers in P check this proof with respect to their verification information.

Then based on certain criteria, each verifier either outputs AcceptProof (indicating that it

accepts the proof) or RejectProof (indicating that it rejects the proof).

Definition 1.3 (Information Checking with Succinct Proof of Possession (ICPoP))

A triplet of protocols (Distr,AuthVal,RevealPoP) (implementing the distribution, authentication

and revelation phase respectively) is called a (1 - ε)-secure ICPoP, for an error parameter ε,

if the following holds: (1) ICPoP-Correctness1: If D and INT are honest, then each hon-

est verifier Pi ∈ P outputs AcceptProof at the end of RevealPoP. (2) ICPoP-Correctness2:

7

If D is corrupted and INT is honest and if ICPoP proceeds to RevealPoP, then except with

probability at most ε, all honest verifiers output AcceptProof at the end of RevealPoP. (3)

ICPoP-Correctness3: If D is honest, INT is corrupted, ICPoP proceeds to RevealPoP and if the

honest verifiers output AcceptProof, then except with probability at most ε, the proof produced

by INT corresponds1 to the values in S. (4) ICPoP-Privacy: If D and INT are honest, then the

information obtained by Adv during ICPoP is independent of S. (5) ICPoP-Succinctness of

the Proof : The size of the proof produced by INT during RevealPoP should be independent of

L.

Properties of Polynomials: A bivariate polynomial F (x, y) of degree at most t is of the form

F (x, y) =
∑i,j=t

i,j=0 rijx
iyj, where rij ∈ F. Let fi(x)

def
= F (x, αi), gi(y)

def
= F (αi, y) for i ∈ [n]. We

call fi(x) and gi(y) as ith row polynomial and column polynomial respectively of F (x, y). We

say that a row polynomial f i(x) lies on a bivariate polynomial F (x, y) of degree at most t if

F (x, αi) = f i(x) holds. Similarly we will say that a column polynomial gi(y) lies on F (x, y)

if F (αi, y) = gi(y) holds. We will use some well known standard properties of bivariate and

univariate polynomials, which are stated in Appendix 2.2.

1.6 Organization

In Chapter 2, we introduce a new primitive called information checking with succinct proof of

possession (ICPoP) that is used as a building block in our VSS. Next, we show a construction

of an ICPoP protocol and give a rigorous proof of its properties.

In Chapter 3, we first give a high-level overview of our statistical VSS protocol. For simplicity,

we first present a 5-round statistical VSS protocol Sh-Single for sharing a single secret. We then

discuss the modifications to be made to reduce the number of rounds of Sh-Single from five to

four. Finally we extend this four round Sh-Single protocol to present the statistical VSS proto-

col Sh that has amortized quadratic communication complexity and broadcast communication

independent of the number of shared secrets. This is subsequently used to design the efficient

statistical MPC protocol in hybrid network. We present detailed proof of security of all our

constructions of VSS.

In Chapter 4, we present the first statistical MPC protocol in hybrid network that closes the

efficiency gap between the two kinds of network. The key tool for our new MPC is the statistical

VSS protocol presented in Chapter 3. We conclude by summarizing our results and proposing

some directions for further research.

1The interpretation of a proof corresponding to a set of values will be clear later during the formal presen-
tation of our ICPoP.

8

Chapter 2

Information Checking with Proof of

Possession

In this section, we introduce a new primitive called information checking with succinct proof

of possession (ICPoP). This is a modification of an existing primitive known as information

checking protocol (ICP) [41, 20, 37]. ICP is traditionally used as a tool for authenticating

messages and considered to be the information-theoretically secure variant of digital signatures.

An ICPoP protocol involves three entities: a designated dealer D ∈ P who holds a set of L

private values S = {s(1), . . . , s(L)}, an intermediary INT ∈ P and the set of parties P acting as

verifiers (note that D and INT will also play the role of verifiers, apart from their designated

role of dealer and intermediary respectively). The protocol proceeds in three phases, each of

which is implemented by a dedicated sub-protocol:

1. Distribution Phase: Here D, sends S to INT along with some auxiliary information.

For the purpose of verification, some verification information is additionally sent to each

individual verifier.

2. Authentication Phase: This phase is initiated by INT who interacts with D and the

verifiers to ensure that the information it received from D is consistent with the verification

information distributed to the individual verifiers. If D wants it can publicly abort this

phase, which is interpreted as if D is accusing INT of malicious behaviour.

3. Revelation Phase: This phase is carried out by INT and the verifiers in P only if D

has not aborted the previous phase. Here INT reveals a proof of possession of the values

received from D. The verifiers in P check this proof with respect to their verification

information. Then based on certain criteria, each verifier either outputs AcceptProof

9

(indicating that it accepts the proof) or RejectProof (indicating that it rejects the proof).

2.1 The Protocol

We present a (1− ε)-secure ICPoP protocol, where |S| = L = `× pck, with ` ≥ 1 and 1 ≤ pck ≤
n−t; moreover ε = max{ n`

|F|−1
, n(n−1)
|F |−pck}. The protocol has communication complexity PC(O(n`))

and BC(O(n)). Hence the broadcast complexity is independent of `. Our ICPoP is similar to

the asynchronous ICP of [37], adapted to the synchronous setting with the following differences:

in ICP the whole S is revealed during the revelation phase, as only its authenticity is required

during the revelation phase. We require INT to be able to publicly prove the possession of S while

maintaining its privacy. Hence the auxiliary information distributed in our ICPoP differs and

also used differently; the details follow. Let S = {(s(1,1), . . . , s(1,pck)), · · · , (s(`,pck), . . . , s(`,pck))}
denote the L = `× pck private values of the dealer D.

Distribution Phase: During the distribution phase, D embeds the values (s(k,1), . . . , s(k,pck))

for k ∈ [`] in a random degree d secret-encoding polynomial G(k)(x) at x = β1, . . . , βpck, where

d = pck + t − 1. In addition, D picks a masking set M, consisting of 2 × pck random val-

ues {(m(1,1), . . . ,m(1,pck)), (m(2,1), . . . ,m(2,pck))}, which are embedded in two random degree d

polynomials H(1)(x) and H(2)(x) respectively at x = β1, . . . , βpck; we call these polynomials

as masking polynomials. The polynomials are sent to INT, while each verifier Pi receives the

values v1,i, . . . , v`,i,m1,i,m2,i of these polynomials at a secret evaluation point γi. This achieves

ICPoP-Privacy, as each secret-encoding polynomial has degree d and adversary may get at

most t values on these polynomials; so it will lack pck values on each polynomial to uniquely

interpolate them.

Revelation Phase: During revelation phase, to give a proof of possession of S, INT produces

a random linear combination of the values in S∪M by making public a random linear combiner,

say e and a linear combination C(x) = eH(1)(x)+e2H(2)(x)+e3G(1)(x)+ . . .+e`+2G(`)(x). The

values C(β1), . . . , C(βpck) define pck linear combinations of S ∪M with respect to e. The pair

(e, C(x)) is considered as a proof of possession of S (union M) and verified as follows: each verifier

locally verifies if the corresponding linear combination em1,i+e
2m2,i+e

3v1,i+. . .+e
`+2v`,i satisfies

C(x) at x = γi (Condition C1) and accordingly broadcast an Accept or a Reject message. If

more than t verifiers broadcast Accept then the proof (e, C(x)) is said to be accepted, other

wise it is rejected. The proof will be always be accepted for an honest D and INT, implying

ICPoP-Correctness1. The size of the proof is O(n) (as d = O(n)), which is independent of

`, implying ICPoP-Succinctness of the Proof. No additional information about the secret-

encoding polynomials is revealed from C(x), thanks to the masking polynomials. If D is honest

10

and INT is corrupt then the evaluation points of the honest verifiers will be private. So if INT

gives a proof of possession of S? ∪ M? 6= S ∪ M by revealing a linear combination of S? ∪ M?

through (e, C?(x)) where C?(x) 6= C(x), then with high probability, every honest verifier will

reject the proof. This is because the corresponding linear combination of the values possessed

by the honest verifiers will fail to satisfy C?(x); this implies ICPoP-Correctness 3.

Authentication Phase: The above mechanism, however, fails to achieve ICPoP-Correctness

2, as a corrupt D can distribute “inconsistent” polynomials and values to an honest INT and

honest verifiers respectively; later on the proof produced by INT will be rejected by every hon-

est verifier. To verify the consistency of the distributed information, during the authentication

phase, INT “challenges” D by making public a random linear combination A(x) of the received

polynomials. In response, D either instructs to abort the protocol or continue, after verifying

whether the A(x) polynomial satisfies the corresponding random linear combination of the val-

ues held by each verifier. The idea here is that if D distributed inconsistent data, then with

very high probability, any random linear combination of the distributed polynomials would

fail to satisfy the corresponding linear combination of the values given to the honest verifiers.

And this will be locally learned by the honest verifiers after A(x) is made public. So if D still

instructs to continue the protocol, then clearly D is corrupt; so later even if the proof produced

in the revelation phase turns out to be inconsistent with the information held by the honest

verifiers, the proof is accepted by adding an additional acceptance condition (Condition C2) to

deal with this particular case. We stress that the additional acceptance condition never gets

satisfied for an honest D and a corrupt INT. The privacy of the secret-encoding polynomials

is still preserved during the authentication phase (for an honest INT and D), thanks to the

masking polynomials. This explains the need for two masking polynomials: one is to preserve

the privacy of the secret-encoding polynomials during the authentication phase while the other

is used to maintain the privacy during the revelation phase. The ICPoP protocol is given in

Fig. 2.1. In the protocol, if the output is AcceptProof then the parties additionally output

pck linear combinations of the values in S∪M possessed by INT; this will be useful in our VSS.

For the ease of understanding, in Fig. 2.2 we present a pictorial representation of the values

distributed and revealed in ICPoP.

In ICPoP, the correspondence between a proof and a set of values is defined as follows: Let S =

{(s(1,1), . . . , s(1,pck)), . . . , (s(`,1), . . . , s(`,pck))} and M = {(m(1,1), . . . ,m(1,pck)), (m(2,1), . . . ,m(2,pck))}.
We say that a proof (e, C(x)) corresponds to S∪M if C(x) embeds linear combination of S∪M

with respect to e at x = β1, . . . , βpck; i.e. if C(βi) = em(1,i) + e2m(2,i) + e3s(1,i) + . . .+ e(`+2)s(`,i)

holds for i ∈ [pck]. We shall now proceed to formally prove the properties of ICPoP according

to Definition 1.3.

11

Figure 2.1: Efficient ICPoP protocol where ` ≥ 1 and 1 ≤ pck ≤ n− t.

ICPoP(D, INT,P, `, pck, S) : S = {(s(1,1), . . . , s(1,pck)), . . . , (s(`,1), . . . , s(`,pck))}

Distr(D, INT,P, `, pck, S ∪M)
Round 1:

• D defines a masking setM
def
= {(m(1,1), . . . ,m(1,pck)), (m(2,1), . . . ,m(2,pck))} consisting of 2pck random

elements from F. Let d
def
= pck + t − 1. Dealer D selects ` random secret-encoding polynomials

G(1)(x), G(2)(x), . . . G(`)(x) of degree at most d, such that G(k)(β1) = s(k,1), . . . , G(k)(βpck) = s(k,pck)

for k ∈ [`]. In addition, D selects two random masking polynomials H(1)(x), H(2)(x) of degree d,
such that H(k)(β1) = m(k,1), . . . ,H(k)(βpck) = m(k,pck) for k ∈ [2]. For each verifier Pi ∈ P, dealer D
selects a random evaluation point γi such that γi ∈ F \ {β1, . . . , βpck}.

• D gives S ∪M to INT by sending G(1)(x), . . . G(`)(x), H(1)(x) and H(2)(x) to INT. To each verifier

Pi ∈ P, dealer D sends (γi, v1,i, v2,i, . . . v`,i,m1,i,m2,i), where vk,i
def
= G(k)(γi) for k ∈ [`] and

mk,i
def
= H(k)(γi) for k ∈ [2].

Local Computation by INT: Let G
(1)

(x), . . . G
(`)

(x), H
(1)

(x) and H
(2)

(x) be the polynomials received
from D (if D is honest then these will be the same polynomials as selected by D). INT sets S =
{(s(1,1), . . . , s(1,pck)), . . . , (s(`,1), . . . , s(`,pck))} and M = {(m(1,1), . . . ,m(1,pck)), (m(2,1), . . . ,m(2,pck))}, where

s(k,1) = G
(k)

(β1), . . . , s(k,pck) = G
(k)

(βpck) for k ∈ [`] and m(k,1) = H
(k)

(β1), . . . ,m(k,pck) = H
(k)

(βpck) for
k ∈ [2]; S ∪M are considered to be received by INT from D.

Local Computation Each Verifier Pi: Let (γi, v1,i, v2,i, . . . v`,i,m1,i,m2,i) be the tuple received
from D (if D is honest then this will be the same tuple as computed by D).

AuthVal(D, INT,P, `, pck, S ∪M)

Round 1: INT selects a random element d ∈ F \ {0} and broadcasts (d,A(x)), where A(x)
def
= dH

(1)
(x) +

d2H
(2)

(x) + d3G
(1)

(x) + d4G
(2)

(x) + . . . d`+2G
(`)

(x).

Round 2: Upon receiving (d,A(x)) from the broadcast of INT, D checks if A(γi) = dm1,i + d2m2,i + d3v1,i +
d4v2,i . . . d

`+2v`,i holds for every Pi ∈ P. If not then it broadcasts an Abort messages, else it broadcasts
an OK message.

RevealPoP(D, INT,P, `, pck, S ∪M) : This protocol is executed only if D broadcasted OK message during
AuthVal.

Round 1: INT chooses a random element e ∈ F \ {0} and broadcasts (e, C(x)) as a proof of possession of

S ∪M, where C(x)
def
= eH

(1)
(x) + e2H

(2)
(x) + e3G

(1)
(x) + e4G

(2)
(x) . . . e`+2G

(`)
(x) .

Round 2: Upon receiving the broadcast of (e, C(x)) from INT, every verifier Pi ∈ P locally verifies the
following conditions:

• C(γi)
?
= emi,1 + e2mi,2 + e3v1,i + e4v2,i + . . . e`+2v`,i — we call this condition as C1.

• A(γi) 6= dm1,i +d2m2,i +d3v1,i +d4v2,i + . . . d`+2v`,i holds during AuthVal — we call this condition
as C2.

Verifier Pi broadcasts Accept if either of the conditions C1 or C2 is true for Pi, else Pi broadcasts Reject.

Output Determination: If more than t verifiers broadcast Accept then each verifier Pi outputs AcceptProof

along with the vector (comb1, . . . , combpck)
def
= (C(β1), . . . , C(βpck)), else each verifier Pi outputs

RejectProof.

12

Figure 2.2: Pictorial representation of the information generated and communicated during
ICPoP protocol

(a) The values communicated during Distr.
The two masking polynomials of degree
d are H(1)(x) and H(2)(x) (shown in
blue) which embeds the masking values
{m(1,1) . . .m(1,pck)} and {m(2,1) . . .m(2,pck)}
respectively. The ` secret-encoding poly-
nomials of degree d are G(1)(x) · · ·G(`)(x)
(shown in red) where G(k)(x) embeds pck se-
crets i.e {s(k,1) . . . s(k,pck)}. All embeddings
are done at x = β1, . . . , βpck.

H(1)(x) ⇒ m(1,1) · · · m(1,pck)

H(2)(x) ⇒ m(2,1) · · · m(2,pck)

G(1)(x) ⇒ s(1,1) · · · s(1,pck)

...
...

...
...

G(`)(x) ⇒ s(`,1) · · · s(`,pck)

(b) The output vector (comb1, . . . , combpck) =
(C(β1), . . . , C(βpck)) that is revealed by INT dur-
ing RevealPoP (shown in blue color) via the
proof (e, C(x)). We note that combk is a lin-
ear combination of the kth value embedded in
H(1)(x), H(2)(x), G(1)(x), . . . , G(`)(x) with respect to
the combiner e, for k = 1, . . . , pck. This is represented
as the kth column in the matrix representation (shown
in green color).

H(1)(x) ⇒ m(1,1) · · · m(1,k) · · · m(1,pck)

H(2)(x) ⇒ m(2,1) · · · m(2,k) · · · m(2,pck)

G(1)(x) ⇒ s(1,1) · · · s(1,k) · · · s(1,pck)

...
...

...
...

...
...

...
G(`)(x) ⇒ s(`,1) · · · s(`,k) · · · s(`,pck)

⇓ ⇓ ⇓
comb1 combk combpck

combk = em(1,k) + e2m(2,k) + e3s(1,k) + · · ·+ e`+2s(`,k)

= eH(1)(βk) + e2H(2)(βk) + · · ·+ e`+2G(`)(βk)

= C(βk),

where C(x) = eH(1)(x)+e2H(2)(x)+e3G(1)(x)+. . .+e`+1G(`)(x)

13

Lemma 2.1 (ICPoP-Correctness1) If D and INT are honest then each honest verifier Pi ∈ P

outputs AcceptProof along with (C(β1), . . . , C(βpck)) at the end of RevealPoP.

Proof: If D is honest, then for each honest verifier Pi ∈ P, the relationship G(k)(γi) = vk,i will

hold for each k ∈ [`] and also H(1)(γi) = m1,i and H(2)(γi) = m2,i will hold. Moreover if INT is

honest then it will correctly broadcast the C(x) polynomial during RevealPoP and each honest

verifier Pi will find that the condition C1 is true. Hence each honest verifier will broadcast

Accept. As there are more than t honest verifiers who will broadcast Accept messages, each

honest verifier will see more than t Accept messages and hence will output AcceptProof. 2

Lemma 2.2 (ICPoP-Correctness2) If D is corrupt and INT is honest, and if ICPoP proceeds

to RevealPoP, then all honest verifiers output AcceptProof, except with probability at most
n`
|F|−1

.

Proof: We claim that if INT is honest and if ICPoP proceeds to RevealPoP, then an honest

verifier Pi will broadcast Accept message, except with probability at most `
|F|−1

. Assuming that

the claim is true, from the union bound it follows that the probability any honest verifier fails to

broadcast an Accept message is at most n`
|F|−1

, as the number of honest parties is upper bounded

by n. This ensures that there will be more than t Accept messages broadcasted by honest ver-

ifiers implying that each honest verifier will output AcceptProof at the end of RevealPoP. We

next proceed to prove our claim. For this we focus on a designated honest verifier Pi and con-

sider the relationship that holds between the polynomials G
(1)

(x), . . . , G
(`)

(x), H
(1)

(x), H
(2)

(x)

distributed by a corrupt D to INT and the tuple (γi, v1,i, v2,i, . . . v`,i,m1,i,m2,i) distributed by D

to Pi. We have the following two cases:

• vk,i = G
(k)

(γi) for each k ∈ [`] and m1,i = H
(1)

(γi),m2,i = H
(2)

(γi): In this case, the

claim is true without any error. This is because Pi will find that condition C1 is true for

the C(x) polynomial during RevealPoP.

• At least one of the following holds — either vk,i 6= G
(k)

(γi) for some k ∈ [`] or m1,i 6=
H

(1)
(γi) or m2,i 6= H

(2)
(γi): In this case, A(γi) 6= dm1,i+d

2m2,i+d
3v1,i+d

4v2,i+. . . d
`+2v`,i

will hold, except with probability at most `
|F|−1

(follows from Claim 2.2 by substituting

L = `+ 2). So clearly the verifier Pi will find that condition C2 is true during RevealPoP.

2

Lemma 2.3 (ICPoP-Correctness3) If D is honest, INT is corrupt, ICPoP proceeds to RevealPoP

and if the honest verifiers output AcceptProof, then except with probability at most nd
|F|−pck , the

proof produced by INT corresponds to the values in S ∪M.

14

Proof: If ICPoP proceeds to RevealPoP then it implies that D broadcasted OK message during

AuthVal which implies that INT broadcasted the correct A(x) polynomial during AuthVal. More

specifically, the condition A(γi) = dm1,i + d2m2,i + d3v1,i + d4v2,i . . . d
`+2v`,i will hold for every

verifier Pi ∈ P. This further implies that during RevealPoP, the condition C2 will never be

satisfied for any honest verifier Pi. To prove the lemma statement, we have to consider the

case when a corrupt INT reveals a polynomial C?(x) 6= eH(1)(x) + e2H(2)(x) + e3G(1)(x) +

e4G(2)(x) + . . . + e`+2G(`)(x) during RevealPoP (if INT produces the correct C(x) polynomial

then the lemma statement is true without any error probability). We claim that the probability

that an honest verifier Pi ∈ P broadcasts Accept message corresponding to C?(x) is at most
d

|F|−pck . Assuming that the claim is true, it follows via the union bound that the probability

that any honest verifier broadcasts Accept message corresponding to C?(x) is at most nd
|F|−pck ,

as the number of honest verifiers is upper bounded by n. This implies that there can be at

most t Accept messages corresponding to C?(x), broadcasted by t potentially corrupt verifiers,

implying that each honest verifier will output RejectProof. We next prove our claim. For this

we focus on a designated honest verifier Pi. As discussed above, the condition C2 will never

happen for Pi. So Pi will broadcast Accept message only if condition C1 holds for Pi. In order

that C1 is satisfied for Pi, it should hold that C?(γi) = C(γi). However since D is honest, the

adversary will have no information about the secret evaluation point γi. So the only way a

corrupt INT can ensure that C?(γi) = C(γi) holds is by correctly guessing γi, which it can do

with probability at most d
|F|−pck . This is because two different polynomials of degree at most d

can have at most d common roots and γi ∈ F \ {β1, . . . , βpck}. 2

Lemma 2.4 (ICPoP-Privacy) If D and INT are honest, then the information obtained by Adv

during ICPoP is independent of the values in S.

Proof: Without loss of generality, let us assume that P1, P2 . . . Pt are under the control of Adv.

We claim that adversary learns nothing about G(1)(x), . . . , G(`)(x) beyond t distinct values on

these polynomials, different from x = β1, . . . , βpck. As each of these polynomials are of degree at

most d = t+ pck− 1, this implies that Adv learns nothing about the value of these polynomials

at β1, . . . , βpck, which are nothing but elements of S. We next proceed to prove our claim.

During Distr, adversary will obtain the tuple (γi, v1,i, v2,i, . . . v`,i,m1,i,m2,i) corresponding to

each Pi ∈ {P1, . . . , Pt} via which it obtains t distinct values ofG(1)(x), . . . , G(`)(x), H(1)(x), H(2)(x).

During AuthVal, adversary will obtain d,A(x). In addition, during RevealPoP, adversary will ob-

tain e, C(x). However even after seeing A(x) and C(x), the privacy of G(k)(β1), . . . , G(k)(βpck)

will be preserved for each k ∈ [`]. This is because the polynomials G(1)(x), . . . , G(`)(x) are

masked with H(1)(x) and H(2)(x) in the A(x) and C(x) polynomials and adversary will lack

15

pck values of H(1)(x) and H(2)(x) to uniquely interpolate them. More specifically, from the view

point of the adversary, for every choice S = {(s(1,1), . . . , s(1,pck)), . . . , (s(`,1), . . . , s(`,pck))} of the

secret values, there exists corresponding secret-encoding polynomials G
(1)

(x), . . . , G
(`)

(x) of de-

gree d, with G
(k)

(β1) = s(k,1), . . . , G
(k)

(βpck) = s(k,pck) for each k ∈ [`], such that G
(k)

(γi) = vk,i

holds corresponding to each Pi ∈ {P1, . . . , Pt}. Moreover corresponding to G
(1)

(x), . . . , G
(`)

(x)

and the polynomialsA(x), C(x), there exist corresponding masking polynomialsH
(1)

(x), H
(2)

(x)

(degree at most d) and masking set of values M = {(m(1,1), . . . ,m(1,pck)), (m(2,1), . . . ,m(2,pck))},
such that A(x) = dH

(1)
(x) + d2H

(2)
(x) + d3G

(1)
(x) + d4G

(2)
(x) + . . .+ d`+2G

(`)
(x) and C(x) =

eH
(1)

(x) + e2H
(2)

(x) + e3G
(1)

(x) + e4G
(2)

(x) + . . .+ e`+2G
(`)

(x) holds, where H
(1)

(β1) = m(1,1),

. . . , H
(1)

(βpck) = m(1,pck) and H
(2)

(β1) = m(2,1), . . . , H
(2)

(βpck) = m(2,pck) with H
(1)

(γi) = m1,i,

H
(2)

(γi) = m2,i holding for each Pi ∈ {P1, . . . , Pt}. 2

Theorem 2.1 Protocols (Distr,AuthVal,RevealPoP) constitute a (1− ε)-secure ICPoP for L =

`×pck values with ` ≥ 1 and 1 ≤ pck ≤ n−t, where ε = max{ n`
|F|−1

, nd
|F |−pck} and d = pck+t−1.

The protocol has communication complexity PC(O(n`)) and BC(O(n)).

Proof: The properties of ICPoP follows from Lemma 2.1-2.4. We next prove the communi-

cation complexity. During Distr, D sends ` + 2 polynomials of degree d to INT and a tuple of

`+ 3 values to each individual verifier. During AuthVal a polynomial of degree d is broadcasted

by INT and D broadcasts either an OK or Abort message. During RevealPoP, INT broadcasts

a polynomial of degree d and each individual verifier broadcasts either an Accept or a Reject

message. So overall the protocol has communication complexity PC(O(n`)) and BC(O(n)), as

d = O(n). This also proves the ICPoP-Succinctness of the Proof property, as the size of the

proof is independent of `. 2

Transferability of ICPoP. : In our VSS protocol we will use ICPoP as follows: after

receiving S ∪M from D via the secret-encoding and masking polynomials, INT will send these

polynomials (and hence S∪M) to another designated party, say PR ∈ P (if INT is corrupt then

it can send incorrect polynomials to PR). Later on, party PR will act as an INT and produce

a proof of possession of S ∪M, which got “transferred” to PR from INT; the proof gets verified

with respect to the verification information held by the verifiers. This transfer of S ∪ M will

satisfy all the properties of ICPoP, imagining PR as the new INT. Specifically if D is honest and

both INT and PR are honest, then the privacy will hold. Moreover if PR produces a proof of

possession of incorrect sets (this can be the case if either INT or PR is corrupt), then the proof

gets rejected. If D is corrupt and both INT and PR are honest then the proof given by PR will

be accepted.

16

2.2 Appendix: Properties of Polynomials

The following properties of bivariate polynomials are well known.

Lemma 2.5 ([13, 1, 38]) Let f1(x), . . . , f`(x), g1(y), . . . , g`(y) be degree t univariate polyno-

mials with t+ 1 ≤ ` ≤ n, such that fi(αj) = gj(αi) holds for every αi, αj ∈ {α1, . . . , α`}. Then

there exists a unique bivariate polynomial F (x, y) of degree t, such that fi(x) and gi(y) lie on

F (x, y), for i ∈ [`].

Lemma 2.6 ([13, 1, 38]) Let f1(x), . . . , f`(x) be univariate polynomials of degree at most t

where t+ 1 ≤ ` ≤ n. Let F (x, y) and G(x, y) be two bivariate polynomials of degree at most t,

such that fi(x) lies on both F (x, y) and G(x, y) for each i ∈ [`]. Then F (x, y) = G(x, y).

The following properties of univariate polynomials are standard.

Claim 2.2 Let G(1)(x), . . . G(L)(x) be degree d polynomials and let A(x) = eG(1)(x) + · · · +
eLG(L)(x), where e is a random value from F \ {0}. Let a tuple (γ, v1, v2, . . . vL) be such that

vi 6= G(i)(γ) for some i ∈ [L]. Then except with probability at most L−2
|F|−1

, the condition A(γ) 6=
ev1 + . . . eLvL holds.

Proof: Let vi 6= G(i)(γ) for some i ∈ [L]. Then consider the two polynomials D1(·) and D2(·)
of degree at most L−1 with coefficient vector (G(1)(α), G(2)(α), . . . , G(L)(α)) and (v1, v2, . . . , vL)

respectively. As the coefficient vectors are different, D1(·) and D2(·) are two different polyno-

mials and can have at most L − 2 common non-zero roots. As e is randomly selected from

F \ {0}, it implies that D1(e) = D2(e) will hold with probability at most L−2
|F|−1

, implying

A(γ) 6= ev1 + e2v2 + . . . eLvL. 2

Claim 2.3 Let h(0)(y), . . . h(L)(y) be L + 1 polynomials and r be a random value from F \ {0}

Let hcom(y)
def
= h(0)(y) + rh(1)(y) + . . . rLh(L)(y). If at least one of h(0)(y), . . . h(L)(y) has degree

more than t, then except with probability at most L
|F| , the polynomial hcom(y) will have degree

more than t.

Proof: Assume that at least one of the polynomials h(0)(y), . . . h(L)(y) has degree more than

t. Without loss of generality, let h(1)(y) has the maximal degree among h(0)(y), . . . h(L)(y),

with degree tmax, where tmax > t (in our context tmax will be finite). Then we express every

h(i)(y) as h(i)(y) = ciy
tmax + ĥ(i)(y), where ĥ(i)(y) has degree lower than tmax. Then hcom(y) =

17

r0h(0)(y) + · · ·+ rLh(L)(y) can be written as:

hcom(y) = r0[c0y
tmax + ĥ(0)(y)] + · · ·+ rL[cLy

tmax + ĥ(L)(y)]

= ytmax(r0c0 + · · ·+ rLcL) + ΣL
j=0r

jĥ(j)(y)

= ytmaxccom + ΣL
j=0r

jĥ(j)(y)

(2.1)

where ccom = r0c0 + . . . rLcL. By our assumption c1 6= 0, as h(1)(y) has degree tmax. This

implies that the vector (c0, . . . cL) is not a complete 0 vector. Hence ccom = r0c0 + . . . rLcL will

be zero withe probability at most L
|F| . This is because (c0, . . . cL) can be considered as the set

of coefficients of a polynomial, say f(x) of degree atmost L and hence the value of ccom is the

value of f(x) at x = r. Now ccom will be zero if r happens to be one of the possible L roots of

f(x) (since f(x) is of degree atmost L). So if r is a non-zero element, selected uniformly and

at random from F, then except with probability L
|F| , ccom 6= 0 will hold and so hcom(y) will have

degree higher than t. 2

18

Chapter 3

Statistical Verifiable Secret Sharing

In the previous section, we saw an ICPoP protocol in which the INT publicly gives a proof of

possession of the data originated from D instead of publicly revealing the data. Let us briefly

discuss how the properties of ‘succinctness of proof’ and ‘transferability’ of ICPoP is related

to the design of VSS. Recall that the proof was required to be “succinct” meaning that its size

should be independent of the size of the data. Looking ahead, the succinct proof helps to get

a VSS with broadcast complexity that is independent of the number of shared secrets. The

transferability ensures that if D authenticates some data for an INT and if INT transfers this

data to some other designated party PR, then even PR can publicly give a proof of possession

of the data originated from D on the “behalf” of INT. We next give a high level overview of

our VSS.

3.1 Overview of the Protocol

To share a secret s, we embed s in the constant term of a random bivariate polynomial F (x, y)

of degree t in x and y. Every party Pi then obtains a row polynomial fi(x) = F (x, αi). The

parties then publicly verify whether the row polynomials of at least n− t parties called VCORE

define a unique bivariate polynomial without compromising the privacy of their row polyno-

mials. The standard way to do this is to perform the “pair-wise checking”, where every pair

of parties (Pi, Pj) is asked to verify the consistency of the common values on their respec-

tive polynomials and publicly complain if there is any inconsistency, in which case D publicly

resolves the complaint by making the common value public [29, 26, 34]. This approach will

lead to a broadcast complexity of O(n2) per secret-shared value; instead we use a statistical

protocol called Poly-Check (section 3.2.1), adapted from [38], which performs the same task in

parallel for ` secrets (and hence ` bivariate polynomials), but keeping the broadcast complexity

19

independent of `.

Once VCORE is found, it is ensured that D has committed a unique F (x, y) and the secret

F (0, 0) to the parties in VCORE. To enable the parties to obtain their shares, the goal will

be to enable each party Pj to compute its column polynomial gj(y) = F (αj, y). For this each

party Pi ∈ VCORE transfers its common value on gj(y) (namely fi(αj)) to Pj. To ensure that

correct values are transferred, Pj publicly gives a proof of possession of all the transferred values

originated from D via the intermediary parties in VCORE. This is done in parallel for ` secrets

(and hence ` bivariate polynomials); the succinctness of the proof ensures that this step has

broadcast complexity, independent of `. The details will be presented in the following sections.

We note that our VSS for sharing multiple secrets is completely different from the notion of

packed secret sharing [27], where multiple secrets are shared simultaneously by embedding them

in a single polynomial. The latter works under the assumption that instead of corrupting at

most t parties, the adversary will corrupt t − k parties, for some parameter k. As a result, k

secrets can be shared through a single polynomial. In our VSS, each secret is shared through

an independent polynomial and the protocol will be resilient to t corruptions.

3.2 Statistical VSS with Quadratic Overhead

We present a 4-round VSS protocol Sh to t-share `×(n−t) = Θ(n`) values with communication

complexity PC(O(n3`)) and BC(O(n3)). So for sufficiently large `, the broadcast complexity

will be independent of `. For simplicity, we will present a 5-round statistical VSS protocol

Sh-Single for sharing a single secret. We will then explain how to reduce the number of rounds

of Sh-Single from five to four. Finally we extend this four round Sh-Single to get Sh. We

first discuss a protocol Poly-Check adapted from [38], used in our VSS. This approach will

lead to a broadcast complexity of O(n2) per secret-shared value; instead we use a statistical

protocol called Poly-Check (Appendix 3.3.1), adapted from [38], which performs the same task in

parallel for ` secrets (and hence ` bivariate polynomials), but keeping the broadcast complexity

independent of `.

Once VCORE is found, it is ensured that D has committed a unique F (x, y) and the secret

F (0, 0) to the parties in VCORE. To enable the parties to obtain their shares, the goal will

be to enable each party Pj to compute its column polynomial gj(y) = F (αj, y). For this each

party Pi ∈ VCORE transfers its common value on gj(y) (namely fi(αj)) to Pj. To ensure that

correct values are transferred, Pj publicly gives a proof of possession of all the transferred values

originated from D via the intermediary parties in VCORE. This is done in parallel for ` secrets

(and hence ` bivariate polynomials); the succinctness of the proof ensures that this step has

broadcast complexity, independent of `. We note that our VSS for sharing multiple secrets is

20

completely different from the notion of packed secret sharing [27], where multiple secrets are

shared simultaneously by embedding them in a single polynomial. The latter works under the

assumption that instead of corrupting at most t parties, the adversary will corrupt t−k parties,

for some parameter k. As a result, k secrets can be shared through a single polynomial. In our

VSS, each secret is shared through an independent polynomial and the protocol will be resilient

to t corruptions.

We present a 4-round VSS protocol Sh to t-share ` × (n − t) = Θ(n`) values with com-

munication complexity PC(O(n3`)) and BC(O(n3)). So for sufficiently large `, the broadcast

complexity will be independent of `. For simplicity, we will present a 5-round statistical VSS

protocol Sh-Single for sharing a single secret. We will then explain how to reduce the number

of rounds of Sh-Single from five to four. Finally we extend this four round Sh-Single to get Sh.

We first discuss a protocol Poly-Check adapted from [38], used in our VSS.

3.2.1 Verifiably Distributing Values on Bivariate Polynomials of De-

gree at most t
In our VSS protocol we will come across the following situation: D will select L bivariate poly-

nomials F (1)(x, y), . . . , F (L)(x, y), each of degree at most t and send the ith row polynomials

f
(1)
i (x), . . . , f

(L)
i (x) of F (1)(x, y), . . . , F (L)(x, y) respectively to each Pi; we stress that the cor-

responding column polynomials are retained by D. The parties now want to publicly verify if

there is a set of at least t+ 1 honest parties, who received row polynomials, lying on L unique

bivariate polynomials of degree at most t without revealing any additional information about

the polynomials. For this we use a two round protocol Poly-Check, which is adapted from an

asynchronous protocol for the same purpose, presented in [38]. In the protocol, there will be

a designated verifier V, who challenges D to broadcast a random linear combination of the n

column polynomials of all the bivariate polynomials selected by D. Specifically V will provide a

challenge combiner, say r and in response D will make public a linear combination of its column

polynomials with respect to r; to maintain the privacy of the column polynomials, this linear

combination is blinded by a random degree t blinding polynomial B(y), selected by D, with

each party Pi having a value on this polynomial. Corresponding to the linear combination of

the column polynomials produced by D, each party Pi will make public a linear combination

of n values of all its row polynomials, with respect to the combiner r, which is blinded by the

value of B(y) possessed by it. The idea here is the following: if indeed there exists a set of t+ 1

honest parties that we are looking for, then the values of the row polynomials possessed by

these parties will define degree t column polynomials. And these column and row polynomials

will be ”pair-wise consistent”. Based on this idea we check if the blinded linear combination

21

of the column polynomials produced by D is of degree t. Moreover it is also checked if there

exists a witness set W(V) of at least 2t+ 1 parties, such that their blinded linear combination of

row polynomial values satisfies the linear combination produced by D. If any one of the above

conditions is not satisfied the parties output ⊥, otherwise the parties output W(V). It is ensured

that if V is honest, then except with probability nL
|F| , the honest parties in W(V) constitute the

desired set of row polynomial holders (see [38]).

We call this protocol as Poly-Check(D,V,P, L, {F (1)(x, y), . . . , F (L)(x, y), B(y)}, {f (1)

i (x), . . . ,

f
(L)

i (x), bi}i∈[n]), whose formal details are available in Fig. 3.2 of Appendix 3.3.1. Here

{F (1)(x, y), . . . , F (L)(x, y), B(y)} are the inputs of D, while {f (1)

i (x), . . . , f
(L)

i (x), bi} denote

inputs for party Pi, namely the received row polynomials and the value of blinding polynomial.

The properties of Poly-Check are stated in Lemma 3.7 of Appendix 3.3.1.

3.2.2 Five Round Statistical VSS for a Single Secret

To t-share s, D selects a random secret-carrying bivariate polynomial F (x, y) of degree at most

t such that s = F (0, 0). The ith row polynomial fi(x) of F (x, y) is given to each party Pi.

We stress that only the row polynomials are distributed by D. The parties then verify the

consistency of the distributed polynomials by publicly verifying the existence of a set VCORE

of at least 2t + 1 parties, such that the row polynomials of the honest parties in VCORE lie

on a unique bivariate polynomial, say F (x, y), of degree at most t. For this, n instances of

Poly-Check are executed (one on the behalf of each party playing the role of the designated

verifier V) and it is verified if there is common subset of at least 2t+1 parties, present across all

the generated witness sets. As there will be at least one instance of Poly-Check executed on the

behalf of an honest verifier, clearly the common subset of 2t+ 1 parties satisfies the properties

of VCORE. To maintain the privacy of the row polynomials during the Poly-Check instances, n

independent blinding polynomials are used by D, one for each instance. If a VCORE is found,

then we say that D has “committed” the secret s = F (0, 0) to the parties in VCORE via their

row polynomials and the next goal will be to ensure that each party Pj obtains its column

polynomial gj(y) of F (x, y); party Pj can then output its share sj = gj(0) of s and hence s will

be t-shared via F (x, 0). Notice that if D is honest then F (x, y) = F (x, y) will hold (and hence

s = s), as VCORE will include all the honest parties.

To enable Pj obtain gj(y), each Pi ∈ VCORE can send the common point f i(αj) on gj(y) to

Pj, where f i(αj) denotes the jth value on the ith row polynomial received by Pi (if D is honest

then f i(αj) = fi(αj) holds). The honest parties in VCORE will always send the correct values;

however the corrupted parties may send incorrect values. Due to insufficient redundancy in

the received f i(αj) values, party Pj cannot error-correct them (for this we require |VCORE| to

22

be of size at least 3t + 1). The way out is that Pj gives a proof of possession of the f i(αj)

values received from the parties Pi in VCORE. Namely the values on the row polynomials are

initially distributed by D by executing instances of Distr. There will be n2 such instances and

instance Distrij is executed to distribute fi(αj) to Pi, considering Pi as an INT; the corresponding

instances AuthValij are also executed and it is ensured that the AuthVal instances, involving any

party from VCORE as an INT, is not aborted by D. Now when a party Pi in VCORE sends f i(αj)

to Pj, party Pj acts as an INT and publicly gives a proof of possession of f i(αj) by executing

an instance RevealPoPji of RevealPoP. The idea here is to use the transferability property of

ICPoP to prevent corrupted parties in VCORE from transferring incorrect values. Namely if

D is honest and an incorrect f i(αj) is transferred to Pj, then the corresponding proof will get

rejected during RevealPoPji and Pj will discard such values.

Unfortunately, if D is corrupted then the above mechanism alone is not sufficient for Pj to

robustly reconstruct gj(y). Because a corrupted Pi in VCORE can then transfer an incorrect

f i(αj) to Pj and still the proof will get accepted; this is because if both D and INT are corrupted,

then INT will know the full auxiliary and verification information involved in ICPoP. As a

result, Pj will end up not reconstructing a degree t column polynomial from the received

f i(αj) values. To deal with this particular case, we ensure that the M sets used by D in the

ICPoP instances have similar “structure” as the corresponding S sets. Specifically, D selects

two random masking bivariate polynomials M (1)(x, y) and M (2)(x, y) each of degree at most

t. Let m
(1)
i (x),m

(2)
i (x) denote the corresponding row polynomials. The instances Distrij are

executed by setting Sij = {fi(αj)} and Mij = {m(1)
i (αj),m

(2)
i (αj)} (thus ` = 1 and pck = 1

in these instances). The corresponding AuthValij instances are executed with Sij = {f i(αj)}
and Mij = {m(1)

i (αj),m
(2)
i (αj)}, which denotes the S and M sets respectively received by Pi

during Distrij (if D is honest then these will be the same as Sij and Mij). The existence of

VCORE will now imply that D has committed a secret-carrying polynomial, say F (x, y) and

two masking bivariate polynomials, say M
(1)

(x, y),M
(2)

(x, y) to the parties in VCORE, where all

these polynomials have degree at most t. It follows that any linear combination of the column

polynomials F (αj, y),M
(1)

(αj, y) and M
(2)

(αj, y) will be a degree t univariate polynomial. And

this property is used by Pj to identify the correctly transferred Sij∪Mij sets. Namely the values

in the transferred Sij ∪ Mij sets should lie on degree t univariate polynomials and hence any

random linear combination of these sets should also lie on a degree t polynomial. Based on this

observation, party Pj selects a common random combiner, say ej, for all the transferred Sij∪Mij

sets and publicly reveals a linear combination of these Sij∪Mij sets via the RevealPoPji instances.

It is then publicly verified if these linearly combined values lie on a degree t polynomial. If

not then it implies that D is corrupted and it is discarded; see Fig. 3.1 for the formal details.

23

For the ease of understanding, a pictorial representation of the information distributed during

Sh-Single is given in Fig. 3.3 of Appendix 3.3.2.

The following theorem states the properties of Sh-Single.

Theorem 3.1 Sh-Single is a five round VSS protocol for a single secret, satisfying the re-

quirements of VSS except with probability n3t
|F|−1

. The protocol has communication complexity

PC(O(n3)) and BC(O(n3)).

We first present some claims useful in proving the above theorem.

Claim 3.2 If D is honest then except with probability at most n3t
|F|−1

, it will not be discarded

during Sh-Single.

Proof: If D is honest then no honest Pi will broadcast (Abort, ?) message as the received row

polynomials will be of degree at most t. More specifically, fi(x) = f i(x) = F (x, αi),m
(1)
i (x) =

m
(1)
i (x) = M (1)(x, αi) and m

(2)
i (x) = m

(2)
i (x) = M (2)(x, αi) will hold for Pi. So there can be

at most t (Abort, ?) messages corresponding to t potentially corrupted parties. Since D will

distribute consistent row polynomials to all the parties, it follows from Lemma 3.7 and protocol

steps of Poly-Check that all honest parties will be present in W(P1), . . . ,W(Pn) and so clearly

|VCORE| ≥ 2t + 1 will hold. Now consider a pair of parties Pi, Pj, with at least one of them

being corrupted, such that in the RevealPoPji instance the revealed proof does not correspond

to Sij ∪Mij
1. It follows via Lemma 2.3 (by substituting pck = 1 and d = t+ pck− 1 = t) that

except with probability at most nt
|F|−1

, the proof will be rejected. As there can be at most n2 such

pairs of (Pi, Pj), from the union bound it follows that except with probability at most n3t
|F|−1

, the

values which are finally considered for reconstructing the column polynomials for the parties

will be correct and will lie on polynomials of degree at most t. So except with probability at

most n3t
|F|−1

, the conditions which will lead to an honest D being discarded never occur. 2

Lemma 3.1 (Correctness for an honest D) If D is honest then except with probability at

most n3t
|F|−1

, the value s will be t-shared at the end of Sh-Single.

Proof: If D is honest then from Claim 3.2 it follows that except with probability at most
n3t
|F|−1

, any incorrect linear combination of values revealed in any of the RevealPoP instances

will be rejected. More specifically, if Pj is honest and Pi ∈ supj, then the linear combination

combji revealed by Pj in the instance RevealPoPji will be correct and correspond to the values

in Sij ∪Mij. This further implies that Pi transferred the correct Sij ∪Mij to Pj. Thus the values

1This may happen if a corrupted Pi transfers incorrect values to an honest Pj or if a corrupted Pj purposely
tries to reveal a proof corresponding to an incorrect set of values.

24

Figure 3.1: VSS for sharing a single secret.

Sh-Single(D,P, s)
Round 1: Dealer D does the following:

• Select a random secret-carrying bivariate polynomial F (x, y) of degree at most t with F (0, 0) = s. Select two random
masking bivariate polynomials M(1)(x, y) and M(2)(x, y), each of degree at most t. In addition select n random blinding
univariate polynomials B(P1)(y), . . . , B(Pn)(y), each of degree at most t, where B(Pi) is associated with party Pi ∈ P.

Corresponding to each Pi ∈ P, compute row polynomials fi(x)
def
= F (x, αi),m

(1)
i (x)

def
= M(1)(x, αi),m

(2)
i (x)

def
= M(2)(x, αi)

and share-vector (b
(P1)
i , . . . , b

(Pn)
i) of blinding polynomials, where b

(Pj)

i
def
= B(Pj)(αi) for j ∈ [n]. Let Sij

def
= {fi(αj)} and

Mij
def
= {m(1)

i (αj),m
(2)
i (αj)} for i, j ∈ [n].

• To each Pi ∈ P, send (b
(P1)
i , . . . , b

(Pn)
i). In addition, for j ∈ [n], execute an instance Distr(D, Pi,P, 1, 1, Sij ∪Mij) of Distr

to give Sij ∪Mij to Pi, considering Pi as an INT. Let Distrij denote the corresponding instance of Distr.

Round 2: Each Pi ∈ P (including D) does the following: let Sij = {f ij} and Mij = {m(1)
ij ,m

(2)
ij } be the secret and masking set

respectively received from D in Distrij . In addition, let (b
(P1)
i , . . . , b

(Pn)
i) denote the vector received afrom D. Let f i(x),m

(1)
i (x)

and m
(2)
i (x) be the polynomials defined by the points {(αj , f ij)}j∈[n], {(αj ,m

(1)
ij)}j∈[n] and {(αj ,m

(2)
ij)}j∈[n] respectively. If these

polynomials are not of degree t then Pi broadcasts (Abort, Pi), else it does the following:

• Transfer Sij ∪Mij to Pj by sending all the information received from D in the instance Distrij .

• As an INT, execute the steps of Round 1 of an instance AuthVal(D, Pi,P, 1, 1, Sij ∪Mij) of AuthVal, corresponding to the
instance Distrij , for j ∈ [n]. Let this instance of AuthVal be denoted as AuthValij .

• As a verifier V, execute the steps of Round 1 of an instance Poly-Check(D, Pi,P, 3, {M(1)(x, y),M(2)(x, y), F (x, y),

B(Pi)(y)}, {m(1)
j (x),m

(2)
j (x), fj(x), b

(Pi)
j }j∈[n]) of Poly-Check; denote this instance as Poly-Check(Pi).

Round 3: Each Pi ∈ P (including D) does the following: If (Abort, ?) message is received from the broadcast of more than t parties
then discard D and abort Sh-Single. Else Pi does the following:

• Corresponding to each j, k ∈ [n], participate as a verifier during Round 2 of AuthVal, in the instances AuthValjk

• Execute the steps of Round 2 of Poly-Check, corresponding to the instances Poly-Check(P1), . . . ,Poly-Check(Pn).

[Additional steps, If Pi = D] — In addition to the above steps, Pi executes the following steps if Pi is D: (a) As a D, execute
the steps of Round 2 of AuthVal, corresponding to the instances AuthValjk for each j, k ∈ [n]. (b) As a D, execute the steps of

Round 2 of Poly-Check, corresponding to Poly-Check(P1), . . . ,Poly-Check(Pn).

Computation of VCORE — Every party Pi ∈ P (including D) executes the following steps: (a) If in any of the instances

Poly-Check(P1), . . . ,Poly-Check(Pn) the output is ⊥, then discard D and abort Sh-Single. (b) Let W(P1), . . . ,W(Pn) denote the

witness sets obtained in Poly-Check(P1), . . . ,Poly-Check(Pn) respectively. If |W(P1) ∩W(P2) ∩ . . . ∩W(Pn)| < 2t + 1, then discard

D and abort Sh-Single. Else set VCORE
def
= W(P1) ∩ W(P2) ∩ . . . ∩ W(Pn). (c)If there exists any Pj ∈ VCORE, such that D

broadcasted Abort message in some instance AuthValjk involving Pj as an INT, where k ∈ [n], then remove Pj from VCORE. If
finally |VCORE| < 2t+ 1 then discard D and abort Sh-Single.

Round 4: Each party Pj ∈ P does the following: Corresponding to each Pi ∈ VCORE, act as an INT and execute the steps of

Round 1 of an instance RevealPoP(D, Pj ,P, 1, 1, Sij ∪ Mij) of RevealPoP, to reveal a random linear combination of the values in

Sij ∪Mij , which were transferred from Pi to Pj during Round 2 of Sh-Single. In all these instances of RevealPoP, party Pj uses
the same random combiner, say ej . Let these instances of RevealPoP be denoted by RevealPoPji.

Round 5: Every party Pk ∈ P (including D) acts as a verifier and executes the steps of Round 2 of RevealPoP, corresponding to
the instances RevealPoPji, where j ∈ [n] and Pi ∈ VCORE.

Consistency checking of the values transferred by the parties in VCORE: Each Pk ∈ P verifies the following for each
Pj ∈ P:

• Let supj denote the set of all Pi ∈ VCORE, such that in the corresponding RevealPoPji instances, the output is AcceptProof,
along with a linear combination of values, say combji.

• Discard D and abort Sh-Single if {(αi, combji)}Pi∈supj
lie on a polynomial of degree more than t.

Share determination — Each Pj ∈ P interpolates a polynomial gj(y) through {(αi, f ij)}Pi∈supj
, where Sij = {f ij} denotes the

secret set transferred to Pj from Pi during Round 2 of Sh-Single. Party Pj outputs sj = gj(0) as its share and terminates.

25

used by an honest Pj to determine its column polynomial are correct (lying on gj(y) = F (αj, y)).

So gj(y) = gj(y) holds for each honest Pj, implying that s will be t-shared via the polynomial

f0(x)
def
= F (x, 0), with Pj holding the share f0(j) = gj(0). 2

Claim 3.3 Let f i(x),m
(1)
i (x) and m

(2)
i (x) be the row polynomials defined by the values in Sij ∪

Mij received by party Pi ∈ P from D for j ∈ [n]. If D is corrupted and a VCORE is formed

during Sh-Single then except with probability at most 3n2

|F| , there exist bivariate polynomials, say

F (x, y),M
(1)

(x, y) and M
(2)

(x, y), each of degree at most t, such that for each honest Pi ∈
VCORE, the polynomials f i(x),m

(1)
i (x) and m

(2)
i (x) lie on F (x, y),M

(1)
(x, y) and M

(2)
(x, y)

respectively.

Proof: From the definition, VCORE = W(P1)∩W(P2)∩ . . .∩W(Pn) and |VCORE| ≥ 2t+1. This

ensures that there are at least t+ 1 common honest parties in VCORE, say HVCORE. Consider

an honest party Pj ∈ P, playing the role of the verifier V in the instance Poly-Check(Pj). It

follows from Lemma 3.7 (by substituting L = 3) that for the instance Poly-Check(Pj), except

with probability at most 3n
|F| , the row polynomials f i(x),m

(1)
i (x) and m

(2)
i (x) of the parties

Pi ∈ HVCORE together lie on three unique bivariate polynomials, say F (x, y),M
(1)

(x, y) and

M
(2)

(x, y) respectively of degree at most t. The same will be true with respect to every other

instance Poly-Check(Pk), corresponding to every other honest verifier Pk 6= Pj. Moreover, the

set of three bivariate polynomials defined via each of these instances of Poly-Check will be the

same, namely F (x, y),M
(1)

(x, y) and M
(2)

(x, y) respectively. This follows from Lemma 2.6 (by

substituting ` = |HVCORE|) and the fact that |HVCORE| ≥ t+ 1. The lemma now follows from

the union bound and the fact that there are Θ(n) honest parties, playing the role of V. 2

Lemma 3.2 (Correctness for a corrupted D) If D is corrupted and not discarded during

Sh-Single, then there exists some value, say s, such that except with probability at most n3

|F|−1
,

the value s will be t-shared at the end of Sh-Single.

Proof: If a corrupted D is not discarded then it implies that a set VCORE with |VCORE| ≥
2t + 1 is constructed during Sh-Single. Let HVCORE be the set of honest parties in VCORE;

clearly |HVCORE| ≥ t+ 1. From Claim 3.3 it follows that except with probability at most 3n2

|F| ,

the row polynomials f i(x),m
(1)
i (x) and m

(2)
i (x) of the parties in HVCORE lie on unique bivariate

polynomials, say F (x, y),M
(1)

(x, y) and M
(2)

(x, y) of degree at most t. We define s
def
= F (0, 0)

and claim that s will be t-shared via the polynomial f 0(x)
def
= F (x, 0), with each honest Pj

holding the share sj
def
= F (αj, 0). To prove our claim, we will show that each honest party Pj

outputs its degree t univariate polynomial gj(y)
def
= F (αj, y) except with probability at most

26

n2

|F|−1
; this ensures that Pj obtains the correct share, as sj = gj(0). For this, we further need to

show that the Sij set transferred by each party Pi ∈ supj to Pj contains the value gj(αi).

Consider an honest Pj. Notice that supj ⊆ VCORE. We first argue that all Pi ∈ HVCORE

will be present in supj, except with probability at most n2

|F|−1
. This is because there are Θ(n)

such parties Pi and in each corresponding RevealPoPji instance, the output will be AcceptProof,

which follows from Lemma 2.2 (by substituting ` = 1). Now consider the set of values Sij =

{f ij} and Mij = {m(1)
ij ,m

(2)
ij } transferred by the parties Pi ∈ HVCORE to Pj. Since f ij =

f i(αj) = gj(αi) holds, it follows that the values {f ij}Pi∈HVCORE define the degree t univariate

polynomial gj(y). Similarly the values {m(1)
ij }Pi∈HVCORE and {m(2)

ij }Pi∈HVCORE define degree t

univariate polynomials M
(1)

(y, αj) and M
(2)

(y, αj) respectively. To complete the proof, we

argue that except with probability at most 2
|F| , the values in the Sij and Mij set transferred by a

corrupted party Pi ∈ supj lie on gj(y),M
(1)

(y, αj) and M
(2)

(y, αj) respectively. This is because

the combiner ej selected by the honest Pj in the RevealPoPji instances corresponding to the

parties in supj is truly random and unknown to the adversary in advance, when the Sij and Mij

sets were transferred to Pj. The rest follows from Claim 2.3 (by substituting L = 2) and the

fact that the values {combji}Pi∈supj lie on a polynomial of degree at most t (otherwise D would

have been discarded), say combj(y), where combj(y)
def
= ejM

(1)
(y, αj)+e2

jM
(2)

(y, αj)+e3
jgj(y).

As there can be n2 pair of parties involving a corrupted party, it follows by the union bound

that except with probability at most 2n2

|F| , the corrupted parties in VCORE transfer the correct

values to the honest parties.

As each honest Pj correctly obtains its column polynomial except with probability at most
n2

|F|−1
and as there are Θ(n) such honest parties, it follows that except with probability at most

n3

|F|−1
, the value s will be t-shared. 2

Lemma 3.3 (Privacy) In protocol Sh-Single, the value s remains information-theoretically

secure.

Proof: For the privacy property, we have to consider an honest D. Without loss of generality,

let P1, . . . , Pt be under the control of Adv. We argue that throughout the protocol Sh-Single, the

adversary learns nothing about F (x, y), beyond the row polynomials f1(x), . . . , ft(x) and the

column polynomials g1(y), . . . , gt(y). Through these polynomials, the adversary will learn t2+2t

distinct values of F (x, y). As the degree of F (x, y) is t, the adversary will lack one additional

value on F (x, y) to uniquely interpolate F (x, y), implying information-theoretic security for s.

Through the instances Distrij where i ∈ [t] and j ∈ [n], the adversary Adv learns the row

polynomials f1(x), . . . , ft(x),m
(1)
1 (x), . . . ,m

(1)
t (x),m

(2)
1 (x), . . . ,m

(2)
t (x) on the bivariate polyno-

mials F (x, y),M (1)(x, y) andM (2)(x, y) respectively. From Lemma 3.7, during Poly-Check(P1), . . . ,

27

Poly-Check(Pn), no additional information about F (x, y),M (1)(x, y) and M (2)(x, y) is revealed to

the adversary, because in each instance Poly-Check(Pi), a random blinding univariate polynomial

B(Pi)(y) is used. Now consider a pair of honest parties Pi, Pj ∈ P. In the protocol, party Pi

executes an instance AuthValij involving Sij = {fi(αj)} and Mij = {m(1)
i (αj),m

(2)
i (αj)}. More-

over, the set Sij ∪Mij is privately transferred to Pj by Pi and later on during Round 4 and 5, an

instance RevealPoPji is instantiated again involving Sij ∪Mij. We claim that during AuthValij

and RevealPoPji, the privacy of Sij is preserved. This follows from the privacy property of ICPoP

(Lemma 2.4) and the fact that the corresponding masking set Mij used in these instances are

private. Thus for every pair of honest parties Pi, Pj, no additional information about the fi(αj)

values (which are the same as the gj(αi) values) are revealed during the instances AuthValij and

RevealPoPji. The adversary will be able to compute the column polynomials g1(y), . . . , gt(y)

through the common values on these column polynomials which are transferred to P1, . . . , Pt

by the honest parties. Hence throughout the protocol, the adversary learns t row and column

polynomials, proving the privacy. 2

Proof of Theorem 3.1 :

The properties of VSS follows from Lemma 3.1-3.3. In the protocol n2 instances of ICPoP

(with ` = 1, pck = 1) and n instances of Poly-Check (each with L = 3) are executed. The rest

follows from the communication complexity of ICPoP (Thorem 2.1) and Poly-Check (Lemma

3.7).

From Five Rounds to Four Rounds: In Sh-Single, the instances of RevealPoP which start

getting executed during Round 4 can be instead instantiated during Round 3 itself. Namely

irrespective of the formation of VCORE, each party Pj starts executing the instance RevealPoPji

corresponding to each party Pi ∈ P, based on the set of values in Sij∪Mij which were transferred

to Pj by Pi during Round 2. Next VCORE is computed and if Pi is found not to be present

in VCORE, then the instance RevealPoPji can be halted; otherwise the remaining steps of the

RevealPoPji instance will be executed during Round 4. Based on this modification, Sh-Single

now requires four rounds, while rest of the properties remain the same.

3.2.3 VSS for multiple secrets

We now discuss the modifications to be made to Sh-Single to get a four round VSS protocol

Sh, which allows D to t-share ` × (n − t) = Θ(n`) secrets with communication complexity

PC(O(n3`)) and BC(O(n3)). For simplicity, we first discuss how to t-share n − t = Θ(n)

28

secrets with communication complexity PC(O(n3)) and BC(O(n3)). The modifications to share

`× (n− t) secrets follow in a straight forward fashion.

Sharing n−t Secrets: The idea behind efficiently sharing n−t secrets is to invoke the under-

lying instances of Distr,AuthVal and RevealPoP in Sh-Single with the maximum possible value

of pck, which is n− t (for the moment we will restrict to ` = 1). The rest of the protocol steps

remain the same, with a slight modification in the steps for consistency checking of the values

transferred by the parties in VCORE. More specifically, let ~S = (s(1), . . . , s(n−t)) be the set of

values, which need to be t-shared. To do so D selects n−t random degree t secret-carrying bivari-

ate polynomials F (1)(x, y), . . . , F (n−t)(x, y), embedding the secrets s(1), . . . , s(n−t) respectively

in their constant terms. In addition, D picks 2(n − t) random masking bivariate polynomi-

als M (1,1)(x, y), . . . ,M (1,n−t)(x, y),M (2,1)(x, y), . . . ,M (2,n−t)(x, y) polynomials. The reason for

picking so many masking polynomials will be clear in the sequel. Let f
(1)
i (x), . . . , f

(n−t)
i (x) and

g(1)(y), . . . , g(n−t)(y) denote the ith row and column polynomials of F (1)(x, y), . . . , F (n−t)(x, y)

respectively. Similarly, letm
(1,1)
i (x), . . . ,m

(1,n−t)
i (x),m

(2,1)
i (x), . . . ,m

(2,n−t)
i (x) denote the ith row

polynomials of the masking bivariate polynomials. Corresponding to each party Pi, the dealer

D sets Sij = {f (1)
i (αj), . . . , f

(n−t)
i (αj)} and Mij = {(m(1,1)

i (αj), . . . ,m
(1,n−t)
i (αj)), (m

(2,1)
i (αj),

. . . ,m
(2,n−t)
i (αj))}. An instance Distrij is executed, considering Pi as an INT to give Sij ∪Mij to

Pi, for j = 1, . . . , n. The instances of Distr are executed by setting ` = 1 and pck = n−t (hence d

will be n−1 in these instances). Let f
(1)

i (x), . . . , f
(n−t)
i (x),m

(1,1)
i (x), . . . ,m

(1,n−t)
i (x),m

(2,1)
i (x), . . . ,

m
(2,n−t)
i (x) denote the row polynomials received by Pi via the instances Distrij. The parties check

for the existence of VCORE as in Sh-Single by executing n instances of Poly-Check, where Pi

plays the role of the designated verifier in the ith instance. For each instance, one independent

blinding polynomial will be used, which will be shared by D during the first round. If a VCORE

is obtained, then it implies that the row polynomials of the honest parties Pi in VCORE lie on

n− t secret-carrying bivariate polynomials of degree t, say F
(1)

(x, y), . . . , F
(n−t)

(x, y) and 2(n−
t) masking bivariate polynomials, say M

(1,1)
(x, y), . . . ,M

(1,n−t)
(x, y),M

(2,1)
(x, y), . . . ,M

(2,n−t)

(x, y) respectively We define (F
(1)

(0, 0), . . . , F
(n−t)

(0, 0)) to be the n− t secrets “committed” by

D (if D is honest then these will be the same as ~S) and proceed to complete t-sharing of these val-

ues by ensuring that each Pj gets its degree t column polynomials F
(1)

(αj, y), . . . , F
(n−t)

(αj, y)

and outputs their constant terms as its shares. This is done as follows.

Let Sij = {f (1)

i (αj), . . . , f
(n−t)
i (αj)} and Mij = {(m(1,1)

i (αj), . . . ,m
(1,n−t)
i (αj)), (m

(2,1)
i (αj), . . . ,

m
(2,n−t)
i (αj))} denote the sets received by Pi at the end of Distrij. By the properties of VCORE,

each honest Pi ∈ VCORE will be able to give a proof of possession of Sij ∪ Mij, as the corre-

sponding AuthValij instance would not be aborted by D. Hence if Pi transfers these sets to Pj,

29

then even Pj can give a proof of possession of these sets. So Each Pi (in VCORE) 1 sends the

set Sij ∪Mij to Pj, who then publicly verifies these values by executing an instance RevealPoPji

of RevealPoP and giving a proof of possession of these sets of values. Party Pj ensures that

the same randomness ej is used in all the RevealPoPji instances. Let supj denote the set of

parties Pi from VCORE, such that in the corresponding RevealPoPji instance the output is

AcceptProof, along with a set of n − t linearly combined values, say (comb
(1)
ji , . . . , comb

(n−t)
ji)

(recall that now the instances of RevealPoP are executed with pck = n− t and so n− t linearly

combined values will be produced in these instances). If D is honest then with high probability,

only the parties sending the correct Sij ∪ Mij sets will be present in supj. However if D is

corrupted then a corrupted Pi can send incorrect sets and still be present in supj. To check

this, it is publicly verified if the sets of values {(αi, comb
(1)
ji)}Pi∈supj , . . . , {(αi, comb

(n−t)
ji)}Pi∈supj

lie on n − t univariate polynomials of degree at most t. If so then it ensures that with high

probability, the parties in supj sent the correct sets to Pj. This is because the values in

Sij∪M ij corresponding to the honest parties in supj clearly define degree t column polynomials

F
(1)

(αj, y), . . . , F
(n−t)

(αj, y),M
(1,1)

(αj, y), . . . ,M
(1,n−t)

(αj, y),M
(2,1)

(αj, y), . . . ,M
(2,n−t)

(αj, y).

Since Pj uses the same combiner ej to produce the linear combination of the values in Sij ∪M ij

in all the RevealPoPji instances, it follows that the linear combinations comb
(1)
ji , . . . , comb

(n−t)
ji

of these Sij ∪M ij sets also lie on a degree t univariate polynomial; specifically the set of values

{(αi, comb
(k)
ji)} corresponding to the honest parties Pi in supj will define a degree t univariate

polynomial ejM
(1,k)

(αj, y)+e2
jM

(2,k)
(αj, y)+e3

jF
(k)

(αj, y) for k = 1, . . . , n−t. Now if a corrupted

Pi in supj sent an incorrect set to Pj, then with high probability, the corresponding comb
(k)
ji

values will not lie on the degree t univariate polynomial ejM
(1,k)

(αj, y) + e2
jM

(2,k)
(αj, y) +

e3
jF

(k)
(αj, y), in which case D will be discarded. For the ease of understanding, a pictorial

representation of the values distributed during Sh to share n− t secrets is shown in Fig. 3.4 of

Appendix 3.3.2.

Sharing ` × (n − t) Secrets Simultaneously: The principle behind sharing ` × (n − t)

secrets ~S = (s(1,1), . . . , s(1,n−t), . . . , s(`,1), . . . , s(`,n−t)) will be similar to that of sharing n − t

secrets as discussed above. The only difference will be that the Sij sets in the underlying

Distrij,AuthVal and RevealPoPji instances will be of size `×(n− t), instead of n− t; the Mij sets

will remain the same as above. More specifically, D will now select ` × (n − t) secret-carrying

random bivariate polynomials of degree t, say F (l,k)(x, y) for l ∈ [`] and k ∈ [n − t], each

embedding a secret from ~S in its constant term; the number of masking polynomials remain

2(n−t). Now the {(αi, comb
(k)
ji)} values corresponding to the honest parties Pi in supj will define

1Even though each Pi sends the corresponding Sij ∪Mij to Pj , party Pj will focus only on the Pis in VCORE

30

a linear combination of ` + 2 column polynomials M (1,k)(αj, y),M (2,k)(αj, y), F (1,k)(αj, y), . . . ,

F (`,k)(αj, y) for k ∈ [n − t]. The rest of the protocol steps remain the same as above. For the

ease of understanding, a pictorial representation of the values distributed and communicated

during Sh to share `× (n− t) secrets is shown in Fig. 3.5 of Appendix 3.3.2.

The properties of Sh are stated in Theorem 3.4.

Theorem 3.4 Sh is a four round VSS for ` × (n − t) values, with an error probability of

max{ n3(n−1)
|F|−(n−t) ,

n3`
|F|−1
}. The protocol has communication complexity PC(O(n3`)) and BC(O(n3)).

To avoid repetition, we do not present the complete formal steps of Sh and the detailed proof

of its properties. Instead we state the formal properties of Sh which follow in a straight forward

fashion from the corresponding properties of Sh-Single, taking into account that the underlying

instances of ICPoP that are executed deal with `× (n− t) values.

Claim 3.5 If D is honest then except with probability at most n3(n−1)
|F|−(n−t) , it will not be discarded

during Sh.

Proof: Similar to Claim 3.2, except that now each instance of ICPoP satisfies the ICPoP-

Correctness3 property except with probability at most nd
|F|−pck , where pck = n − t and d =

t+ pck− 1 = n− 1. This ensures that if a corrupted Pi ∈ VCORE transfers incorrect values to

an honest Pj, then it will be caught in the corresponding RevealPoPji instance. And there will

be n2 such instances, involving a corrupted Pi and an honest Pj. 2

Lemma 3.4 (Correctness for an honest D) If D is honest then except with probability at

most n3(n−1)
|F|−(n−t) , the `× (n− t) values (s(1,1), . . . , s(1,n−t), . . . , s(`,1), . . . , s(`,n−t)) will be t-shared at

the end of Sh.

Proof: Similar to Lemma 3.1, except that now we rely on Claim 3.5. 2

Claim 3.6 Let f
(1,1)

i (x), . . . , f
(1,n−t)
i (x), . . . , f

(`,1)

i (x), . . . , f
(`,n−t)
i (x),m

(1,1)
i (x), . . . ,m

(1,n−t)
i (x) and

m
(2,1)
i (x), . . . ,m

(2,n−t)
i (x) be the row polynomials defined by the values in Sij ∪ Mij received by

party Pi ∈ P from D for j ∈ [n]. If D is corrupted and a VCORE is formed during Sh then

except with probability at most n2(`+2)(n−t)
|F| , there exist (`+ 2)(n− t) bivariate polynomials, say

F
(1,1)

(x, y), . . . , F
(1,n−t)

(x, y), . . . , F
(`,1)

(x, y), . . . , F
(`,n−t)

(x, y),M
(1,1)

(x, y), . . . ,M
(1,n−t)

(x, y),

M
(2,1)

(x, y), . . . ,M
(2,n−t)

(x, y) , each of degree at most t, such that for each honest Pi ∈ VCORE,

the polynomial f
(l,k)

i (x) lie on F
(l,k)

(x, y) for l ∈ [`], k ∈ [n− t], the polynomial m
(1,k)
i (x) lie on

M
(1,k)

(x, y) for k ∈ [n− t] and the polynomial m
(2,k)
i (x) lie on M

(2,k)
(x, y) for k ∈ [n− t].

31

Proof: Similar to Claim 3.3, except that now we rely on Lemma 3.7 with L = (`+ 2)(n− t).
2

Lemma 3.5 (Correctness for a corrupted D) If D is corrupted and not discarded during

Sh-Single, then there exists `× (n− t) values, say (s(1,1), . . . , s(1,n−t), . . . , s(`,1), . . . , s(`,n−t)), such

that then except with probability at most n3`
|F|−1

, the values s(l,k) will be t-shared at the end of Sh

for l ∈ [`] and k ∈ [n− t].

Proof: Similar to Lemma 3.2, except that we now use Claim 3.6. Moreover, for every pair of

honest parties (Pi, Pj), where Pi ∈ VCORE, it will be ensured that except with probability at

most n`
|F|−1

, party Pi will be present in supj; this follows from Lemma 2.2. As there are Θ(n2)

such pairs, from the union bound it is ensured that except with probability at most n3`
|F|−1

, every

honest party from VCORE will be present in the supj set of every honest Pj Furthermore it

will be ensured that except with probability at most (`+1)
|F| , no corrupted party Pi ∈ VCORE

will be present in supj set of an honest Pj; this will follow from Claim 2.3 (by substituting

L = `+ 1). As there can be O(n2) pairs of parties, from the union bound it follows that except

with probability at most n2(`+1)
|F| , the values transferred by the corrupted parties in VCORE to

the honest parties will be correct. So overall the error probability will be at most n3`
|F|−1

. 2

Lemma 3.6 (Privacy) In protocol Sh, the values (s(1,1), . . . , s(1,n−t), . . . , s(`,1), . . . , s(`,n−t)) re-

main information-theoretically secure.

Proof of Theorem 3.4 :

The properties of VSS follows from Lemma 3.4-3.6. In the protocol n2 instances of ICPoP

(with pck = n− t) and n instances of Poly-Check (each with L = (`+ 2)(n− t)) are executed.

The rest follows from the communication complexity of ICPoP (Thorem 2.1) and Poly-Check

(Lemma 3.7).

3.3 Appendix

3.3.1 Protocol Poly-Check

Protocol Poly-Check for the consistency checking of bivariate polynomials is given in Fig. 3.2.

The figure shows how the consistency of row polynomials distributed by D is checked under the

supervision of a designated verifier V. The inputs for (an honest) D are L secret bivariate poly-

nomials F (1)(x, y), . . . , F (L)(x, y) of degree at most t and a secret blinding polynomial B(y) of

degree at most t. The inputs for (an honest) party Pi are L row polynomials f
(1)

i (x), . . . , f
(L)

i (x)

of degree at most t and a share bi of blinding polynomial. If D and Pi are honest then these

32

values are private and f
(k)

i (x) = F (k)(x, αi) and bi = B(αi) will hold for each k ∈ [L]. The

properties of Poly-Check are stated in Lemma 3.7; for the proof we refer to [38].

Lemma 3.7 (Properties of Protocol Poly-Check) In protocol Poly-Check, the following holds:

• If D is honest then every honest party outputs a W(V) set which includes all the hon-

est parties. Moreover the row polynomials of the honest parties in W(V) will lie on

F (1)(x, y), . . . , F (L)(x, y) Furthermore Adv gets no additional information about F (1)(x, y), . . . ,

F (L)(x, y) in the protocol.

• If D is corrupted and V is honest and if the parties output a W(V), then except with prob-

ability at most nL
|F| , there exists L bivariate polynomials, say F

(1)
(x, y), . . . , F

(L)
(x, y),

of degree at most t, such that row polynomials of the honest parties in W(V) lie on

F
(1)

(x, y), . . . , F
(L)

(x, y).

• The protocol requires two rounds and has communication complexity BC(O(n)).

Figure 3.2: Polycheck Protocol

Poly-Check(D,V,P, L, {F (1)(x, y), . . . , F (L)(x, y), B(y)}, {f (1)i (x), . . . , f
(L)

i (x), bi}i∈[n])

Round 1: Verifier V selects a random combiner r ∈ F \ {0} and broadcasts r.

Round 2: The parties on receiving r from the broadcast of V do the following:

• D broadcasts the polynomial E(y)
def
= B(y) + rg

(1)
1 (y) + r2g

(1)
2 (y) + . . . + rng

(1)
n (y) +

r(n+1)g
(2)
1 (y) + r(n+2)g

(2)
2 (y) + . . .+ r2ng

(2)
n (y) + . . .+ r(L−1)n+1g

(L)
1 (y) + r(L−1)n+2g

(L)
2 (y) +

. . .+ rLng
(L)
n (y). Here g

(k)
i (y) = F (k)(αi, y) for k ∈ [L] and i ∈ [n].

• Each party Pi ∈ P (including D) broadcasts the linear combination ei
def
= bi + rf

(1)

i (α1) +

r2f
(1)

i (α2) + . . . + rnf
(1)

i (αn) + r(n+1)f
(2)

i (α1) + r(n+2)f
(2)

i (α2) + . . . + r2nf
(2)

i (αn) + . . . +

r(L−1)n+1f
(L)

i (α1) + r(L−1)n+2f
(L)

i (α2) + . . .+ rLnf
(L)

i (αn)

Output determination: If E(y) has degree more than t then each party Pj ∈ P outputs ⊥ and
terminate. Else each party Pj ∈ P creates a witness set W(V), initialized to ∅ and then does the
following:

• Include party Pi to W(V) if the relation E(αi)
?
= ei is true.

• If |W(V)| ≥ 2t+ 1 then Pj outputs W(V), else Pj outputs ⊥.

3.3.2 Pictorial Representation of the Protocols

33

Figure 3.3: Pictorial representation of Sh-Single protocol

(a) M (1)(x, y) with ith row being possessed
by Pi

M(1)(α1, y) · · · M(1)(αj , y) · · · M(1)(αn, y)
⇓ ⇓ ⇓

m
(1)
1 (x)⇒ M(1)(α1, α1) · · · M(1)(αj , α1) · · · M(1)(αn, α1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m
(1)
i (x)⇒ M(1)(α1, αi) · · · M(1)(αj , αi) · · · M(1)(αn, αi)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m
(1)
n (x)⇒ M(1)(α1, αn) · · · M(1)(αj , αn) · · · M(1)(αn, αn)

(b) M (2)(x, y) with ith row being possessed
by Pi

M(2)(α1, y) · · · M(2)(αj , y) · · · M(2)(αn, y)
⇓ ⇓ ⇓

m
(2)
1 (x)⇒ M(2)(α1, α1) · · · M(2)(αj , α1) · · · M(2)(αn, α1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m
(2)
i (x)⇒ M(2)(α1, αi) · · · M(2)(αj , αi) · · · M(2)(αn, αi)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m
(2)
n (x)⇒ M(2)(α1, αn) · · · M(2)(αj , αn) · · · M(2)(αn, αn)

(c) F (x, y) with the ith row being possessed
by Pi

g1(y) · · · gj(y) · · · gn(y)
⇓ ⇓ ⇓

f1(x)⇒ F (α1, α1) · · · F (αj , α1) · · · F (αn, α1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
fi(x)⇒ F (α1, αi) · · · F (αj , αi) · · · F (αn, αi)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
fn(x)⇒ F (α1, αn) · · · F (αj , αn) · · · F (αn, αn)

(d) Blinding polynomials with ith row being
possessed by Pi

B(P1)(y) · · · B(Pn)(y)
⇓ ⇓

{b
(Pj)

1 }j=1,...,n ⇒ B(P1)(α1) · · · B(Pn)(α1)

.

.

.

.

.

.

.

.

.

.

.

.

{b
(Pj)

i }j=1,...,n ⇒ B(P1)(αi) · · · B(Pn)(αi)

.

.

.

.

.

.

.

.

.

.

.

.

{b
(Pj)
n }j=1,...,n ⇒ B(P1)(αn) · · · B(Pn)(αn)

(e) Linear combination of the polynomials that are revealed during Poly-Check(Pi)

B(Pi)(y) M(1)(α1, y) M
(1)(α2, y) · · · M(1)(αn, y) M

(2)(α1, y) M
(2)(α2, y) · · · M(2)(αn, y) g1(y) g2(y) · · · gn(y)

(f) Distrij =
Distr(D, Pi,P, 1, 1, Sij ∪ Mij)
where Sij = {fi(αj)} and

Mij = {m(1)
i (αj),m

(2)
i (αj)}

for i, j ∈ [n]. Refer to the corre-
sponding figure 2.2a which shows
the distribution of values during
Distr. We observe that for Distrij ,
` = 1 pck = 1

H(1)(x)⇒ m
(1)
i (αj)

H(2)(x)⇒ m
(2)
i (αj)

G(1)(x)⇒ fi(αj)

(g) RevealPoPji instances executed by Party Pj corre-
sponding to the parties Pi ∈ VCORE. The same ran-
dom combiner ej is used in all these instances. combji
denotes the linear combination of values output dur-
ing RevealPoPji . This is analogous to figure 2.2b with
` = 1, pck = 1 .

RevealPoPj1 RevealPoPji RevealPoPjn︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
m

(1)
1 (αj) · · · m

(1)
i (αj) · · · m

(1)
n (αj) ⇒ M(1)(αj , y)

m
(2)
1 (αj) · · · m

(2)
i (αj) · · · m

(2)
n (αj) ⇒ M(2)(αj , y)

f1(αj) · · · fi(αj) · · · fn(αj) ⇒ F (αj , y)
⇓ ⇓ ⇓

combj1 combji combjn ⇒ ejM
(1)(αj , y)+

e2jM
(2)(αj , y)+

e3jF (αj , y)

combj1 = ejm
(1)
1 (αj) + e

2
jm

(2)
1 (αj) + e

3
jf1(αj)

· · ·

combji = ejm
(1)
i (αj) + e

2
jm

(2)
i (αj) + e

3
jfi(αj)

· · ·

combjn = ejm
(1)
n (αj) + e

2
jm

(2)
n (αj) + e

3
jfn(αj)

{m(1)
1 (αj) · · ·m(1)

n (αj)} define M (1)(αj , y) (refer fig

3.3a). Similarly {m(2)
1 (αj) · · ·m(2)

n (αj)} define
M (2)(αj , y) (refer fig 3.3b). {f1(αj), f2(αj) · · · fn(αj)}

define F (αj , y) (refer fig 3.3c). Therefore
ejM

(1)(αj , y) + e2jM
(2)(αj , y) + e3jF (αj , y) is a t degree

polynomial defined by the combji values

34

Figure 3.4: Pictorial representation of Sh protocol that shares n− t secrets

(a) Polynomials
M (1,1)(x, y), · · ·M (1,n−t)(x, y) and
M (2,1)(x, y), · · ·M (2,n−t)(x, y).

M(1,1)(x, y) · · · M(1,n−t)(x, y) M(2,1)(x, y) · · · M(2,n−t)(x, y)
⇓ ⇓ ⇓ ⇓

m
(1,1)
1 (x) · · · m

(1,n−t)
1 (x) m

(2,1)
1 (x) · · · m

(2,n−t)
1 (x)

.

.

.

.

.

.

.

.

.

.

.

.

m
(1,1)
i (x) · · · m

(1,n−t)
i (x) m

(2,1)
i (x) · · · m

(2,n−t)
i (x)

.

.

.

.

.

.

.

.

.

.

.

.

m
(1,1)
n (x) · · · m

(1,n−t)
n (x) m

(2,1)
n (x) · · · m

(2,n−t)
n (x)

(b) Polynomial F (k)(x, y) where k ∈ [n− t].
F (1)(x, y) · · · F (n−t)(x, y)
⇓ ⇓

f
(1)
1 (x) · · · f

(n−t)
1 (x)

.

.

.

.

.

.

f
(1)
i (x) · · · f

(n−t)
i (x)

.

.

.

.

.

.

f
(1)
n (x) · · · f

(n−t)
n (x)

(c) Closer look at M (1,k)(x, y) with party Pi holding the ith row

M(1,k)(α1, y) · · · M(1,k)(αj , y) · · · M(1,k)(αn, y)
⇓ ⇓ ⇓

m
(1,k)
1 (x)⇒ M(1,k)(α1, α1) · · · M(1,k)(αj , α1) · · · M(1,k)(αn, α1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m
(1,k)
i (x)⇒ M(1,k)(α1, αi) · · · M(1,k)(αj , αi) · · · M(1,k)(αn, αi)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m
(1,k)
n (x)⇒ M(1,k)(α1, αn) · · · M(1,k)(αj , αn) · · · M(1,k)(αn, αn)

(d) Closer look at M (2,k)(x, y) Pi holding the
ith row

M(2,k)(α1, y) · · · M(2,k)(αj , y) · · · M(2,k)(αn, y)
⇓ ⇓ ⇓

m
(2,k)
1 (x)⇒ M(2,k)(α1, α1) · · · M(2,k)(αj , α1) · · · M(2,k)(αn, α1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m
(2,k)
i (x)⇒ M(2,k)(α1, αi) · · · M(2,k)(αj , αi) · · · M(2,k)(αn, αi)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m
(2,k)
n (x)⇒ M(2,k)(α1, αn) · · · M(2,k)(αj , αn) · · · M(2,k)(αn, αn)

(e) Closer look at F (k)(x, y) with party Pi

holding the ith row

g
(k)
1 (y) · · · g

(k)
j (y) · · · g

(k)
n (y)

⇓ ⇓ ⇓
f
(k)
1 (x)⇒ F (k)(α1, α1) · · · F (k)(αj , α1) · · · F (k)(αn, α1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f
(k)
i (x)⇒ F (k)(α1, αi) · · · F (k)(αj , αi) · · · F (k)(αn, αi)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f
(k)
n (x)⇒ F (k)(α1, αn) · · · F (k)(αj , αn) · · · F (k)(αn, αn)

(f) Blinding polynomials with party Pi hold-
ing the ith row

B(P1)(y) · · · B(Pn)(y)
⇓ ⇓

{b
(Pj)

1 }j=1,...,n ⇒ B(P1)(α1) · · · B(Pn)(α1)

.

.

.

.

.

.

.

.

.

.

.

.

{b
(Pj)

i }j=1,...,n ⇒ B(P1)(αi) · · · B(Pn)(αi)

.

.

.

.

.

.

.

.

.

.

.

.

{b
(Pj)
n }j=1,...,n ⇒ B(P1)(αn) · · · B(Pn)(αn)

(g) Distrij = Distr(D, Pi,P, 1, (n−t), Sij∪Mij) where Sij = {f (1)i (αj), . . . , f
(n−t)
i (αj)} and

Mij = {(m(1,1)
i (αj), . . . ,m

(1,n−t)
i (αj)), (m

(2,1)
i (αj), . . . ,m

(2,n−t)
i (αj))} for i, j ∈ [n].This is

similar to the figure 3.3f with pck = (n− t).

H(1)(x)⇒ m
(1,1)
i (αj) m

(1,2)
i (αj) · · · m

(1,n−t)
i (αj)

H(2)(x)⇒ m
(2,1)
i (αj) m

(2,2)
i (αj) · · · m

(2,n−t)
i (αj)

G(1)(x)⇒ f
(1)
i (αj) f

(2)
i (αj) · · · f

(n−t)
i (αj)

35

(h) RevealPoPji instances executed by Party Pj corresponding to the parties Pi ∈ VCORE. The same random

combiner ej is used in all these instances. comb
(k)
ji denotes the linear combination of values revealed in these

instances for k ∈ [n− t]. This is analogous to figure 3.3g with ` = 1, pck = n− t .
RevealPoPj1 RevealPoPjn︷ ︸︸ ︷ ︷ ︸︸ ︷

m
(1,1)
1 (αj) · · · m

(1,k)
1 (αj) · · · m

(1,n−t)
1 (αj) · · · m

(1,1)
n (αj) · · · m

(1,k)
n (αj) · · · m

(1,n−t)
n (αj)

m
(2,1)
1 (αj) · · · m

(2,k)
1 (αj) · · · m

(2,n−t)
1 (αj) · · · m

(2,1)
n (αj) · · · m

(2,k)
n (αj) · · · m

(2,n−t)
n (αj)

f
(1)
1 (αj) · · · f

(k)
1 (αj) · · · f

(n−t)
1 (αj) · · · f

(1)
n (αj) · · · f

(k)
n (αj) · · · f

(n−t)
n (αj)

⇓ ⇓ ⇓ ⇓ ⇓ ⇓
comb

(1)
j1 comb

(k)
j1 comb

(n−t)
j1 comb

(1)
jn comb

(k)
jn comb

(n−t)
jn

comb
(k)
ji = ejm

(1,k)
1 (αj) + e

2
jm

(2,k)
1 (αj) + e

3
jf

(k)
1 (αj)

comb
(k)
j2 = ejm

(1,k)
2 (αj) + e

2
jm

(2,k)
2 (αj) + e

3
jf

(k)
2 (αj)

· · ·

comb
(k)
jn = ejm

(1,k)
n (αj) + e

2
jm

(2,k)
n (αj) + e

3
jf

(k)
n (αj)

Note from figure 3.5c that {m(1,k)
1 (αj),m

(1,k)
2 (αj) · · ·m(1,k)

n (αj)} define M (1,k)(αj , y). From figure 3.5d,

{m(2,k)
1 (αj), · · ·m(2,k)

n (αj)} define M (2,k)(αj , y). Also from figure 3.5e, {f (k)1 (αj), f
(k)
2 (αj) · · · f (k)n (αj)} define

F (k)(αj , y) where k ∈ [n− t]. Hence, the combination i.e ejM
(1.k)(αj , y) + e2jM

(2,k)(αj , y) + e3jF
(k)(αj , y) is a

univariate t-degree polynomial defined by the comb
(k)
ji values

36

Figure 3.5: Pictorial representation of Sh protocol that shares `× (n− t) secrets

(a) Polynomials
M (1,1)(x, y), · · ·M (1,n−t)(x, y) and
M (2,1)(x, y), · · ·M (2,n−t)(x, y)

M(1,1)(x, y) M(1,n−t)(x, y) M(2,1)(x, y) M(2,n−t)(x, y)
⇓ ⇓ ⇓ ⇓

m
(1,1)
1 (x) · · · m

(1,n−t)
1 (x) m

(2,1)
1 (x) · · · m

(2,n−t)
1 (x)

.

.

.

.

.

.

.

.

.

.

.

.

m
(1,1)
i (x) · · · m

(1,n−t)
i (x) m

(2,1)
i (x) · · · m

(2,n−t)
i (x)

.

.

.

.

.

.

.

.

.

.

.

.

m
(1,1)
n (x) · · · m

(1,n−t)
n (x) m

(2,1)
1 (x) · · · m

(2,n−t)
n (x)

(b) ` × (n − t) secret-carrying polynomials
F (l,k)(x, y) where l ∈ [`], k ∈ [n− t]. This is anal-
ogous to figure 3.4b

F (1,1)(x, y) F (1,n−t)(x, y) F (`,1)(x, y) F (`,n−t)(x, y)
⇓ ⇓ ⇓ ⇓

f
(1,1)
1 (x) f

(1,n−t)
1 (x) · · · f

(`,1)
1 (x) f

(`,n−t)
1 (x)

.

.

.

.

.

.

.

.

.

.

.

.

f
(1,1)
i (x) f

(1,n−t)
i (x) · · · f

(`,1)
i (x) f

(`,n−t)
i (x)

.

.

.

.

.

.

.

.

.

.

.

.

f
(1,1)
n (x) f

(1,n−t)
n (x) · · · f

(`,1)
n (x) f

(`,n−t)
n (x)

(c) Closer look at M (1,k)(x, y) with party Pi holding the ith row

M(1,k)(α1, y) · · · M(1,k)(αj , y) · · · M(1,k)(αn, y)
⇓ ⇓ ⇓

m
(1,k)
1 (x)⇒ M(1,k)(α1, α1) · · · M(1,k)(αj , α1) · · · M(1,k)(αn, α1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m
(1,k)
i (x)⇒ M(1,k)(α1, αi) · · · M(1,k)(αj , αi) · · · M(1,k)(αn, αi)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m
(1,k)
n (x)⇒ M(1,k)(α1, αn) · · · M(1,k)(αj , αn) · · · M(1,k)(αn, αn)

(d) Closer look at M (2,k)(x, y) with party Pi

holding the ith row

M(2,k)(α1, y) · · · M(2,k)(αj , y) · · · M(2,k)(αn, y)
⇓ ⇓ ⇓

m
(2,k)
1 (x)⇒ M(2,k)(α1, α1) · · · M(2,k)(αj , α1) · · · M(2,k)(αn, α1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m
(2,k)
i (x)⇒ M(2,k)(α1, αi) · · · M(2,k)(αj , αi) · · · M(2,k)(αn, αi)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

m
(2,k)
n (x)⇒ M(2,k)(α1, αn) · · · M(2,k)(αj , αn) · · · M(2,k)(αn, αn)

(e) Closer look at F (l,k)(x, y) with party Pi

holding the ith row

g
(l,k)
1 (y) · · · g

(l,k)
j (y) · · · g

(l,k)
n (y)

⇓ ⇓ ⇓
f
(l,k)
1 (x)⇒ F (l,k)(α1, α1) · · · F (l,k)(αj , α1) · · · F (l,k)(αn, α1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f
(l,k)
i (x)⇒ F (l,k)(α1, αi) · · · F (l,k)(αj , αi) · · · F (l,k)(αn, αi)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f
(l,k)
n (x)⇒ F (l,k)(α1, αn) · · · F (l,k)(αj , αn) · · · F (l,k)(αn, αn)

(f) Blinding polynomials with party Pi hold-
ing the ith row

B(P1)(y) · · · B(Pn)(y)
⇓ ⇓

{b
(Pj)

1 }j=1,...,n ⇒ B(P1)(α1) · · · B(Pn)(α1)

.

.

.

.

.

.

.

.

.

.

.

.

{b
(Pj)

i }j=1,...,n ⇒ B(P1)(αi) · · · B(Pn)(αi)

.

.

.

.

.

.

.

.

.

.

.

.

{b
(Pj)
n }j=1,...,n ⇒ B(P1)(αn) · · · B(Pn)(αn)

(g) Distrij = Distr(D, Pi,P, `, (n− t), Sij ∪Mij) where Sij =

{(f (1,1)i (αj), . . . , f
(1,n−t)
i (αj)), . . . , (f

(`,1)
i (αj), . . . , f

(`,n−t)
i (αj))}

and Mij = {(m(1,1)
i (αj), . . . ,m

(1,n−t)
i (αj)), (m

(2,1)
i (αj), . . . ,m

(2,n−t)
i (αj))}

for i, j ∈ [n].This is similar to the figure 3.4g.

H(1)(x)⇒ m
(1,1)
i (αj) m

(1,2)
i (αj) · · · m

(1,n−t)
i (αj)

H(2)(x)⇒ m
(2,1)
i (αj) m

(2,2)
i (αj) · · · m

(2,n−t)
i (αj)

G(1)(x)⇒ f
(1,1)
i (αj) f

(1,2)
i (αj) · · · f

(1,n−t)
i (αj)

G(2)(x)⇒ f
(2,1)
i (αj) f

(2,2)
i (αj) · · · f

(2,n−t)
i (αj)

...
... · · · ...

G(`)(x)⇒ f
(`,1)
i (αj) f

(`,2)
i (αj) · · · f

(`,n−t)
i (αj)

37

(h) RevealPoPji instances executed by Party Pj corresponding to the parties Pi ∈ VCORE. The same random

combiner ej is used for all these instances. comb
(k)
ji denotes the linear combination of values revealed in the

instance RevealPoPji for k ∈ [n− t].
RevealPoPj1 RevealPoPjn︷ ︸︸ ︷ ︷ ︸︸ ︷

m
(1,1)
1 (αj) · · · m

(1,k)
1 (αj) · · · m

(1,n−t)
1 (αj) · · · m

(1,1)
n (αj) · · · m

(1,k)
n (αj) · · · m

(1,n−t)
n (αj)

m
(2,1)
1 (αj) · · · m

(2,k)
1 (αj) · · · m

(2,n−t)
1 (αj) · · · m

(2,1)
n (αj) · · · m

(2,k)
n (αj) · · · m

(2,n−t)
n (αj)

f
(1,1)
1 (αj) · · · f

(1,k)
1 (αj) · · · f

(1,n−t)
1 (αj) · · · f

(1,1)
n (αj) · · · f

(1,k)
n (αj) · · · f

(1,n−t)
n (αj)

f
(2,1)
1 (αj) · · · f

(2,k)
1 (αj) · · · f

(2,n−t)
1 (αj) · · · f

(2,1)
n (αj) · · · f

(2,k)
n (αj) · · · f

(2,n−t)
n (αj)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
. · · ·

.

.

.

f
(`,1)
1 (αj) · · · f

(`,k)
1 (αj) · · · f

(`,n−t)
1 (αj) · · · f

(`,1)
n (αj) · · · f

(`,k)
n (αj) · · · f

(`,n−t)
n (αj)

⇓ ⇓ ⇓ ⇓ ⇓ ⇓
comb

(1)
j1 comb

(k)
j1 comb

(n−t)
j1 comb

(1)
jn comb

(k)
jn comb

(n−t)
jn

comb
(k)
ji = ejm

(1,k)
1 (αj) + e

2
jm

(2,k)
1 (αj) + e

3
jf

(1,k)
1 (αj) · · · e

`+2
j f

(`,k)
1 (αj)

comb
(k)
j2 = ejm

(1,k)
2 (αj) + e

2
jm

(2,k)
2 (αj) + e

3
jf

(1,k)
2 (αj) · · · e

`+2
j f

(`,k)
2 (αj)

· · ·

comb
(k)
jn = ejm

(1,k)
n (αj) + e

2
jm

(2,k)
n (αj) + e

3
jf

(1,k)
n (αj) + · · · e`+2

j f
(`,k)
n (αj)

Note from figure 3.5c that {m(1,k)
1 (αj),m

(1,k)
2 (αj) · · ·m(1,k)

n (αj)} define M (1,k)(αj , y). Also from figure 3.5d,

the values {m(2,k)
1 (αj), · · ·m(2,k)

n (αj)} define M (2,k)(αj , y). Note from figure 3.5e that for l ∈ [`],

{f (l,k)1 (αj), f
(l,k)
2 (αj) · · · f (l,k)n (αj)} define F (l,k)(αj , y). Hence, the combination

ejM
(1,k)(αj , y) + e2jM

(2,k)(αj , y) + e3jF
(1,k)(αj , y) + · · ·+ e`+2

j F (`,k)(αj , y) is a univariate t-degree polynomial

defined by the comb
(k)
ji values.

38

Chapter 4

Statistical Multiparty Computation in

Hybrid Network

4.1 Design of MPC Protocol

Using Sh, we design a statistical MPC protocol in the partially synchronous setting using the

efficient framework of [17] by executing the following two modules: (1) Module I (Verifi-

ably sharing multiplication triples): This module allows a dealer D to verifiably t-share

multiplication triples of the form (a, b, c), where c = ab. Specifically using Sh, D t-shares “sev-

eral” triples. To verify whether the shared triples are indeed multiplication triples, we execute

additional sub-protocols presented in [17], which can be executed asynchronously. If D is hon-

est, then the shared triples remain private during the verification process. (2) Module II

(Extracting multiplication triples): The module takes input a set of multiplication triples

shared by the individual parties, where the triples shared by the honest parties are random and

private. It then executes an asynchronous protocol and outputs a set of t-shared random and

private multiplication triples. Combining the above two modules, we get a partially synchronous

offline phase protocol to generate t-sharing of cM+cR random and private multiplication triples.

The inputs of the parties for the computation are shared in parallel by executing instances of

Sh. After this the circuit C is securely evaluated asynchronously in a t-shared fashion using the

standard Beaver multiplication triple based technique [3, 4, 6, 17]. So overall we get Theorem

4.1.

Theorem 4.1 Assuming that the first four communication rounds are synchronous broadcast

rounds after which the entire communication is asynchronous, there exists a statistical MPC

protocol to securely compute f , provided |F| ≥ 4n4(cM+cR)(3t+1)2κ for a given error parameter

39

κ. The protocol has communication complexity PC(O(n2(cM + cR) + n4)) and BC(O(n4)).

4.2 Tools used in constructing the MPC

Before proving the Theorem 4.1, we look at some known concepts.

Asynchronous Communication Setting: We first briefly recall the asynchronous commu-

nication setting from [13, 17]. In the asynchronous model, the channels are asynchronous and

messages can be arbitrarily (but finitely) delayed. The only guarantee here is that the messages

sent by the honest parties will eventually reach to their destinations. The order of the mes-

sage delivery is decided by a scheduler. To model the worst case scenario, we assume that the

scheduler is under the control of the adversary. The scheduler can only schedule the messages

exchanged between the honest parties, without having access to the “contents” of these mes-

sages. Designing protocol in the asynchronous setting is complicated and this stems from the

fact that we cannot distinguish between a corrupted sender (who does not send any messages)

and a slow but honest sender (whose messages are arbitrarily delayed). Due to this at any stage

of an asynchronous protocol, no (honest) party can afford to receive communication from all

the n parties, as this may turn out to require an endless wait. So as soon as a party listens

from n− t parties, it has to proceed to the next stage; but in this process, communication from

t potentially honest parties may be ignored.

4.2.1 Existing Asynchronous Primitives

The following asynchronous primitives are well known.

Private Reconstruction of t-shared Values: Let [v]t be a t-sharing of v, shared through

a polynomial p(·) of degree at most t. The goal is to make some designated party PR ∈ P

to reconstruct v in an asynchronous fashion. The well-know online error correction (OEC)

algorithm [9, 13] allows PR to reconstruct p(·) and thus v, as p(0) = v. We denote the protocol

as OEC(PR, [v]), whose properties are stated in Lemma 4.1.

Lemma 4.1 ([13, 5, 38, 17]) Let v be a value which is t-shared among the parties through a

polynomial p(·) of degree at most t. Then for every possible Adv and for every possible scheduler,

protocol OEC achieves the following in the asynchronous setting:

(1) Termination: Every honest party eventually terminates the protocol. (2) Correctness:

Party PR outputs p(·) and v. (3) Privacy: If PR is honest then Adv obtains no additional

information about v. (4) Communication Complexity: The protocol has communication

complexity PC(O(n))

40

Multiplication of Pairs of t-shared Values using Beaver’s Technique: Beaver’s circuit

randomization method [3] is a well known method for securely computing [x · y]t from [x]t

and [y]t, at the expense of two public reconstructions, using a pre-computed t-shared random

multiplication triple (from the offline phase), say ([a]t, [b]t, [c]t). For this, the parties first

(locally) compute [e]t and [d]t, where [e]t
def
= [x]t − [a]t = [x − a]t and [d]t

def
= [y]t − [b]t =

[y − b]t, followed by the public reconstruction of e = (x− a) and d = (y − b); to do the public

reconstruction 2n instances of OEC are executed, two on the behalf of each party. Since the

relation xy = ((x−a) +a)((y− b) + b) = de+ eb+da+ c holds, the parties can locally compute

[xy]t = de+ e[b]t + d[a]t + [c]t, once d and e are publicly known. The above computation leaks

no information about x and y if a and b are random and unknown to Adv. We call the protocol

as Beaver(([x]t, [y]t, [a]t, [b]t, [c]t)) and state its properties in Lemma 4.2.

Lemma 4.2 ([17]) Let ([x]t, [y]t) be a pair of t-sharing and ([a]t, [b]t, [c]t) be the t-sharing of

multiplication triples unknown to Adv. Then for every possible Adv and for every possible

scheduler, protocol Beaver achieves the following in the asynchronous setting:

(1) Termination: All honest parties eventually terminate. (2) Correctness: The parties

output [xy]t. (3) Privacy: The view of Adv is distributed independently of x and y. (4)

Communication Complexity: The protocol has communication complexity PC(O(n2)).

4.2.2 The Asynchronous Triple Transformation Protocol

The heart of the efficient framework of [17] for the offline phase is the asynchronous triple

transformation protocol TripTrans. The protocol takes as input a set of (3t+ 1) independent t-

shared triples, say {([x(i)]t, [y
(i)]t, [z

(i)]t}i∈[3t+1] and outputs a set of (3t+1) “co-related” t-shared

triples, say {(x(i),y(i), z(i))}i∈[3t+1], such that the following holds:

• There exist polynomials, say X(·), Y (·) and Z(·) of degree 3t
2

, 3t
2

and 3t respectively, such

that X(αi) = x(i), Y (αi) = y(i) and Z(αi) = z(i) holds for i ∈ [3t+ 1].

• Z(·) = X(·)Y (·) holds if and only if all the input triples are multiplication triples. This

further implies that Z(·) = X(·)Y (·) is true if and only if all the (3t+ 1) input triples are

multiplication triples.

• If Adv knows t′ < 3t
2

input triples then Adv learns t′ values on X(·), Y (·) and Z(·), implying
3t
2

+ 1− t′ “degree of freedom” on X(·), Y (·) and Z(·). If t′ > 3t
2

, then Adv will completely

learn X(·), Y (·) and Z(·).

The protocol is inherited from the protocol for the batch verification of the multiplication triples

proposed in [12]. The idea is as follows: we assume that the polynomials X(·) and Y (·) are

41

defined by the first and second component of the first 3t
2

+ 1 input triples. Next we linearly

compute 3t
2

“new” points on the X(·) and Y (·) polynomials. Finally we compute the product

of the 3t
2

new points using Beaver’s technique, making use of the remaining 3t
2

input triples.

The polynomial Z(·) is then defined by the 3t
2

computed products and the third component of

the first 3t
2

+ 1 input triples. To be more specific, we define the polynomial X(·) of degree at

most 3t
2

by setting X(αi) = x(i) for i ∈ [3t
2

+ 1] and get [x(i)]t = [X(αi)]t = [x(i)]t for i ∈ [3t
2

+ 1].

Following the same logic, we define Y (αi) = y(i) for i ∈ [3t
2

+1] and get [y(i)]t = [Y (αi)]t = [y(i)]t

for i ∈ [3t
2

+1]. Moreover, we set Z(αi) = z(i) for i ∈ [3t
2

+1] and get [z(i)]t = [Z(αi)]t = [z(i)]t for

i ∈ [3t
2

+1]. Now for i ∈ [3t
2

+1, 3t+1], we compute [x(i)]t = [X(αi)]t and [y(i)]t = [Y (αi)]t which

requires only local computation on the t-sharings {[x(i)]t, [y
(i)]t}i∈[3t

2
+1], as this is computing a

linear function. For i ∈ [3t
2

+1, 3t+1], fixing z(i) to be the same as z(i) will, however, violate the

requirement that Z(·) = X(·)Y (·) holds when all the input triples are multiplication triples;

this is because for i ∈ [3t
2

+ 1, 3t + 1], x(i) = X(αi) 6= x(i) and y(i) = Y (αi) 6= y(i) and thus

z(i) = x(i)y(i) 6= x(i)y(i). Here we resort to the Beaver’s technique to find [z(i)]t = [x(i)y(i)]t

from [x(i)]t and [y(i)]t, using the t-shared triples {([x(i)]t, [y
(i)]t, [z

(i)]t}i∈[3t
2

+1,3t+1]. We note that

these triples used for the Beaver’s technique are never touched before for any computation. The

protocol involves 3t
2

instances of Beaver and has communication complexity PC(O(n3)). The

protocol can be executed in a completely asynchronous fashion and it will be ensured that every

honest party eventually terminates the protocol. This is because the only steps which require

interaction among the parties are during the instances of Beaver, which eventually terminate

for each honest party. We refer to [17] for the complete formal details of TripTrans.

4.3 The Framework for the Offline Phase

In [17] an efficient framework for the offline phase for generating t-shared random multiplication

triples is presented. On a very high level, the framework consists of the following two modules:

Module I — Multiplication Triple Sharing: This module allows a designated dealer

D to verifiably t-share multiplication triples. By verifiability, it means that the triples are

guaranteed to be multiplication triples. Moreover, the triples remain private if D is honest. To

achieve this task, the module takes any polynomial based VSS scheme and plug it with the

triple transformation protocol TripTrans. In our context, we will use our VSS protocol Sh. The

module is executed as follows.

D invokes our four round VSS protocol Sh to verifiably t-share l(3t + 1) values. So we

require that the first four rounds are synchronous broadcast rounds, which ensures that at the

end of the fourth round, l(3t + 1) values are shared by D. After this, the rest of the steps

42

are executed in a completely asynchronous fashion1. The values shared by D can be viewed

as l batches of 3t + 1 triples. Consider a single batch {(x(i), y(i), z(i))}i∈[3t+1]. The correctness

property of Sh ensures that the triples will be t-shared among P at the end of Sh. To check

whether the triples are indeed multiplication triples, an instance of the triple transformation

protocol TripTrans is invoked with this set of (3t + 1) t-shared triples as input. Let X(·), Y (·)
and Z(·) denote the polynomials of degree at most 3t

2
, 3t

2
and 3t respectively, which guaranteed

to exist at the end of the instance of TripTrans. We next use a probabilistic check to verify

whether the relation Z(·) = X(·)Y (·) holds by public checking of Z(α)
?
= X(α)Y (α) for a

random α ∈ F; the random α can be generated by any standard technique2 and we do not

bother about the communication complexity of this procedure as it will be invoked only a

constant number of times. It is trivial to see that the check will pass for an honest D. For a

corrupted D, if the input triples {([x(i)]t, [y
(i)]t, [z

(i)]t}i∈[3t+1] are not multiplication triples, then

Z(α) 6= X(α)Y (α) (by the property of TripTrans). Therefore, the probability of a corrupt D

passing the check in this scenario can be computed as the probability that Z(α) = X(α)Y (α)

holds, even though Z(·) 6= X(·)Y (·). This probability is atmost 3t
|F| for a random α since Z(·)

has degree at most 3t. If D is honest, then through the above check, Adv will learn one point

on X(·), Y (·) Z(·) i.e the value of the polynomials at α. However, this still leaves 3t
2

degree

of freedom in these polynomials. So if the verification passes, the parties output 3t
2

shared

triples {([a(i)]t, [b
(i)]t, [c

(i)]t)}i∈[3t
2

] on the “behalf” of D, where a(i) = X(βi), b
(i) = Y (βi) and

c(i) = Z(βi) for 3t
2

distinct βi values, distinct from the random α. Thus the multiplication

triples {([a(i)]t, [b
(i)]t, [c

(i)]t)}i∈[3t
2

] are finally considered to be shared on the “behalf” of D.

The above idea is applied in parallel on all the l batches of 3t+1 t-shared triples and a single

random α is used for the probabilistic verification in all the l batches. Through each batch 3t
2

multiplication triples are considered to be shared by D and so overall the parties will get (l · 3t
2

)

t-shared multiplication triples at the end of the protocol. If D is caught cheating in any of the

batches, then the parties discard D and some default l · 3t
2

multiplications triples are considered

to be shared on the behalf of D. We call the resultant protocol TripleSh. In TripleSh, D needs

to invoke Sh by setting ` = l(3t+1)
n−t . This will ensure that D shares `× (n− t) = l(3t+ 1) triples,

which when underwent through TripTrans and probabilistic check result in (l · 3t
2

) multiplication

triples being shared on the behalf of D.

The communication complexity of TripleSh will be PC(O(n3l)) and BC(O(n3)), which is

1We note that in [17] this module is designed to work in a completely asynchronous fashion, but with
t < n/4. Since we are in the t < n/3 setting and want to use our VSS protocol Sh, we require the first four
rounds to be synchronous broadcast rounds.

2For example, each party Pi can t-share a random r(i) and then we can set [α]t
def
= [r(1)]t + . . . + [r(n)]t.

This will be followed by publicly reconstructing α using OEC. We call this protocol as Rand().

43

computed as follows: the instance of Sh will have communication complexity PC(O(n3`)) and

BC(O(n3)) (see Theorem 3.4). Substituting ` = l(3t+1)
n−t and n − t = 2t + 1 = Θ(n), this

gives PC(O(n3l)) and BC(O(n3)). There will be l instances of TripTrans, each having commu-

nication complexity PC(O(n3)), so contributing PC(O(n3l)) to the communication complexity.

The error probability of TripleSh is computed as follows. By setting ` = l(3t+1)
n−t in Theorem

3.4 we find that except with probability at most max{ n3(n−1)
|F|−(n−t) ,

n3l(3t+1)
|F|(n−t) }, the values shared by

D will be t-shared. Given that the values shared by D are t-shared, the probabilistic check

ensures that except with probability at most l · 3t
2

, the outputs values obtained on the be-

half of D are indeed multiplication triples (there are l batches and each batch can pass the

probabilistic check with probability at most 3t
2

). So it follows that except with probability

l · 3t
2

+ max{ n3(n−1)
|F|−(n−t) ,

n3l(3t+1)
|F|(n−t) } ≈ max{ n3(n−1)

|F|−(n−t) ,
n3l(3t+1)
|F|(n−t) }, the parties output t-shared multipli-

cation triples. The protocol will eventually terminate for each honest party: the instance of Sh

will terminate, assuming that the first four communication rounds are synchronous broadcast

rounds. Once Sh terminates, the instances of TripTrans which are executed asynchronously

eventually terminate for each honest party We refer to [17] for the formal details of TripleSh.

For completeness, we state the properties of TripleSh in Lemma 4.3, whose proof follows from

the above discussion; for a detailed proof see [17].

Lemma 4.3 Given a partially synchronous communication setting where the first four rounds

are synchronous broadcast rounds, protocol TripleSh achieves the following for every possible

Adv and for every possible scheduler

(1) Termination: Irrespective of D, every honest party eventually terminates the proto-

col. (2) Correctness: If D is honest then l · 3t
2

multiplication triples will be t-shared. If

D is corrupted then l · 3t
2

triples will be t-shared; moreover except with probability at most

max{ n3(n−1)
|F|−(n−t) ,

n3l(3t+1)
|F|(n−t) }, the triples will be multiplication triples. (3) Privacy: If D is hon-

est, then the view of Adv in the protocol is distributed independently of the output multiplica-

tion triples. (4) Communication Complexity: The protocol has communication complexity

PC(O(n3l)) and BC(O(n3)). Additionally one invocation to Rand is required.

Module II : Multiplication Triple Extraction. The second module of the efficient frame-

work of [17] is an asynchronous protocol TripExt. The input to the protocol is a set of 3t + 1

t-shared multiplication triples, where the ith triple is selected by the party Pi. It will be ensured

that if Pi is honest, then the ith triple is random and will be private. The protocol outputs

a set of t
2

= Θ(n) t-shared multiplications triples, each of which is random and unknown to

Adv. The high level idea of TripExt is as follows: the input triples are first transformed using

TripTrans to obtain a new set of t-shared 3t + 1 triples. Let X(·), Y (·) and Z(·) be the under-

44

lying polynomials associated with the transformed triples. It follows from the correctness of

TripTrans that Z(·) = X(·)Y (·) holds, since the input triples are guaranteed to be multiplica-

tion triples. Also, since Adv may know at most t input triples, by the property of TripTrans, it

learns at most t points on X(·), Y (·) and Z(·), leaving 3t
2
− t = t

2
degree of freedom on these

polynomials. So the parties output {([X(βi)]t, [Y (βi)]t, [Z(βi)]t)}i∈[t
2

], which can be computed

as a linear function of the transformed triples. These triples are considered to be securely “ex-

tracted” from the set of input triples. The protocol will eventually terminate for each honest

party, as interaction among the parties is required only during the instance of TripTrans, which

eventually terminates for each honest party. As one instance of TripTrans is involved, protocol

TripExt has communication complexity PC(O(n3)). For completeness the properties of TripExt

are stated in Lemma 4.4, which follows from the above discussion; for a detailed proof we refer

to [17].

Lemma 4.4 Let {(x(i), y(i), z(i))}i∈[3t+1] be a set of multiplication triples, where party Pi ∈ P has

verifiably t-shared the triple (x(i), y(i), z(i)). Then for every possible Adv and for every possible

scheduler, protocol TripExt achieves the following in a completely asynchronous setting:

(1) Termination: All honest parties eventually terminate the protocol. (2) Correctness:

Each of the t
2

output triples is a multiplication triple and will be t-shared. (3) Privacy: The

view of Adv in the protocol is distributed independently of the output multiplication triples. (4)

Communication Complexity: The protocol has communication complexity PC(O(n3)).

Module I + Module II ⇒ Offline phase protocol in the partial synchronous setting.

By combining TripleSh and TripExt, we get an offline phase protocol Offline in the partial syn-

chronous setting as follows. The goal of Offline is to generate t-sharing of cM + cR random and

private multiplication triples.

• Each party Pi acts a D and ensures that 2(cM+cR)
t

random multiplication triples are shared

on its behalf. For this, it invokes an instance TripleShi of TripleSh by setting l = 4(cM+cR)
3t2

;

this ensures that at the end of TripleShi, l · 3t
2

= 2(cM+cR)
t

t-shared multiplication triples

are available on the behalf of Pi. This step is executed in a partially synchronous setting,

where it is assumed that the first four communication rounds are synchronous broadcast

rounds. This is to ensure that all the TripleSh instances are terminated. From Lemma

4.3, by substituting the value of l, this step will have total communication complexity

PC(O(n2(cM + cR))) and BC(O(n4)). Additionally there will be one instance of Rand

and its output can be used as a challenge across all the n instances of TripleSh for the

verification of the shared triples. By substituting the value of l and from the union bound

45

(there are n instances of TripleSh) it follows that at the end of this step, except with

probability at most 4n4(cM+cR)(3t+1)
3t2(n−t)|F| , the triples available on the behalf of all the parties

are indeed multiplication triples.

• The parties then execute the protocol TripExt on the multiplication triples obtained at

the end of the previous step and securely extract cM + cR random and private t-shared

multiplication triples. More specifically, the 2(cM+cR)
t

shared triples available on the behalf

of each party are considered as 2(cM+cR)
t

batches of 3t + 1 triples, where the ith batch

consists of the ith triple available on the behalf of all 3t + 1 parties. So each batch is of

size 3t+ 1. For every batch, the triples contributed by the honest parties will be random

and private. So by applying an instance of TripExt, the parties can extract t
2

random and

private t-shared multiplication triples. For each batch an instance of TripExt is executed

and so from 2(cM+cR)
t

batches, the parties will get total cM + cR random and private t-

shared multiplication triples. This step is executed in a completely asynchronous fashion

and it will eventually terminate for each honest party, as the underlying instances of

TripExt will eventually terminate. As there will be 2(cM+cR)
t

instances of TripExt involved,

from Lemma 4.4, this step will have total communication complexity PC(O(n2(cM +cR))).

For completeness the properties of Offline are stated in Lemma 4.5, which follows from the

above discussion; for a detailed proof we refer to [17].

Lemma 4.5 Assuming that the first four communication rounds are synchronous broadcast

rounds, protocol Offline achieves the following for every possible Adv and every possible sched-

uler: (1) Termination: All honest parties eventually terminate the protocol. (2) Correct-

ness: The cM+cR output triples will be t-shared among the parties. Moreover, the output triples

will be multiplication triples, except with probability at most 4n4(cM+cR)(3t+1)
3t2(n−t)|F| . (3) Privacy: The

view of Adv in the protocol is independent of the output multiplication triples. (4) Commu-

nication Complexity: The protocol has communication complexity PC(O(n2(cM + cR))) and

BC(O(n4)). In addition, one invocation to Rand is required.

4.4 Statistical MPC Protocol in the Partially Synchronous

Setting

Our statistical MPC protocol MPC in the partially synchronous setting is straight forward and

based on the standard idea of evaluating the circuit in a shared fashion, using the multiplication

triplets produced in an offline phase. Specifically in MPC, the parties first execute the protocol

Offline and generate t-sharing of cM + cR random and private multiplication triples. For this we

46

assume that the network is partially synchronous and the first four communication rounds are

synchronous broadcast round. In parallel, each party Pi t-shares its input xi for the computation

by acting as a dealer D and invoking an instance Shi of Sh. These instances of Sh also utilise

the first four synchronous broadcast rounds, which are utilized by Offline. Once Offline is

over, the parties will have cM + cR t-shared random and private multiplication triplets. In

addition, the inputs of all the parties would be available in a t-shared fashion. Next the parties

start securely evaluating the circuit asynchronously on a gate by gate basis by maintaining the

following invariant for each gate of the circuit: given t-sharing of the input(s) of a gate, the

parties securely compute a t-sharing of the output of the gate. A gate is said to be evaluated

if a t-sharing of the output of the gate is computed. This is achieved as follows for various

gates: the linearity of the t-sharing ensures that the linear gates can be evaluated locally. For

a multiplication gate, the parties associate a multiplication triple from the set of preprocessed

multiplication triples and then evaluate the gate by applying the Beaver’s circuit randomization

technique, namely by invoking an instance of Beaver. For every random gate in the circuit

for generating a random value, the parties associate a multiplication triple from the set of

preprocessed multiplication triples and the first component of the triple is considered as the

outcome of the random gate. This explains the need for generating cM + cR random t-shared

multiplication triples in the offline phase (cM triples corresponding to cM multiplication gates

and cR triples corresponding to cR random gates). Once all the gates are evaluated, the t-

sharing of the output gate is publicly reconstructed. As this approach for circuit evaluation

is standard and used in al most all the recent MPC protocols, we avoid giving the complete

formal details of MPC.

If it is ensured that the triples from the offline phase are indeed t-shared and multiplication

triples then protocol MPC correctly computes the function f . The probability that the offline

phase protocol Offline fails to generate t-shared multiplication triples is at most 4n4(cM+cR)(3t+1)
3t2(n−t)|F| .

So if we ensure that |F| ≥ 4n4(cM + cR)(3t+ 1)2κ, then the function will be correctly computed

except with an error probability of at most 2−κ. The protocol will achieve the privacy property,

intuitively due to the following reason: the inputs of the honest parties remain private as they

are t-shared. The intermediate gate outputs remain as private as possible, as they are also

t-shared. This intuition can be easily formalized by giving a simulation based security proof

using standard arguments (see for example [1]). The offline phase will have communication

complexity PC(O(n2(cM + cR))) and BC(O(n4)). In addition, sharing the inputs of the parties

will cost PC(O(n4)) and BC(O(n4)). The circuit evaluation will have communication complexity

PC(O(cMn
2)), as there will be cM instances of Beaver, while publicly reconstructing the circuit

output will cost PC(O(n2)). This completes the proof of Theorem 4.1.

47

Chapter 5

Conclusion

The work in this project marks the first attempt in closing the efficiency gap between statistical

MPC protocols in synchronous and asynchronous networks. This MPC having communication

complexity of O(|C|n2µ) succeeds in bridging the wide efficiency gap between statistical syn-

chronous (O(|C|nµ)) and asynchronous (O(|C|n5µ)) MPC. Here, |C| and µ refer to the circuit

size (primarily the number of multiplication gates) and statistical security parameter respec-

tively. Another major contribution during the project is a novel statistical VSS protocol with

t < n/3. Though the VSS has non-optimal resilience, it is the first protocol to achieve quadratic

complexity over point-to-point channels in four rounds. Additionally, the VSS has a very lucra-

tive feature of broadcast complexity being independent of the number of values shared. On the

practical front, it is efficient and therefore may be of independent interest. Future work includes

leveraging the power of hybrid network design to close the fault-tolerance and efficiency gap

between synchronous and asynchronous protocols in different settings.

48

Bibliography

[1] G. Asharov and Y. Lindell. A Full Proof of the BGW Protocol for Perfectly-Secure Mul-

tiparty Computation. IACR Cryptology ePrint Archive, 2011:136, 2011. 17, 47

[2] M. Backes, F. Bendun, A. Choudhury, and A. Kate. Asynchronous MPC with a Strict

Honest Majority Using Non-equivocation. In M. M. Halldórsson and S. Dolev, editors,

PODC, pages 10–19. ACM, 2014. 3

[3] D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In J. Feigenbaum,

editor, Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Con-

ference, Santa Barbara, California, USA, August 11-15, volume 576 of Lecture Notes in

Computer Science, pages 420–432. Springer Verlag, 1991. 39, 41

[4] Z. Beerliová-Trub́ıniová and M. Hirt. Efficient multi-party computation with dispute con-

trol. In S. Halevi and T. Rabin, editors, Theory of Cryptography, Third Theory of Cryptog-

raphy Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, volume

3876 of Lecture Notes in Computer Science, pages 305–328. Springer Verlag, 2006. 6, 39

[5] Z. Beerliová-Trub́ıniová and M. Hirt. Simple and Efficient Perfectly-Secure Asynchronous

MPC. In K. Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, 13th Interna-

tional Conference on the Theory and Application of Cryptology and Information Security,

Kuching, Malaysia, December 2-6, 2007, Proceedings, volume 4833 of Lecture Notes in

Computer Science, pages 376–392. Springer Verlag, 2007. 3, 40

[6] Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-Secure MPC with Linear Communication

Complexity. In R. Canetti, editor, Theory of Cryptography, Fifth Theory of Cryptography

Conference, TCC 2008, New York, USA, March 19-21, 2008, volume 4948 of Lecture Notes

in Computer Science, pages 213–230. Springer Verlag, 2008. 3, 6, 39

[7] Zuzana Beerliová-Trub́ıniová, Martin Hirt, and Jesper Buus Nielsen. Almost-asynchronous

MPC with faulty minority. IACR Cryptology ePrint Archive, 2008:416, 2008. 4

49

BIBLIOGRAPHY

[8] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-

Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract). In J. Simon,

editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May

2-4, 1988, Chicago, Illinois, USA, pages 1–10. ACM, 1988. 2, 3

[9] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous Secure Computation. In S. R.

Kosaraju, D. S. Johnson, and A. Aggarwal, editors, STOC, pages 52–61. ACM, 1993. 40

[10] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous Secure Computations with Optimal

Resilience (Extended Abstract). In J. H. Anderson, D. Peleg, and E. Borowsky, editors,

Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Com-

puting, Los Angeles, California, USA, August 14-17, 1994, pages 183–192. ACM, 1994. 2,

3

[11] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In

Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May

16-18, 1993, San Diego, CA, USA, pages 52–61, 1993. 2, 3

[12] E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-Linear Unconditionally-Secure Multiparty

Computation with a Dishonest Minority. In R. Safavi-Naini and R. Canetti, editors,

Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa

Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in

Computer Science, pages 663–680. Springer, 2012. 3, 5, 41

[13] R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis,

Weizmann Institute, Israel, 1995. 17, 40

[14] R. Canetti and T. Rabin. Fast Asynchronous Byzantine Agreement with Optimal Re-

silience. In STOC, pages 42–51, 1993. 4

[15] David Chaum, Ivan Damg̊ard, and Jeroen van de Graaf. Multiparty computations ensuring

privacy of each party’s input and correctness of the result. In Advances in Cryptology -

CRYPTO ’87, A Conference on the Theory and Applications of Cryptographic Techniques,

Santa Barbara, California, USA, August 16-20, 1987, Proceedings, pages 87–119, 1987. 1

[16] A. Choudhury and A. Patra. Optimally Resilient Asynchronous MPC with Linear Commu-

nication Complexity. In S. K. Das, D. Krishnaswamy, S. Karkar, A. Korman, M. Kumar,

M. Portmann, and S. Sastry, editors, ICDCN, pages 5:1–5:10. ACM, 2015. 3

50

BIBLIOGRAPHY

[17] A. Choudhury, M. Hirt, and A. Patra. Asynchronous Multiparty Computation with Linear

Communication Complexity. In Y. Afek, editor, Distributed Computing - 27th International

Symposium, DISC 2013, Jerusalem, Israel, October 14-18, 2013. Proceedings, volume 8205

of Lecture Notes in Computer Science, pages 388–402. Springer, 2013. 3, 4, 5, 39, 40, 41,

42, 43, 44, 45, 46

[18] Ashish Choudhury, Emmanuela Orsini, Arpita Patra, and Nigel P. Smart. Linear overhead

robust MPC with honest majority using preprocessing. IACR Cryptology ePrint Archive,

2015:705, 2015. 3

[19] A. Clement, F. Junqueira, A. Kate, and R. Rodrigues. On the (Limited) Power of Non-

equivocation. In D. Kowalski and A. Panconesi, editors, PODC, pages 301–308. ACM,

2012. 3

[20] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient Multiparty

Computations Secure Against an Adaptive Adversary. In J. Stern, editor, Advances in

Cryptology - EUROCRYPT ’99, International Conference on the Theory and Application

of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, volume

1592 of Lecture Notes in Computer Science, pages 311–326. Springer, 1999. 9

[21] R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty Computation from Threshold

Homomorphic Encryption. In B. Pfitzmann, editor, EUROCRYPT, volume 2045 of Lecture

Notes in Computer Science, pages 280–299. Springer, 2001. 3

[22] I. Damg̊ard and J. B. Nielsen. Scalable and Unconditionally Secure Multiparty Compu-

tation. In A. Menezes, editor, Advances in Cryptology - CRYPTO 2007, 27th Annual

International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007, Pro-

ceedings, volume 4622 of Lecture Notes in Computer Science, pages 572–590. Springer

Verlag, 2007. 6

[23] I. Damg̊ard, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous Multiparty Com-

putation: Theory and Implementation. In S. Jarecki and G. Tsudik, editors, PKC, pages

160–179, 2009. 3

[24] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly Secure Message Transmission. J.

ACM, 40(1):17–47, 1993. 4

[25] M. Fitzi and M. Hirt. Optimally Efficient Multi-valued Byzantine Agreement. In E. Rup-

pert and D. Malkhi, editors, PODC, pages 163–168. ACM Press, 2006. 4

51

BIBLIOGRAPHY

[26] M. Fitzi, J. A. Garay, S. Gollakota, C. Pandu Rangan, and K. Srinathan. Round-Optimal

and Efficient Verifiable Secret Sharing. In S. Halevi and T. Rabin, editors, Theory of

Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,

March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in Computer Science, pages

329–342. Springer, 2006. 19

[27] M. K. Franklin and M. Yung. Communication Complexity of Secure Computation (Ex-

tended Abstract). In S. R. Kosaraju, M. Fellows, A. Wigderson, and J. A. Ellis, editors,

Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992,

Victoria, British Columbia, Canada, pages 699–710. ACM, 1992. 20, 21

[28] J. A. Garay, C. Givens, R. Ostrovsky, and P. Raykov. Broadcast (and Round) Efficient

Verifiable Secret Sharing. In C. Padró, editor, Information Theoretic Security - 7th Inter-

national Conference, ICITS 2013, Singapore, November 28-30, 2013, Proceedings, volume

8317 of Lecture Notes in Computer Science, pages 200–219. Springer, 2013. 5

[29] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The Round Complexity of Verifiable

Secret Sharing and Secure Multicast. In J. S. Vitter, P. G. Spirakis, and M. Yannakakis,

editors, Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8,

2001, Heraklion, Crete, Greece, pages 580–589. ACM, 2001. 4, 19

[30] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or

A completeness theorem for protocols with honest majority. In Proceedings of the 19th

Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA,

pages 218–229, 1987. 1

[31] M. Hirt and J. B. Nielsen. Robust Multiparty Computation with Linear Communication

Complexity. In C. Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in Computer

Science, pages 463–482. Springer, 2006. 2, 3

[32] M. Hirt, J. B. Nielsen, and B. Przydatek. Cryptographic Asynchronous Multi-party Com-

putation with Optimal Resilience (Extended Abstract). In R. Cramer, editor, Advances

in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the The-

ory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005,

Proceedings, volume 3494 of Lecture Notes in Computer Science, pages 322–340. Springer,

2005. 2, 3

52

BIBLIOGRAPHY

[33] M. Hirt, J. B. Nielsen, and B. Przydatek. Asynchronous Multi-Party Computation with

Quadratic Communication. In ICALP, LNCS 5126, pages 473–485. Springer Verlag, 2008.

2, 3

[34] J. Katz, C. Y. Koo, and R. Kumaresan. Improving the Round Complexity of VSS in

Point-to-point Networks. Inf. Comput., 207(8):889–899, 2009. 19

[35] R. Kumaresan, A. Patra, and C. Pandu Rangan. The Round Complexity of Verifiable

Secret Sharing: The Statistical Case. In ASIACRYPT, volume 6477 of Lecture Notes in

Computer Science, pages 431–447. Springer, 2010. 5

[36] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. 4

[37] A. Patra, A. Choudhury, and C. Pandu Rangan. Asynchronous Byzantine Agreement with

Optimal Resilience. Distributed Computing, 27(2):111–146, 2014. 4, 9, 10

[38] A. Patra, A. Choudhury, and C. Pandu Rangan. Efficient Asynchronous Verifiable Secret

Sharing and Multiparty Computation. J. Cryptology, 28(1):49–109, 2015. 3, 17, 19, 20,

21, 22, 33, 40

[39] Arpita Patra. Error-free multi-valued broadcast and byzantine agreement with optimal

communication complexity. In Principles of Distributed Systems - 15th International Con-

ference, OPODIS 2011, Toulouse, France, December 13-16, 2011. Proceedings, pages 34–

49, 2011. 4

[40] Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Communication efficient statisti-

cal asynchronous multiparty computation with optimal resilience. In Information Security

and Cryptology - 5th International Conference, Inscrypt 2009, Beijing, China, December

12-15, 2009. Revised Selected Papers, pages 179–197, 2009. 3, 5

[41] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Protocols with Honest

Majority (Extended Abstract). In D. S. Johnson, editor, Proceedings of the 21st Annual

ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA,

pages 73–85. ACM, 1989. 2, 3, 4, 9

[42] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd An-

nual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5 Novem-

ber 1982, pages 160–164, 1982. 1

53

	Acknowledgements
	Abstract
	Publications based on this Thesis
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Network Models in MPC
	1.2 Related Work
	1.3 Overview of VSS
	1.4 Our Contribution
	1.5 Preliminaries
	1.5.1 Definitions

	1.6 Organization

	2 Information Checking with Proof of Possession
	2.1 The Protocol
	2.2 Appendix: Properties of Polynomials

	3 Statistical Verifiable Secret Sharing
	3.1 Overview of the Protocol
	3.2 Statistical VSS with Quadratic Overhead
	3.2.1 Verifiably Distributing Values on Bivariate Polynomials of Degree at most t
	3.2.2 Five Round Statistical VSS for a Single Secret
	3.2.3 VSS for multiple secrets

	3.3 Appendix
	3.3.1 Protocol Poly-Check
	3.3.2 Pictorial Representation of the Protocols

	4 Statistical Multiparty Computation in Hybrid Network
	4.1 Design of MPC Protocol
	4.2 Tools used in constructing the MPC
	4.2.1 Existing Asynchronous Primitives
	4.2.2 The Asynchronous Triple Transformation Protocol

	4.3 The Framework for the Offline Phase
	4.4 Statistical MPC Protocol in the Partially Synchronous Setting

	5 Conclusion
	Bibliography

