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Secure	Multiparty	Computation	(MPC)

2B'cast	and	Consensus	in	Crypto	Protocols

§ Secure	multi-party	computation (MPC)	[GMW’87]	:	
• n	parties {P1,	P2,	…,	Pn},	t corrupted; each Pi holds	a	private	input	xi
• One	public	function			f(x1,x2,…,xn)
• All	want	to	learn			y	=	f(x1,x2,…,xn)																					(Correctness)
• Nobody	wants	to	disclose	his	private	input											(Privacy)

§ Secure	2-party	computation (2PC)	[Yao’82]	: n=2

§ Computationally	secure	MPC	(2PC)



Secure	Multiparty	Computation	(MPC)	(2)

Ideal	World
(trusted	party)

x1

x1

x1

x1y1

y1 y1

y1

f

Real	World
(just	the	players)

3B'cast	and	Consensus	in	Crypto	Protocols



B'cast and Consensus in Crypto Protocols 4

The	Trusted-Party	Paradigm		[GMW87]	

• ‘A	protocol	is	secure	for	some	task	if	it	“emulates”	an	“ideal	
process”	where	the	parties	hand	their	inputs	to	a	“trusted	
party,”	who	locally		computes	the	desired	outputs	and	hands	
them	back	to	the	parties.’

• (Aka	the	“simulation	paradigm.”)



Simulation-based	Security

≈

B'cast	and	Consensus	in	Crypto	Protocols 5



Simulation-based	Security

≈
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Broadcast	Functionality	(“Channel”)	[PSL’80]

Value	v

v v v v

…

n players

…

§ If	source	is	honest,	vi =	v (Validity)
§ vi =	vj (Agreement)

t corrupted
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Broadcast	Functionality	(“Channel”)	[PSL’80]
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MPC:	Assumptions	on	Number	of	Parties

Unconditionally	secure	MPC	typically	assumes:

§ For	t	<	n/3	[BGW’88,	CCD’88]:
• Secure	(private	and	authentic)	pairwise	channels
• Broadcast	channel—but	it	may	be	realized	by	Byzantine	agreement	

protocol

§ For	t	<	n/2	[RB’89]:
• Secure	(private	and	authentic)	pairwise	channels
• Physical broadcast	channel	(no	protocol	exists!)
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An	MPC	Protocol	for	f

The	“share-compute-reveal”	paradigm:
1. Share	phase:	Each	Pi “commits”	to	his	input	(using	Verifiable	

Secret	Sharing	[VSS])
2. Compute	phase:	Shared	inputs	are	used	to	evaluate	an	

arithmetic	circuit	C	gate-by-gate.	(Typically	a	linear	VSS	scheme	
is	used.)

3. Reveal	phase:	At C	‘s	output	gate,	parties	possess	a	verifiable	
sharing	of f(x1,x2,…,xn);	parties	publicly	reconstruct	this	value

§ Multiplication	gate:	Most	expensive	part	of	MPC	protocol	─	
typically	requires	broadcast	channel

10
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Network/Communication	Models

§ Point-to-point	model
• Secure	(private)	channels	between	
the	parties	
(Secure	Message	Transmission)

§ Broadcast	model
• Additional	broadcast	channel

§ Synchronous	communication
• Bounded	delay
• Global	clock
• Protocol	proceeds	in	rounds
• Guaranteed	termination
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Instantiating	Broadcast	Channel
Broadcast
Sender	with	input	𝑥
• Agreement:	All	honest	parties	
output	the	same	value

• Validity:	If	the	sender	is	honest,	
the	common	output	is	𝑥

Byzantine	agreement
Each	𝑃$ has	input	𝑥$
• Agreement:	All	honest	parties	

output	the	same	value
• Validity:	If	all	honest	parties	

have	the	same	input	𝑥,	
the	common	output	is	𝑥
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Instantiating	Broadcast	Channel
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Ideal-world	security	definition	
(simulation-based)

Real-world	security	definition
(property-based)
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Feasibility	of	MPC	with	(Instantiated)	Broadcast
§ Classical	result	[BGW’88]	

• “Share-compute-reveal”	paradigm
• Perfect,	adaptively	secure	for	𝑡 < 𝑛/3
• Concurrently	composable
• 𝑂 𝑑 rounds,	𝑂 𝑑 broadcasts

§ Improving	communication	complexity
• E.g.,	player-elimination	framework	[HMP’00]	[HM’01]	[BH’06]	
[HN’06]	[DN’07]	[BH’08]	[BFO’12]

• 𝑂 𝑑 + 𝑛 rounds

§ Improving	round	complexity
• 𝑂 𝑑 rounds,	1 broadcast [KKK’07]
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Protocols	with	(Instantiated)	Broadcast

Parallel	SMT

Parallel	broadcast
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Deterministic	Broadcast/Consensus	Protocols
• Perfect	and	adaptive	security	for	𝑡 < 𝑛/3
[BGP’89]	[GM’93]	[HZ’10]

• “Deterministic	termination”	(DT)	– single	output	round
• Compose	nicely
• However,	they	require	𝑂 𝑛 rounds	– this	is	inherent	[FL’82]
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I. Introduction
II. Brief	Recap

• B’cast/consensus	definitions,	models,	protocols
III. Prob.	Termination	and	Composability	of	B’cast/Consensus	Protocols

• The	Probabilistic	Termination	framework
• Applications:	UC-secure	(parallel)	b’cast (resp.	SFE)	in	exp.	constant	(resp.,	O(d))	rounds

IV. B’cast/Consensus	on	Sparse	Networks
• AE-b’cast/agreement,	AE-MPC	(AE:	“Almost	Everywhere”)	

V. “IT-authenticated”	B’cast/Consensus
• Information-theoretic	pseudosignatures

VI. Blockchain-based	Consensus
• A	“consensus	taxonomy”
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Broadcast	(aka	Byzantine	Generals)	[PSL80,	LSP82]

Message v Sender	(“Dealer”)

v1 v2 v3 vn-1…

n	players
t	corrupted

§ Validity:	If	dealer	is	honest,	vi =	v			
§ Agreement:	vi =	vj
§ Termination:	Every	player	eventually	outputs	a	value



...
vv v v

Consensus	Protocol

v1 v3
...

vnv2
n parties
t corrupted

vi	Î V =	{0,1}

Consensus	(aka	Byzantine	Agreement)	[PSL80,	LSP82]
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§ The	Consensus	Problem:	n parties start	with	an	initial	value	vi
• Agreement: All	honest	parties	output the	same	value	
• Validity: If	all	honest	parties	start	with	the	same	input	(say,	v),	then they

output	this	value
• Termination:		All	honest	parties	eventually	terminate
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Consensus	(aka	Byzantine	agreement)	[PSL80,	LSP82]
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Protocol

hold sell! buyhold
m	>	2
V	=	{sell,buy,hold}

sell

Strong Consensus	[Nei’94]
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Protocol

hold sell! buyhold
m	>	2
V	=	{sell,buy,hold}

sell
Decision	value	held
by	good party!

Strong	Consensus	[Nei’94]
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Strong	Consensus	

Termination:			All	good	players	decide	on	a	value
Agreement:		If	two	good	players	decide	on	v	and	w,	resp.,	

then	v	=	w	

Validity:		If	all	good	players	have	the	same	initial	value,	v,	
then	all	good	players	decide	on	v	

Strong	Validity:		If	the	good	players	decide	on	v,	then	v	
is	the	initial	value	of	some	good	player
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§ Channels: Authenticated	point-to-point	
§Network	communication:	Synchronous;	rushing	adversary	
§ Adversary’s	computational	power:

• Unbounded	(“unconditional,”	information-theoretic	security)
• Polynomial	time	(in	security	parameter;	cryptographic,	“authenticated”)	

Standard	Model(s)	(Setup	+	Assumptions)
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Impossibility	of	B’cast (Consensus)	with	n	=	3t	[PSL80,	LSP82]	
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Impossibility	of	Strong	Consensus	[Nei’93,FG’03]

n	>	max(3,m)t

Parties ¨ ¨¨ ¨¨
…

t

v1 v2 v3 vmv1
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§ Rounds: r	=	t+1		[LSP82,	FL82]
§ Resiliency:	

• Unconditional	setting:	n	>	3t		[LSP82]

Complexity	Measures
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§ Rounds: r	=	t+1		[LSP82,	FL82]
§ Resiliency:	

• Unconditional	setting:	n	>	3t		[LSP82]
• Cryptographic	setting:	

− Broadcast:		 n	>	t				[LSP82,	DS82]
− Agreement:	 n	>	2t		[Fit03]

Complexity	Measures
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§ Rounds: r	=	t+1		[LSP82,	FL82]
§ Resiliency:	

• Unconditional	setting:	n	>	3t		[LSP82]
• Cryptographic	setting:	

− Broadcast:		 n	>	t				[LSP82,	DS82]
− Agreement:	 n	>	2t		[Fit03]

§Message/Bit	complexity:	m	=	Ω(n2)		[DR85,BGP92,CW92]

Complexity	Measures
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§Network: Point-to-point	authenticated	channels
§ [LSP82]:	n	>	3t,	r	=	t+1,	exp(n)

Unconditional	Broadcast/Consensus	Protocols
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LSP’s	Protocol	(“EIG”	[BDDS87])

t+1
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§Network: Point-to-point	authenticated	channels
§ [LSP82]:	n	>	3t,	r	=	t+1,	exp(n)

Unconditional	Consensus	Protocols	(2)
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§Network: Point-to-point	authenticated	channels
§ [LSP82]:	n	>	3t,	r	=	t+1,	exp(n)
§ [GM93]:	n	>	3t,	r	=	t+1,	poly(n)

• [BG91,AD15]:		r	=	min(t+1,	f+2)		(optimal	early	stopping	[DRS90])

Unconditional	Consensus	Protocols
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§Network: Point-to-point	authenticated	channels
§ [LSP82]:	n	>	3t,	r	=	t+1,	exp(n)
§ [GM93]:	n	>	3t,	r	=	t+1,	poly(n)

• [BG91,AD15]:		r	=	min(t+1,	f+2)		(optimal	early	stopping	[DRS90])
§ If	 r	=	O(t),	much	simpler	protocols

• E.g.,	the	“Phase	King”	paradigm[BG89]

Unconditional	Consensus	Protocols
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§ Setup: Public-key	infrastructure	(PKI)
§ Assumption:	Digital	signatures	secure	against	adaptive	chosen-message	
attacks	[GMR88]

§ [DS82]:	n	>	t,	r	=	t+1,	poly(n)

Authenticated Consensus	Protocols
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§ [DS82]	protocol	(informal):
• Source	signs its	input	value	and	sends	to	all	parties	
• r	=	1,…,t+1:	
o If	any	value	vi	Î V =	{0,1} has	been	newly	added	to	a	set	of	accepted	values,	
sign it	and	send	value	and	signatures	to	everybody	

o If	a	value/signatures	message	is	received	by	any	party	containing	valid	
signatures by	at	least	r distinct	players	including	the	sender,	then	accept	
the	value	and	update	signatures

• If	only	one	accepted	value,	then	the	party	outputs	that	value;	otherwise	a	
default	value

Authenticated Consensus	Protocols	(2)
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§ [BO83,	Rab83]:	Introduction	of	randomization	to	distributed	algorithms	
(2015	Dijkstra Prize)

§ Expected	constant	no.	of	rounds;	probabilistic,	non-simultaneous	
termination	[DRS90]

§ Consensus	reduces	to	access	to	“common	coin”	[Rab83]
§ [FM88]:	Common	coin	from	“scratch”

• [KK06]:	Common	coin	in	the	cryptographic	setting

Randomized Consensus	Protocols
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§ [BO83,	Rab83]:	Introduction	of	randomization	to	distributed	algorithms	
(2015	Dijkstra Prize)

§ Expected	constant	no.	of	rounds;	probabilistic,	non-simultaneous	
termination	[DRS90]

§ Consensus	reduces	to	access	to	“common	coin”	[Rab83]
§ [FM88]:	Common	coin	from	“scratch”

• [KK06]:	Common	coin	in	the	cryptographic	setting

§ “Probabilistic	termination”	broadcast/consensus	protocols	[CCGV16]

Randomized Consensus	Protocols



Example: Protocol	𝜋567 (based	on	[FM’88])

P-SMT

OC

P-SMT

P-SMT

P-SMT

Input	Distribution

Oblivious	Coin

Voting
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[FM’88]	in	more	detail:
§ Proceeds	in	phases	until	termination
§ In	each	phase	each	party	has	an	input	bit

• If	all	honest	parties	start	the	phase	with	the	same	bit,	
they	terminate at	the	end	of	the	phase

• Otherwise,	with	probability	𝑝 > 0 all	honest	parties	agree	on	
the	same	bit	at	the	end	of	the	phase	
(and	terminate	in	the	next	phase)

• With	probability	1 − 𝑝
o No	agreement	at	the	end	of	the	phase,	or
o the	adversary	makes	some	of	the	honest	parties	terminate;
the	remaining	parties	will	terminate	in	the	next	phase
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§ [FM’88] has	Probabilistic	Termination	(PT):
• Expected	𝑂 1 rounds
• No	guaranteed	termination:	statistical	security	
(for	PPT	parties)

• No	simultaneous	termination:
honest	parties	might	terminate	at	different	rounds	[DRS’90]

• All	honest	parties	terminate	in	a	constant	window

§ Extends	to	multi-valued	BA	[TC’84]
• Two	additional	rounds

§ Perfect	security	[GP’90]
• Best	of	both	worlds
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Two	issues:	
1. Running	time	of	parallel	randomized	b’cast/consensus	

protocols?
2. Composition

• All	PT broadcast	protocols	are	proven	secure	using	a	property-based
definition

• Composition	theorems	require	simulation-based proofs
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Instantiating	Broadcast	Channel
Broadcast
Sender	with	input	𝑥
• Agreement:	all	honest	parties	
output	the	same	value

• Validity:	if	the	sender	is	honest,	
the	common	output	is	𝑥

Byzantine	agreement
Each	𝑃$ has	input	𝑥$
• Agreement:	all	honest	parties	

output	the	same	value
• Validity:	if	all	honest	parties	

have	the	same	input	𝑥,	
the	common	output	is	𝑥

𝑥 𝑥

𝑥𝑥𝑥
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𝑥&

𝑥'

𝑥(

𝑥
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𝑥

𝑥
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𝑥
𝑥*

𝑥

Ideal-world	security	definition	
(simulation-based)

Real-world	security	definition
(property-based)
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Two	issues:	
1. Running	time	of	parallel	randomized	protocols?
2. Composition

• All	PT	broadcast	protocols	are	proven	secure	using	a	property-based	
definition

• Composition	theorems	require	simulation-based	proofs

§Next:	A	framework	for	designing	and	analyzing	PT	protocols	
[CCGZ’16]
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I. Introduction
II. Brief	Recap

• B’cast/consensus	definitions,	models,	protocols
III. Prob.	Termination	and	Composability	of	B’cast/Consensus	Protocols

• The	Probabilistic	Termination	framework
• Applications:	UC-secure	(parallel)	b’cast (resp.	SFE)	in	exp.	constant	(resp.,	O(d))	rounds

IV. B’cast/Consensus	on	Sparse	Networks
• AE-b’cast/agreement,	AE-MPC	(AE:	“Almost	Everywhere”)	

V. “IT-authenticated”	B’cast/Consensus
• Information-theoretic	pseudosignatures

VI. Blockchain-based	Consensus
• A	“consensus	taxonomy”
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Issue	1
Given:	Protocol	with	expected	O(1)	running	time

B'cast	and	Consensus	in	Crypto	Protocols 46



Given:	Protocol	with	expected	O(1)	running	time
(e.g.,	geometric	distribution)
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Issue	1



Given:	Protocol	with	expected	O(1)	running	time
What’s	the	expected	running	time	of	n	parallel	
instances?
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Given:	Protocol	with	expected	O(1)	running	time
What’s	the	expected	running	time	of	n	parallel	
instances?

Θ(log	n) rounds
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Given:	Protocol	with	expected	O(1)	running	time
What’s	the	expected	running	time	of	n	parallel	
instances?

Θ(log	n) rounds
Example: Coin	flipping
• Stand-alone	coin	flip:	Pr(heads)	=	½
Output	is	heads in	expected	2 rounds	

• Flipping	in	parallel	n coins,	each	coin	until	heads
Expected	log	n	rounds
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§ The	mathematical	expectation	of	the	maximum	of	n
random	variables	does	not	necessarily	equal	the	
maximum	of	their	expectations	[BE’03,Eis’08]

§ Fast	implementations	of	broadcast	protocols	run	in	
expected	O(1) time
→	parallel	executions	no	longer	constant	(nor	fixed)
→	non-simultaneous	termination

§ Composition	— how	to	simulate	probabilistic	
termination?
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Composition

§ All	PT broadcast	protocols	are	proven	secure	using	a	property-
based definition

§ Composition	theorems	require	simulation-based proofs
§ [KMTZ’13]	defined	a	UC-based	framework	for	synchronous	DT	
protocols	

§ PT	protocols	are	very	delicate	⎼many	subtle	issues	not	
captured	by	[KMTZ’13]

§Next: A framework	for	designing	and	analyzing	PT	protocols	
[CCGZ’16]
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The	PT	Framework	
Part 	 I : 	The 	Bas ics



Synchronous	Protocols	in	UC

• The	environment	can	observe	in	which	round	parties	
terminate	[KTMZ’13]

• One-round	functionalities	hide	the	round	complexity
• In	[KTMZ’13]	each	ideal	functionality	is	parameterized	
by	number	of	rounds

• Parties	continuously	request	output	and	receive	at	the	
last	round

• ⇒ Parties	in	ideal	world	receive	output	at	same	round as	
in	protocol	execution	in	the	real	world
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Canonical Synchronous	Functionality

• Separate	the	function	from	the	round	structure
• A	CSF	consists	of	input	round	and	output	round
• Parameterized	by	

• (Randomized)	function	𝑓 𝑥%, … , 𝑥@, 𝑎
• Leakage	function	𝑙 𝑥%, … , 𝑥@

input	𝑥% leakage

input	𝑥) leakage

fetch
𝑦

fetch
𝑦

input	𝑎

input	𝑎
CSF	ℱ
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CSF	Examples

• SMT:	𝑃$ sends	𝑥$ to	𝑃E
• 𝑓 𝑥%, … , 𝑥@, 𝑎 = 𝑦%, … , 𝑦@ ,	s.t.	𝑦E = 𝑥$ and	𝑦G = 𝜆 (𝑘 ≠ 𝑗)

• 𝑙 𝑥%, … , 𝑥@ = L
𝑥$ 	if	𝑃E	honest								
𝑥$			if	𝑃E	corrupted

• Broadcast:	𝑃$ broadcasts	𝑥$
• 𝑓 𝑥%, … , 𝑥@, 𝑎 = 𝑥$, … , 𝑥$
• 𝑙 𝑥%, … , 𝑥@ = 𝑥$

• SFE:	parties	compute	a	function	𝑔
• 𝑓 𝑥%, … , 𝑥@, 𝑎 = 𝑔 𝑥%, … , 𝑥@
• 𝑙 𝑥%, … , 𝑥@ = 𝑥% , … , 𝑥@

• BA:
• 𝑓 𝑥%, … , 𝑥@, 𝑎 = \𝑦	if	at	least	𝑛 − 𝑡	inputs	are	𝑦	

𝑎	otherwise																																		
• 𝑙 𝑥%, … , 𝑥@ = 𝑥%, … , 𝑥@

Parallel	version
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Synchronous	Normal	Form	(SNF)
• SNF	protocol:

• In	each	round	exactly	one	ideal	functionality	is	called	
(as	in	stand-alone)

• All	hybrids	are	(2-round)	CSFs
• Example:	Protocol	𝜋567 (based	on	[FM’87])

P-SMT

OC

P-SMT

P-SMT

P-SMT

Input	Distribution

Oblivious	Coin

Voting
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Extending	Rounds	(DT)

• Most	functionalities	cannot	be	implemented	by	two-
round	protocols

• Wrap	the	CSFs	with	round-extension wrappers
• Sample	a	termination	round	𝜌abcd ← 𝐷
• DT:	all	parties	receive	output	(strictly)	at	𝜌abcd

𝒲𝒔𝒕𝒓𝒊𝒄𝒕
𝑫 ⋅

CSF	ℱ

input	𝑥%
leakage

input	𝑥)
leakage

fetch

fetch
𝑦

fetch

𝜌abcd

input	𝑎
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Extending	Rounds	(PT)

• PT:	𝜌abcdis	an	upper	bound
• Sample	a	termination	round	𝜌abcd ← 𝐷
• All	parties	receive	output	by 𝜌abcd (flexible)
• 𝒜 can	instruct	early	delivery	for	𝑃$ at	any	round

𝒲𝒇𝒍𝒆𝒙
𝑫 ⋅

CSF	ℱ

input	𝑥%
leakage

input	𝑥)
leakage

fetch
𝑦

fetch

𝜌abcd

input	𝑎

early	𝑃$

fetch
𝑦
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Where	Do	We	Stand?

Thm: Protocol	𝜋567 implements	𝒲uvbw
x ℱ67

in	the	 ℱyz{|, ℱ}~ -hybrid	model,	for	𝑡 < 𝑛/3,	assuming	
all	parties	start	at	the	same	round

𝒲𝒇𝒍𝒆𝒙
𝑫 ⋅

ℱ𝑩𝑨

P-SMT

OC

P-SMT

P-SMT

P-SMT

𝜋567
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The	PT	Framework	
Part 	 I I : 	Dea l ing 	wi th 	“S lack”



Problem:	Sequential	Composition
New	execution	starts	after all parties	finished	previous	one
With	PT	protocols,	fast	parties	start	new	execution	before slow	
parties	finished	previous	execution

overlap
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Additional	phase



Sequential	Composition:	Solutions

Goal: ℓ sequential	executions	of	expected	𝑂 1 rounds	protocols	in	
expected	𝑂 ℓ rounds
• Naïve	solution	#1:	wait	until	re-synchronized

• Naïve	solution	#2:	
Expand	each	round	to		2𝑐 + 1 rounds
• Execution	1,	start	slack	𝑐% = 𝑐,	expansion	factor	2𝑐% + 1
• Execution	2,	slack	𝑐) = c 2𝑐% + 1 ,	factor	2𝑐) + 1
• Execution	3,	slack	𝑐' = c 2𝑐) + 1 ,	factor	2𝑐' + 1
• After	𝑖 executions,	slack	𝑐 2𝑐$�% + 1 = O 2$�%𝑐$

B'cast	and	Consensus	in	Crypto	Protocols 63

1 wait

1 wait 2

2

Explained	in	3	slides



Sequential	Composition:	Solutions	(2)

Goal: ℓ sequential	executions	of	expected	𝑂 1 rounds	protocols	in	
expected	𝑂 ℓ rounds

• [LLR’02]	– adding	re-synchronization	points
• Statistical	security	(inherent)
• Static	corruptions
• Property-based	security

• [BE’03]	[KK’06]
• Simpler	solutions,	partial	proofs	(no	simulation)

• PT	framework:	A	generic	compiler	for	PT	protocols
• Supports	non-simultaneous	start	of	the	protocol
• Reduces	the	slackness	to	1
• Simulation-based	security	– a	composition	theorem
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“Slack”	Tolerance

• Main	idea:	Make	the	overlap	meaningless	by	adding	
“dummy”	rounds

• Assume	slack	of	𝑐 rounds
• Extend	each	round	to	3𝑐 + 1 rounds
• Messages	of	𝑃$ are	queued	and	forwarded	in	cycles	of	3𝑐 + 1

• DT	functionalities:	wrap	𝒲�ac$�a
x ℱ with	𝒲z|

� ⋅
• Each	party	runs	the	same	number	of	rounds	
• The	slack	remains	the	same

𝒲𝑺𝑻
𝒄 ⋅

𝒲𝒔𝒕𝒓𝒊𝒄𝒕
𝑫 ⋅

CSF	ℱ
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Non-Simultaneous	Start

Each	round	extends	to	3𝑐 + 1
rounds:

• Listen	for	2𝑐 + 1 rounds
• Send	in	round	𝑐 + 1
• Wait	(without	listening)

for	𝑐 rounds
1

2

3

4

5

6

1

2

1

2

3

4

5

6

1

2
7

8 7

8

Concurrent	Composition
Round	𝑟 messages	
after	round	𝑟 − 1
before	round	𝑟 + 1
Each	party	proceeds	in	a	
locally	sequential	manner
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Slack	Tolerance	and	Reduction	(PT)
Hybrids	introduce	additional	slack,	rounds	might	blow-up
Use	slack-reduction	techniques	[Bracha’84]
• Upon	receiving	output	𝑣, send	 𝑜𝑘, 𝑣 to	all	the	parties
• Upon	receiving	𝑡 + 1messages	 𝑜𝑘, 𝑣 ,	accepts	𝑣
• Upon	receiving	𝑛 − 𝑡 messages	 𝑜𝑘, 𝑣 , terminates

Wrap	𝒲uvbw
x ℱ with𝒲z|5

� ⋅

𝒲𝑺𝑻𝑹
𝒄 ⋅

𝒲𝒇𝒍𝒆𝒙
𝑫 ⋅

CSF	ℱ
Applies	to	public-output
functionalities
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Composition	Theorem	(Informal)
Denote	 𝒲x|

�,x ℱ = 𝒲z|
� 𝒲�ac$�a

x ℱ

𝒲y|
�,x ℱ = 𝒲z|5

� 𝒲uvbw
x ℱ

Thm:	Let	𝑐 ≥ 0 and	𝑡 < 𝑛/3 (adaptive	&	perfect	security)
Let	𝜋 be	an	SNF	protocol	implementing	a	wrapped	CSF	
𝒲uvbw

x ℱ in	the	 ℱ%,… , ℱℓ, ℱ%�, … , ℱd� -hybrid	model,				
assuming	all	parties	start	at	the	same	round
Then,	Comp� 𝜋 implements	𝒲y|

�,x� ℱ in	the	
𝒲y|

�,x� ℱ% , … ,𝒲y|
�,xℓ ℱℓ ,𝒲x|

�,x�� ℱ%� , … ,𝒲x|
�,x�� ℱd�

-hybrid	model,	assuming	all	parties	start	within	𝑐 rounds
If	each	𝐷$ (𝐷$�)	has	constant	expectation	then	
Comp� 𝜋 	has	(asymptotically)	same	round	complexity	
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Corollary

𝒲𝒇𝒍𝒆𝒙
𝑫 ⋅

ℱ𝑩𝑨

P-SMT

OC

P-SMT

P-SMT

P-SMT

𝜋567

P-SMT

OC

P-SMT

P-SMT

P-SMT

Comp 𝜋567

𝒲𝒇𝒍𝒆𝒙
𝑫 ⋅

ℱ𝑩𝑨

𝒲𝑺𝑻𝑹
𝒄 ⋅

Then

If
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Parallel	Broadcast

• Running	[FM’88]	𝑛 times	in	parallel	requires	expected	
Θ log 𝑛 rounds

• Parallel	broadcast	in	
expected	𝑂 1 [BE’03]

• First	round:	
each	𝑃$ distributes	
its	input	𝑥$

• Proceeds	in	phases	
until	termination

P-SMT

Trunc-BA

P-SMT

LE

BA

input	distribution

truncated	parallel	
BA	

BA

distributing	results

leader	election

BA	on	leader	result

BA	on	termination
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Parallel	Broadcast	(2)
Thm	[BE’03]:	For	appropriate	parameters	the	protocol	
computes	parallel	broadcast	in	expected	𝑂 1 rounds
Two	issues:
1) No	guaranteed	termination:	statistical	security.

We	achieve	perfect	security	(cf.	[GP’90])
• Run	at	most	𝑇 phases
• If	not	terminated,	run	a	deterministic	protocol

2) Adaptive	security	according	to	property-based	
definition	(not	simulation)
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Attack	on	[BE’03]

𝑥

𝑦
𝑦

𝑦
𝑦

Round	1:	each	party	𝑃$ distributes	its	input	𝑥$

The	adversary	is	rushing
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Attack	on	[BE’03]

𝑥
𝑥

𝑥𝑥

𝑥

𝑥

• The	adversary	can	corrupt	an	honest	party	and	
change	its	input	𝑥 after the	protocol	started

• This	behavior	cannot	be	simulated	in	the	ideal	world	
(as	in	[HZ’10])

𝑥
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Unfair Broadcast
The	ideal	adversary	is	allowed	to	corrupt	the	sender	and	
change	its	input	– before	any	party	received	it

Def:	Unfair	broadcast	for	sender	𝑃$ is	CSF	with
• 𝑓 𝑥%, … , 𝑥@, 𝑎 = 𝑥$, … , 𝑥$
• 𝑙 𝑥%, … , 𝑥@ = 𝑥$

Thm:	Protocol	[BE’03]	implements	𝒲uvbw
x ℱ��y6~

in	the	 ℱyz{|, ℱ��, ℱ67, ℱ|c�@��67 -hybrid	model,	for	𝑡
< 𝑛/3,	assuming	all	parties	start	at	the	same	round
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The	difference	from	broadcast	
is	the	leakage	function



Unfair	Parallel	Bcast	⇒ Parallel	Bcast
Before	𝑃$ distributes	𝑥$,	it	commits	to	its	input

1) Each	party	secret	shares	its	input	using	
𝑡 + 1 -out-of-𝑛 secret	sharing

2) Each	party	broadcasts	all	the	shares	it	received	using	
an	unfair	parallel	broadcast	channel

3) Reconstruct	and	output	the	values
Intuition:	In	round	1	𝒜 only	learns	random	shares
In	round	2	𝒜 can	change	only	𝑡 < 𝑛/3 shares
⇒ Inputs	of	parties	that	are	honest	in	round	1	
(before	𝒜 learns	anything)	are	reconstructed	properly

Thm:	𝒲uvbw
x ℱy6~ can	be	implemented	in	the	

ℱyz{|, ℱ��y6~ -hybrid	model,	for	𝑡 < 𝑛/3,	
assuming	all	parties	start	at	the	same	round
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SFE	with	Expected	𝑂 𝑑 Rounds
Thm:	Protocol	[BGW’88] implements	
𝒲uvbw

x ℱz�� in	the	 ℱyz{|, ℱy6~ -hybrid	model	
in	𝑂 𝑑 rounds,	assuming	all	parties	start	at	
same	round

Thm:	Let	𝑐 ≥ 0.
𝒲y| ℱz�� can	be	implemented	in	the	
𝒲x| ℱyz{| ,𝒲y| ℱy6~ -hybrid	model	in	
expected	𝑂 𝑑 rounds,	assuming	all	parties	start	
within	𝑐 rounds

P-SMT

P-BC

P-SMT

P-BC
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PT	Summary

We	considered	the	composability	of	cryptographic	protocols	
with	probabilistic	termination	
§ “PT	framework”	for	designing	cryptographic	protocols	in	

stand-alone	fashion	and	compiler	to	fast	composition	in	
the	UC	framework

§ Perfect,	adaptively	secure	protocols	in	the	P2P	model	
1) BA	with	expected	𝑂 1 rounds	
2) Parallel	broadcast	with	expected	𝑂 1 rounds
3) SFE	with	expected	𝑂 𝑑 rounds
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I. Introduction
II. Brief	Recap

• B’cast/consensus	definitions,	models,	protocols
III. Prob.	Termination	and	Composability	of	B’cast/Consensus	Protocols

• The	Probabilistic	Termination	framework
• Applications:	UC-secure	(parallel)	b’cast (resp.	SFE)	in	exp.	constant	(resp.,	O(d))	rounds

IV. B’cast/Consensus	on	Sparse	Networks
• AE-b’cast/agreement,	AE-MPC	(AE:	“Almost	Everywhere”)	

V. “IT-authenticated”	B’cast/Consensus
• Information-theoretic	pseudosignatures

VI. Blockchain-based	Consensus
• A	“consensus	taxonomy”
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Lecture’s	Roadmap



§ Unconditionally	secure	b’cast/consensus:
• Possible	iff <	1/3	of	parties	are	corrupt	[LSP’82]
• Authentic	(private)	point-to-point	channels	sufficient…
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… but	what	if	only	some	of	
the	nodes	are	connected?

Almost-Everywhere B’cast/Agreement [DPPU’86]
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Almost-Everywhere Agreement (Consensus) [DPPU86]

§ “Give up” some of the players; guarantee agreement for a large 
fraction of them

§ Adv. implicitly corrupts by corrupting sufficiently many neighbors
§ Gn = (V,E) 

GV

T

X(T)
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Almost-Everywhere Agreement (Consensus) [DPPU86]

§ “Give up” some of the players; guarantee agreement for a large 
fraction of them

§ Adv. implicitly corrupts by corrupting sufficiently many neighbors
§ Gn = (V,E) 

G V X(T)

T

W

§ W: Privileged set
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Almost-Everywhere Agreement (Consensus) [DPPU86] (2)

§ G = (V,E),   |T| = t,  P = 2V

§ X : P (≤ t) → P
1. T1 Í T2 Þ X(T1) Í X(T2)
2. T Í X(T)
X = maxT {|X(T)|}

Protocolπ achieves X-agreement if∀T	$W, |W| ≥	n – X, s.t. all 
parties in W are able to reach agreement

§ Fully connected network: X(T) = T
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Almost-Everywhere Agreement (Consensus) [DPPU86] (3)

§ Transmission scheme to simulate sending of a message between 
any two nodes

§ If nodes Є W (= V – X(T)), then simulation is faithful
§ Þ Possible to simulate BA protocol for fully connected networks 

treating processors in X(T)) as faulty 
§ “Almost-everywhere broadcast”



B'cast	and	Consensus	in	Crypto	Protocols 85

Transmission Scheme [DPPU86]

○ ○
u v

○
○

○
○

○
○

O(u)

○
○

○
○

○
○

I(v)

§ v takes majority of received copies



B'cast	and	Consensus	in	Crypto	Protocols 86

X-Agreement on Classes of Networks

§ Objective: Large sets T, “small” X(T) 
§ Gn of constant degree (butterfly, expander graphs),                    

t = O(n/log n) → O(t)-agreement  [DPPU86]
§ Gn of degree O(nε),   t = O(n) → O(t)-agreement  [DPPU86]
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Comb. Characterization of Fault-tolerant Networks

Theorem [DPPU86]: Let Gn be a communication graph and         
Ti Є P (≤ t). There exists a protocol π such that processors in Wi
reach agreement if and only if for every pair of processors        
u,v  Є Wi ÇWj, the set Ti È Tj does not disconnect u from v in 
Gn.  
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X-Agreement on Classes of Networks

§ Objective: Large sets T, “small” X(T) 
§ Gn of constant degree (butterfly, expander graphs),                    

t = O(n/log n) → O(t)-agreement  [DPPU86]
§ Gn of degree O(nε),   t = O(n) → O(t)-agreement  [DPPU86]
§ Gn of constant degree, t = O(n) → O(t)-agreement* [Upf92]

* Inefficient
Most communication paths between pairs of nodes in W contain one 
corrupted node
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X-Agreement on Classes of Networks

§ Objective: Large sets T, “small” X(T) 
§ Gn of constant degree (butterfly, expander graphs),                    

t = O(n/log n) → O(t)-agreement  [DPPU86]
§ Gn of degree O(nε),   t = O(n) → O(t)-agreement  [DPPU86]
§ Gn of constant degree, t = O(n) → O(t)-agreement* [Upf92]

* Inefficient
Most communication paths between pairs of nodes in W contain one 
corrupted node

§ Gn of logarithmic degree, t = O(n) → O(t)-agreement  [CGO09]
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O(n)-Agreement on Logarithmic-Degree Graphs [CGO09]

§ We want O(t)-agreement with t = O(n) on graph with degree                     
O(log n/log log n)

§ Idea: Recursively apply [Upf92] on graphs of size O(log n), 
plus other tools (Differential agreement [FG03])



Degree of
graph

# Corrupted 
nodes

# Doomed 
nodes

Running 
time of 

algorithm

X-Agreement (MPC) on Classes of Networks (2)
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§ Unconditionally	secure	MPC:
• Possible	iff <	1/3	of	parties	are	corrupt	[BGW’88,	CCD’88]
• Private	point-to-point	channels	sufficient…
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… but	what	if	only	some	of	
the	nodes	are	connected?

Almost-Everywhere MPC [GO’08]



§ Idea!:	Simulate	private p2p	channels	using	SMT protocol
• Easy	with	connectivity	at	least	2t+1
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Almost-Everywhere MPC [GO’08] (2)
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§ S and R connected by n channels (“wires”)

Receiver RSender S

§ t wires (actively) corrupted by adversary A

message+

Problem: Transmit a message+ privately and reliably 

Secure Message Transmission (SMT) [DDWY’93]



§ Idea!:	Simulate	private p2p	channels	using	SMT protocol
• Easy	with	connectivity	at	least	2t+1
• … Can	we	do	better?
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Almost-Everywhere MPC [GO’08] (3)



§ Yes!		Can	even	get	constant connectivity	(!)	[GO’08]
•…some	of	the	good	guys	might	be	totally	cut	off	from	the	others…
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SMT-PD to the Rescue! 

• So	we	give	up	on	correctness	
and	privacy	for	these	poor	lost	
souls	(X(T))



§ Idea!:	Simulate	private	p2p	channels	between	nodes	using	SMT-PD
protocol
•Possible	even	if	just	one	good	path!
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SMT-PD to the Rescue! (2) 
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§ S and R connected by n channels (“wires”)

Receiver RSender S

§ t wires (actively) corrupted by adversary A

message+

Problem: Transmit a message+ privately and reliably 

SMT by Public Discussion (SMT-PD) [GO’08,GGO’10]
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§ S and R connected by n channels (“wires”)

Receiver RSender S

§ … plus an (authentic and reliable) public channel
§ t wires (actively) corrupted by adversary A

message+

Problem: Transmit a message+ privately and reliably 

SMT by Public Discussion (SMT-PD) [GO’08,GGO’10]



§ Idea!:	Simulate	private	p2p	channels	between	nodes	using	SMT-PD
protocol
• Possible	even	if	just	one	good	path
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SMT-PD to the Rescue! (3) 

• Use	almost-everywhere	
broadcast to	implement	public	
channel
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Almost-Everywhere MPC [GO’08] (3)

G

Intuition: 1	+	2		=	SMT-PD!

§How?
1. AE-broadcast	in	W
2. Multiple	paths	between	u,v ЄW,	

some	not	corrupted
§ Thm:	MPC	possible	in	Gn iff

n	>	3·|X(T)|



I. Introduction
II. Brief	Recap

• B’cast/consensus	definitions,	models,	protocols
III. Prob.	Termination	and	Composability	of	B’cast/Consensus	Protocols

• The	Probabilistic	Termination	framework
• Applications:	UC-secure	(parallel)	b’cast (resp.	SFE)	in	exp.	constant	(resp.,	O(d))	rounds

IV. B’cast/Consensus	on	Sparse	Networks
• AE-b’cast/agreement,	AE-MPC	(AE:	“Almost	Everywhere”)	

V. “IT-authenticated”	B’cast/Consensus
• Information-theoretic	pseudosignatures

VI. Blockchain-based	Consensus
• A	“consensus	taxonomy”
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• Rounds: r	=	t+1		[LSP82,	FL82]
• Resiliency:	

• Unconditional	setting:	n	>	3t		[LSP82]
• Cryptographic	setting:	

− Broadcast:		 n	>	t				[LSP82,	DS82]
− Agreement:	 n	>	2t		[Fit03]

• Message/Bit	complexity:	m	=	Ω(n2)		[DR85,BGP92,CW92]

Complexity	Measures
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• Rounds: r	=	t+1		[LSP82,	FL82]
• Resiliency:	

• Unconditional	setting:	n	>	3t		[LSP82]
• Cryptographic	setting:	

− Broadcast:		 n	>	t				[LSP82,	DS82]
− Agreement:	 n	>	2t		[Fit03]

• Message/Bit	complexity:	m	=	Ω(n2)		[DR85,BGP92,CW92]

Complexity	Measures
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§ [DS82]	protocol	(informal):
• Source	signs its	input	value	and	sends	to	all	parties	
• r	=	1,…,t+1:	
o If	any	value	vi	Î V =	{0,1} has	been	newly	added	to	a	set	of	accepted	values,	
sign it	and	send	value	and	signatures	to	everybody	

o If	a	value/signatures	message	is	received	by	any	party	containing	valid	
signatures by	at	least	r distinct	players	including	the	sender,	then	accept	
the	value	and	update	signatures

• If	only	one	accepted	value,	then	the	party	outputs	that	value;	otherwise	a	
default	value

Authenticated Consensus	Protocols	(2)
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§Use	information-theoretic	authentication	instead	of	digital	signatures
§Additional	trusted	setup	or	assumption

1. Physical	broadcast	available	at	onset	of	the	computation	[PW’96]
• Based	on	anonymous	channels	[Cha’88],	which	in	turn	uses	VSS

2. Secret	Key	Infrastructure	(SKI)

IT-Authenticated Broadcast/Consensus	
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Pseudosignatures [PW’96]

n Information-theoretic signature	scheme
• For	a	fixed-in-advance	set	of	players
• Verification	keys are	kept	secret
• Uses	MACs
• Needs	physical	broadcast	setup
• Only	bounded transferability of	signatures

§ Once	we	have	them,	we	can	implement	authenticated
broadcast	protocol (e.g.,	[DS83,KK06];	tolerate	n >	t)

→ No	more	physical	broadcasts	required!



§ Based	on	sender-anonymous	channel	[Cha’88,GGOR’14]]:

msg1

msg2

msg3

msg4

Anonymize
messages
(e.g., sort
or shuffle)

msg2

msg4

msg1

msg3

Pseudosignatures [PW’96]	(2)
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Anonymous	Channel:	Security	Requirements

§ Even	a	cheating	Receiver	learns	no	more	about	honest	senders’	
inputs	than	the	multiset of	them	(Anonymity)

§ Honest	Receiver	correctly	gets	all	honest	messages				
(Correctness)

§ Cheating	players	have	zero	information on	value	of	honest	
players’	messages,	for	honest	Receiver			(Privacy)

§ Cheating	players’	messages	are	independent	of	honest	players’	
messages,	for	honest	Receiver (Non-Malleability)
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From	Anonymous	Channel	to	Pseudosignatures

§ Every	party	sends	random	keys,	anonymously,	to	Signer.
Repeat	the	process	“several”	(say,	p)	times.

§ Signer	receives	p signature	blocks of	keys
B1 =	((a11,b11),…,	(a1n,b1n)),	…,	Bp =	((ap1,bp1),…,	(apn,bpn))

Signature(M)	=	(a11M	⊕ b11,	…,	a1nM	⊕ b1n),
(a21M	⊕ b21,	…,	a2nM	⊕ b2n),
…
(ap1M	⊕ bp1,	…,	apnM ⊕ bpn).

§ 1st verifier:	Given	(M,	σ),	verify	all blocks	have	correct	aM ⊕ b
§ 2nd verifier:	Verify	most blocks	have	correct	aM ⊕ b
§ 3rd verifier:	…a	fair number…
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Constant-Round	Anonymous	Channel	[GGOR’14]

§ Anonymous	channel	protocol	for	t	<	n/2,	using	only	black-box	
access	to	a	linear	VSS	protocol

§ Protocol	is	constant-round,	and	uses	no	additional	broadcast	
rounds	beyond	those	required	by	VSS

• Physical	broadcast	used	by	VSS

§ Broadcast	complexity:		Bshare +	Brec
§ Using	[GGOR’13]	VSS	protocol:		Bshare =	2,	Brec =	0
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→ Physical	broadcast	only	used	twice
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Lecture’s	Roadmap



§ Consensus	in	the	standard	setting
• Information-theoretic	setting:	t	<	1/3	n [PSL80,	LSP82,	GM93]
• Cryptographic	setting:
o Assuming	a	Public	Key	Infrastructure	(PKI):	t	<	1/2	n	 [DS83]
o No	PKI:															 t	<	1/3	n		[Bor96,	Fit03]
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Blockchain-based	Consensus

§ Consensus	in	a	non-standard	(blockchain)	setting
• Open,	peer-to-peer
• No	authenticated,	point-to-point	channels

o “No	port	awareness”:		deterministic	consensus	is	impossible	[Oku05]
• Use	POWs	to	establish	PKI,	then	run	standard	consensus	protocol	[AJK05,	AD15]
• POW-based consensus	protocols	[GKL’15,GKLP’18]		
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§ Parties	have	a	state C of	the	form:

ctr
si-1
xi-1

G(									) H(·)<	T ctr
si
xi

G(									)

What	Is	a	Blockchain?	
§ Parties	(“miners”)	have	to	do	work	in	order	to	install	a	transaction



§ Then	do	“work”																																																																		
ctr :=	0;	while Hash(ctr;	Hash(τ,tx))	>	T	do ctr++													

T:	block’s	“target”	(difficulty	level)
(T	=	0000000000000000171A8B000000000000000000000000000000000000000000)

§ If	while loop	terminates	"broadcast"	(τ,ctr,tx)				(new	“block”:	state,	
counter,	set	of	transactions)

§ Miners	collect	a	set	of	transactions																																																																		
tx =		(tx1,	tx2,	…	,txm)	

Using	Proofs	of	Work	(POWs	

SHA-256(·)	
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§Within	a	round,	players	receive	inputs	from	the	environment	and	the	
network	and	process	them:

xi+1 ꞉꞊ I(…all	local	info…)	

ctr
si+1
xi+1

G(									)

§ Then	they	use	their	q queries	to	H()	to	obtain	a	new	block	by	trying	
ctr =	0,1,2,…

What	Is	a	Blockchain?	(2)	
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§ The	new	C is	propagated	to	all	players	via	the	(unreliable/	anonymous)	
diffusion	mechanism	(“multicast”)

§ If	a	player	solves	a	POW,	it	extends	C :

ctr
si+1
xi+1

G(								)ctr
si
xi

G(								)ctr
si-1
xi-1

G(								)

What	Is	a	Blockchain?	(3)	
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§ A	party	will	compare	any	incoming	chains	and	the	local	chain	wrt their	
length/difficulty:	

ctr
si+1
xi+1

G(								)ctr
si
xi

G(								)ctr
si-1
xi-1

G(								)

ctr
s’i
yi

G(								)ctr
s’i-1
yi-1

G(								)
Better	chain	─	adopt!

What	Is	a	Blockchain?	(4)	
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Nakamoto’s Consensus	Protocol		[Nak’08]
§ “The	proof-of-work	chain	is	a	solution	to	the	Byzantine	Generals’	Problem…”



• The	n parties	start	building	a	blockchain inserting	their	input
• If	a	party	receives	a	longer	blockchain,	it switches	to	that	one	and	
switches	its	input

• When	the	blockchain is	long	enough	the	party	outputs	the	(unique)	
value	that	it	contains
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Nakamoto’s Consensus	Protocol		[Nak’08]	(2)



• The	n parties	start	building	a	blockchain inserting	their	input
• If	a	party	receives	a	longer	blockchain,	it switches	to	that	one	and	
switches	its	input

• When	the	blockchain is	long	enough	the	party	outputs	the	(unique)	
value	that	it	contains
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Nakamoto’s Consensus	Protocol		[Nak’08]	(3)

§ Issue:	If	adv.	finds	a	solution	first,	then	honest	parties	will	extend	adv.’s	
solution	and	switch	to	adv.’s	input	→	protocol	doesn’t	guarantee	Validity
with	overwhelming	prob.

→ “Nakamoto consensus”	
doesn’t	solve	consensus	



• The	n parties	start	building	a	blockchain	inserting	their	inputs
• If	a	party	receives	a	longer	blockchain switches	to	that	one	but	keeps	the	
same	input

• Once	the	blockchain	is	long	enough	(2k)	the	parties	prune	the	last	k
blocks	and	output	the	majority	value	in the	prefix

• Tolerates	t	<	n/3	corruptions
• More	elaborate	protocol	achieves	t	<	n/2

• Assumes	(public)	trusted	setup:	Genesis	block
• [GKLP’18]:	No	setup;	genesis	block	not	needed
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Blockchain-based	Consensus	Protocol	[GKL’15]	
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A	“Consensus	Taxonomy”	[GK’18]
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Lecture’s	Summary
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