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Outline
• Basic concepts

– Statistical distance

– Min-entropy

– Randomness Extractors

• Leftover Hash Lemma: 

– An efficient extractor based on universal hash functions

• Average-case Extractors: 

– Randomness extraction in presence of side information

• (Optional) Quantum-proof Extractors

– Extraction in presence of quantum side information
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Quest for Perfect Randomness
• Randomness is powerful resource

– Crypto requires truly uniform bits to generate keys

– Randomized algorithm assumes access to truly uniform bits

• In reality, random sources are not perfect

– Correlated and biased bits

• Can we turn imperfect source into (almost) uniform bits?
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Imperfect random source: 



Examples
• IID-Bit source: X = X1,X2,..,Xn ∈ {0,1} identical & independent, 

but biased: for each i, Pr[ Xi = 1 ] = 𝛿 for some unknown 𝛿

– idea: consider X in pairs,

• Independent-bit source: X = X1,X2,..,Xn ∈ {0,1} independent, 
but with different biased: Pr[ Xi = 1 ] = 𝛿i for different 𝛿i, 
where 0 < 𝛿 ≤ 𝛿i≤ 1 - 𝛿 for some constant 𝛿

– idea: output parity of each t bits

| Pr[⊕𝑖=1
𝑡 Xi = 1] – ½ |≤ 2−Ω(𝑡)

4

Xi,Xi+1 =

01     ⟹ output 0

10 ⟹ output 1

00/11     ⟹ discard



Randomness Extraction

• Source: random variable X over {0,1}n in certain class 𝒞
– IndBitsn,𝛿: X = X1,X2,..,Xn ∈ {0,1} independent bits, Pr[ Xi = 1 ] = 𝛿i where

0 < 𝛿 ≤ 𝛿i≤ 1 - 𝛿

– IndBitsn,𝛿: additionally assume all 𝛿i are equal

• (Deterministic) extractor: a function Ext: {0,1}n→ {0,1}m s.t.
∀ source X ∈ 𝒞, Ext(X) is “𝜀-close” to uniform
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Deterministic Extractors
• (Deterministic) extractor: a function Ext: {0,1}n → {0,1}m s.t.
∀ source X ∈ 𝒞, Ext(X) is “𝜀-close” to uniform

– single function works for all sources in 𝒞

– only one sample X is available

– need to define “𝜀-close” to uniform

6

Ext

m-bits close to uniform

n-bit source X

Ext(X)



Statistical Distance
• Def. Let X, Y be rand. var. over range U, statistical distance 

between X, Y is defined as

– View X, Y as vectors over ℝ|𝑈|, it’s simply the L1-distance

• Def. We say X is 𝜀-close Y if Δ(X, Y) ≤ 𝜀
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Δ(X, Y) ≝ (1/2) ∙ σ𝑢∈𝑈 | Pr 𝑋 = 𝑢 − Pr[𝑌 = 𝑢]|

Example: X = (.15,.09,.10,.06,.16,.09,.11,.03,.08,.04,.078,.002)
Y = (.03,.04,.07,.03,.11,.09,04,.04,.16,.13,.18,.08)
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Important Properties

• Operational meaning: max advantage to distinguish X, Y

– In particular, if X is 𝜀-close Y, then for any event T, 
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Δ(X, Y) = max
𝑇⊂𝑈

(Pr 𝑋 ∈ 𝑇 − Pr[𝑌 ∈ 𝑇])

Pr 𝑋 ∈ 𝑇 ≤ Pr 𝑌 ∈ 𝑇 + 𝜀

Example: X = (.15,.09,.10,.06,.16,.09,.11,.03,.08,.04,.078,.002)
Y = (.03,.04,.07,.03,.11,.09,04,.04,.16,.13,.18,.08)
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Important Properties

• Post-processing inequality: for any function f, 

– I.e., post-processing only decreases statistical distance

– Equality holds when f is injective
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Δ(f(X), f(Y)) ≤ Δ(X, Y)

Example: X = (.15,.09,.10,.06,.16,.09,.11,.03,.08,.04,.078,.002)
Y = (.03,.04,.07,.03,.11,.09,04,.04,.16,.13,.18,.08)
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Extractor for IndBitsn,𝛿

• Thm. ∀ constant 𝛿, ∀ n, m ∈ ℕ, ∃ Ext: {0,1}n → {0,1}m for  

IndBitsn,𝛿 source with error 𝜀 = m∙ 2−Ω(𝑛/𝑚)

– Ext(X) breaks X into m blocks of length 𝑛/𝑚 and outputs the 
parity of each block
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Extractor for General Sources?

• Can we extract truly uniform bits from any sources?

– No, if the source is not random, e.g., X = 0n w.p. 1

• Hope: Ext works whenever X has sufficient “entropy”
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Ext

m-bits close to uniform

n-bit source X



1st Attempt: Shannon Entropy

• Def. Shannon entropy Hsh(X)

– Not good, consider X defined as follows:

• w.p. ½ , set X = 0n

• w.p. ½ , sample X = uniform on {0,1}n

– Hsh(X) ≥ n/2 but Pr[X=0n] > ½ ; can’t extract from X

12

Hsh(X) ≝ σ𝑥 Pr[𝑋 = 𝑥] log
1

Pr[𝑋=𝑥]
= E𝑥←𝑋 log

1

Pr[𝑋=𝑥]
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2nd Attempt: Min-Entropy

• Def. Min-entropy Hmin(X)

– Hmin(X) ≥ k if for every x, Pr[X = x] ≤ 2−𝑘

– Worst-case notion; possible for extraction

• Def. X is k-source if Hmin(X) ≥ k

• Extractor for the class of k-sources?
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Hmin(X) ≝ maxx log
1

Pr[𝑋=𝑥]
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Impossibility of Deterministic Extraction

• Thm. For any Ext: {0,1}n → {0,1}, there exists an (n-1)-source    
X s.t. Ext(X) = constant

Proof. Consider Xb = uniform on Ext-1(b)
– Ext(Xb) = constant

– Either Hmin(X0) or Hmin(X1) ≥ n-1 

• Deterministic extractor for k-source is impossible even for 
extracting 1 bit and even for k = n-1
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Seeded Extractors
• Add short uniform seed as catalyst for extraction
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Ext

m almost uniform bits

n-bit k-source X

Ext: {0,1}n ×{0,1}d → {0,1}m is (k,𝜀)-seeded extractor if

d-bit seed

uniform

∀ k-source X, Ext(X; S) is 𝜀-close uniform Um

S

Ext(X; S)



Pervasive Applications

• Diverse topics in Theoretical Computer Science

– Cryptography, Derandomization & pseudorandomness
[Sis88, NZ93,…], Distributed algorithms [WZ95], Data 
structures [Ta02],  Hardness of Approximation [Zuc93,…] 

• Many applications in Cryptography

– Privacy amplification [BBR88], Bounded-storage model 
[Lu02,V03], PRG [HILL89], Biometrics [DRS04], Leakage-resilient 
crypto [DP09]…
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An Analogy: Oil Extraction
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Ext

m almost uniform bits

n-bit k-source X

d-bit seed

uniform S

Ext: {0,1}n ×{0,1}d → {0,1}m is (k,𝜀)-seeded extractor if

∀ k-source X, Ext(X; S) is 𝜀-close uniform Um

source = oil field

entropy = crude oil

extractor =     
oil extraction 

machines

uniform bits = 
gasoline/pentrol

uniform bits = 
gasoline/pentrol



Desiderata

• Minimize seed length d

– Minimize initial gasoline investment

• Maximize output length m, ideally close to min-entropy k

– Extract and distill all crude oil to gasoline

• Extraction even for small entropy rate k/n

– i.e., even when oil field has low crude oil content

• Explicit construction: efficient polynomial time extractor
– Cost-efficiency of oil extraction machines  
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What We Can Achieve?
• Non-constructively, ∀ n, k, 𝜀, ∃ (k,𝜀)-seeded extractor with

seed length d = log (n-k) + 2 log(1/𝜀) + 𝑂(1)

output length m = k + d - 2 log(1/𝜀) - O(1)

– use logarithmic-length seed

– extract almost all min-entropy out

– for any small entropy rate

– However, not an explicit construction 

• Proof: use probability method. See Salil’s book.

• Research goal: find explicit construction with above parameters

seed length d = O(log n) + O(log(1/𝜀))

output length m = 0.99k
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Privacy Amplification
• Alice & Bob share secret weak random source X

• Goal: extract uniform key Z against eavesdropper Eve 
using public authenticated channel

• Issue: Eve learns seed S, may leak info about Ext(X; S)
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Eve

Alice Bob

X X

uniform S

Z=Ext(X; S) Z=Ext(X; S)

Ext(X; S) ≈𝜀 Um



Privacy Amplification
• Alice & Bob share secret weak random source X

• Goal: extract uniform key Z against eavesdropper Eve 
using public authenticated channel

• Issue: Eve learns seed S, may leak info about Ext(X; S)
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Eve

Alice Bob

X X

uniform S

Z=Ext(X; S) Z=Ext(X; S)

Need: (Ext(X; S), S) ≈𝜀 (Um, S)



Strong Seeded Extractors
• Require Ext(X; S) close to uniform even given the seed S
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Ext

m almost uniform bits

n-bit k-source X

Ext: {0,1}n ×{0,1}d → {0,1}m is (k,𝜀)-strong seeded extractor if

d-bit seed

uniform

∀ k-source X, (Ext(X; S), S) ≈𝜀 (Um, S)
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Privacy Amplification
• Alice & Bob share secret weak random source X

• Goal: extract uniform key Z against eavesdropper Eve 
using public authenticated channel
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Eve

Alice Bob

X X

uniform S

Z=Ext(X; S) Z=Ext(X; S)

Need: (Ext(X; S), S) ≈𝜀 (Um, S)



Parameters for Strong Extractors
• Non-constructively, ∀ n, k, 𝜀, ∃ (k,𝜀)-seeded extractor with

seed length d = log (n-k) + 2 log(1/𝜀) + 𝑂(1)

output length m = k + d - 2 log(1/𝜀) - O(1)

– use logarithmic-length seed

– extract almost all min-entropy out

– for any small entropy rate

– However, not an explicit construction 

• Proof: use probability method. See Salil’s book.

• Research goal: find explicit construction with above parameters

seed length d = O(log n) + O(log(1/𝜀))

output length m = 0.99k
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Parameters for Strong Extractors
• Non-constructively, ∀ n, k, 𝜀, ∃ (k,𝜀)-strong seeded extractor with

seed length d = log (n-k) + 2 log(1/𝜀) + 𝑂(1)

output length m = k + d - 2 log(1/𝜀) - O(1)

– use logarithmic-length seed

– extract almost all min-entropy out

– for any small entropy rate

– However, not an explicit construction 

• Proof: use probability method. See Salil’s book.

• Research goal: find explicit construction with above parameters

seed length d = O(log n) + O(log(1/𝜀))

output length m = 0.99k

• Strong property is usually important in crypto
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An Explicit Strong Extractor  ---
Leftover Hash Lemma 
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Leftover Hash Lemma

• Thm. ∀ n, k, 𝜀, ∃ efficient (k,𝜀)-strong seeded extractor with

seed length d = n

output length m = k - 2 log(1/𝜀)

– use linear-length seed

– extract almost all min-entropy out

– for any small entropy rate

– explicit construction 

• Extremely useful in cryptography!
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Universal Hash Functions

• Let ℋ = { h: {0,1}n → {0,1}m } be a family of hash functions.

– Let H denote a random hash function from ℋ

• Def. We say ℋ is universal if for every x ≠ x’ ∈ {0,1}n,

Pr[ H(x) = H(x’)] ≤ 2-m 

– i.e., prob. of hash collision on x and x’ is small for every x ≠ x’

• Example: ℋ = { hs : s ∈ GF(2n) }, where hs(x) = first m bits of s∙x

– Note that hs(x) = hs(x’) implies s∙(x-x’) = 0mz for some z ∈ {0,1}n-m. 

– Each z determines s = (0mz)/(x-x’), so at most 2n-m out of 2n hs.

– So Pr[ H(x) = H(x’)] ≤ 2n-m/2n = 2-m.
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Extractor Construction

• Let ℋ = { h: {0,1}n → {0,1}m } be a family of hash functions.

– Let H denote a random hash function from ℋ

• Def. We say ℋ is universal if for every x ≠ x’ ∈ {0,1}n,

Pr[ H(x) = H(x’)] ≤ 2-m 

– i.e., prob. of hash collision on x and x’ is small for every x ≠ x’

• Define Ext: {0,1}n ×{0,1}d → {0,1}m by Ext(x, h) = h(x)

– i.e., use seed h to select a hash function to hash x

– need seed length d = n
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Why Does It Work?

• Define Ext: {0,1}n ×{0,1}d → {0,1}m  by Ext(x, h) = h(x), where      
h is from universal hash family ℋ = { h: {0,1}n → {0,1}m }

Pr[ H(x) = H(x’)] ≤ 2-m for every x ≠ x’ ∈ {0,1}n

• Want to show (Ext(X; H), H) ≈𝜀 (Um, H), or (H, H(X)) ≈𝜀 (H, Um)

• Analyze via “collision probability”

– Step 1. Z has small “collision probability” ⟹ Z is close to uniform

– Step 2. Show (H, H(X)) has small “collision probability”
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Collision Probability

• Def. Let Z be a rand. var. over [M]. Define collision probability
of Z as CP(Z)≝ Pr[ Z = Z’], where Z’ is an independent copy of Z. 

– E.g., for uniform distribution U[M], CP(U[M]) = 1/M

• View Z as vector v ∈ ℝM, i.e., vi = Pr[ Z = i ], then CP(Z) is the 
square of L2-norm of v.

– CP(Z) = Pr[ Z = Z’] = σ𝑖 Pr[ Z = Z’ = i] = σ𝑖 v𝑖
2 = v 2

2

• Intuition: uniform distribution minimize collision probability.   
If CP(Z) ≈ CP(U[M]), then Z is close to U[M]

• Lemma. CP(Z) ≤ (1+𝜀)/M ⟹Δ(Z, U[M]) ≤ 𝜀/2
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Small CP ⇒ Close to Uniform
Lemma. CP(Z) ≤ (1+𝜀)/M ⟹Δ(Z, U[M]) ≤ 𝜀/2

Proof. Define w ∈ ℝM by wi = (vi – 1/M).

• Note Δ(Z, U[M]) = ½  ∙ w 1

• Let’s compute w 2
2 = σ𝑖(v𝑖 − 1/M)2

=  σ𝑖 v𝑖
2 − σ𝑖(2v𝑖/M) +  σ𝑖(1/M)

2

=  CP(Z) – 1/M

• Thus, w 2
2 ≤ 𝜀/M, or w 2 ≤ 𝜀/M

• By relation between L1 and L2-norm w 1 ≤ M ∙ w 2 ≤ 𝜀

• So Δ(Z, U[M]) ≤ 𝜀/2
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CP(H, H(X)) is Small

Lemma. CP(H,H(X)) ≤ (1/D)∙((1/M)+(1/K))

• Notation: D = 2d, M = 2m, K = 2k

Proof. CP(H,H(X)) = Pr[ (H,H(X)) = (H’, H’(X’))]

= Pr[H = H’]∙Pr[H(X) = H(X’)|H = H’]

= (1/D)∙( Pr[X=X’]∙Pr[H(X) = H(X’)|H = H’ ⋀ X=X’] + 

Pr[X≠X’]∙Pr[H(X) = H(X’)|H = H’ ⋀ X≠X’] )

≤ (1/D)∙( CP(X) + (1/M))

• CP(X) = σ𝑥 Pr 𝑋 = 𝑥 2 ≤ (max
𝑥

Pr 𝑋 = 𝑥 ) (σ𝑥 Pr 𝑋 = 𝑥 ) ≤1/K
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Put Things Together

• Lemma. CP(Z) ≤ (1+𝜀)/M ⟹Δ(Z, U[M]) ≤ 𝜀/2

• Lemma. CP(H,H(X)) ≤ (1/D)∙((1/M)+(1/K))

• Recall we set m = k - 2 log(1/𝜀), so (1/K) = (𝜀2/M)

• So Δ((H,H(X)), (H,Um)) ≤ 𝜀/2

Thm. ∀ n, k, 𝜀, ∃ efficient (k,𝜀)-strong seeded extractor with

seed length d = n

output length m = k - 2 log(1/𝜀)
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Average-case Extractors
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Privacy Amplification
• Alice & Bob share secret weak random source X

– Since Eve may learn some leakage information E about X

• Goal: extract uniform key Z against eavesdropper Eve 
using public authenticated channel

36

Eve

Alice Bob

X X

uniform S

Z=Ext(X; S) Z=Ext(X; S)

Need: (Ext(X; S), S, E) ≈𝜀 (Um, S, E)

E



Conditional Min-Entropy

• How to measure min-entropy of X given side information E?

• Guessing Probability: Pguess(X|E)

Pguess(X|E) ≝ max Pr[ guess X correctly given E ]

• Conditional Min-Entropy: Hmin(X|E) ≝ log 1/Pguess(X|E)

• Sanity check: Pguess(X) = maxx Pr[X=x], so Hmin(X) = log 1/Pguess(X)

• In general: Pguess(X|E) = E𝑒←𝐸[ maxxPr[X=x|E=e]]

• Conditional min-entropy ≈ unpredictability of the source given E 
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Average-Case Strong Extractors
• Extract conditional min-entropy from X given E
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Ext

m almost uniform bits

n-bit k-source X

Ext: {0,1}n ×{0,1}d → {0,1}m is (k,𝜀)-average-case strong extractor 
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d-bit seed

uniform

∀ (X, E) with Hmin(X|E) ≥ k,
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(Ext(X; S), S, E) ≈𝜀 (Um, S, E)



Privacy Amplification
• Alice & Bob share secret weak random source X

– Since Eve may learn some leakage information E about X

• Goal: extract uniform key Z against eavesdropper Eve 
using public authenticated channel
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Eve

Alice Bob

X X

uniform S

Z=Ext(X; S) Z=Ext(X; S)

Need: (Ext(X; S), S, E) ≈𝜀 (Um, S, E)

E



Interpretation
• Conditional min-entropy ≈ unpredictability

• Statistical distance ≈ distinguishing advantage

• Extractor: distill unpredictability to indistinguishability

– Can’t predict source ⟹ can’t distinguish output from uniform
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Every Extractor is Average-Case Ext.

Thm. If Ext: {0,1}n x {0,1}d → {0,1}m is (k,𝜀)-strong  extractor,

then Ext is (k+log(1/𝜀), 2𝜀)-average-case strong  extractor.

Lemma. If in (X, E), X has conditional min-entropy k conditioned on E,

then w.p. 1-𝜀 over e ← E, X|E=e is a (k-log(1/𝜀))-source.

Lemma ⇒ Thm: 

– Ext works for good X|E=e with error 𝜀

– Ext may fail on bad X|E=e but X|E=e bad w.p. at most 𝜀

⇒ Ext works for (X, E) with error ≤ 2𝜀
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Proof. Suppose not, i.e., 

w.p. > 𝜀 over e ← E, 

Hmin(X|E=e) ≤ k−log(1/𝜀)

⇒ Pguess(X|E=e) ≥ 2k/𝜀 .

⇒ Pguess(X|E) > 𝜀 ∙ 2k/𝜀 > 2k

⇒ Hmin(X|E) < k,  a contradiction.
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Lemma. If in (X, E), X has conditional min-entropy k conditioned on E,
then w.p. 1-𝜀 over e ← E, X|E=e is a (k-log(1/𝜀))-source.



In Fact, Can Do Better!

Leftover hash lemma:

Thm. ∀ n, k, 𝜀, ∃ efficient (k,𝜀)-average-case strong extractor with

seed length d = n

output length m = k - 2 log(1/𝜀)

– Use “conditional collision probability” in analogous way

In general:

Thm. Any (k,𝜀)-strong extractor is a (k,3𝜀)-average-case strong 
extractor
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Summary

• Conditional min-entropy ≈ unpredictability

• Statistical distance ≈ distinguishing advantage

• Extractor: distill unpredictability to indistinguishability

– Oil extraction analogy

– Features: strong, average-case, “quantum-proof”, “non-malleable”

• Non-constructively, ∀ n, k, 𝜀, ∃ (k,𝜀)-strong extractor with

seed length d = log (n-k) + 2 log(1/𝜀) + 𝑂(1)

output length m = k - 2 log(1/𝜀) - O(1)
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Summary

• Leftover hash lemma: ∀ n, k, 𝜀, ∃ explicit (k,𝜀)-extractor with

seed length d = n

output length m = k - 2 log(1/𝜀)

– Collision prob.: useful way to bounds distance to uniform 

• Best-known explicit construction

seed length d = O(log n) + O(log(1/𝜀))

output length m = 0.99k
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Quantum-Proof Extractors
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Privacy Amplification
• Alice & Bob share secret weak random source X

• Goal: extract uniform key Z against eavesdropper Eve 
using public authenticated channel

• What if the side information E is quantum?
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Eve

Alice Bob
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uniform S

Z=Ext(X; S) Z=Ext(X; S)

Need: (Ext(X; S), S, E) ≈𝜀 (Um, S, E) for quantum E
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How to Think about Quantum?

• Some physical resource generalizes classical world and is 
sometime more powerful

– Quantum information: generalize classical information and 
sometimes more useful

– Quantum computation: generalize classical computation and 
sometimes much more powerful! (e.g., Shor’s algorithm)

• Randomness extraction in presence of quantum side information

– Harder task since Eve holds more useful information

– Operational definition generalizes 
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Operational Definitions Generalize

• Entropy measure: conditional min-entropy

– Cond. Min-entropy: Hmin(X|E) = log 1/Pguess(X|E), where

– Guessing Probability:

Pguess(X|E) ≝ max Pr[ guess X correctly given E ]

– Min-entropy ≈ unpredictability

• Distance measure: trace distance

– Trace distance ≈ max distinguishing advantage

• Extractor: distill unpredictability to indistinguishability

– Can’t guess source ⟹ can’t distinguish output from uniform

– (Ext(X; S), S, E) ≈𝜀 (Um, S, E) for quantum E
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Quantum-Proof Strong Extractors
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Ext: {0,1}n ×{0,1}d → {0,1}m is (k,𝜀)-quantum-proof strong extractor 
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What Remains True in Quantum?

• Conditional min-entropy ≈ unpredictability

• Statistical distance ≈ distinguishing advantage

• Extractor: distill unpredictability to indistinguishability

– Oil extraction analogy

• Non-constructively, ∀ n, k, 𝜀, ∃ (k,𝜀)-strong extractor with

seed length d = log (n-k) + 2 log(1/𝜀) + 𝑂(1)

output length m = k - 2 log(1/𝜀) - O(1)
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What Remains True in Quantum?

• Leftover hash lemma: ∀ n, k, 𝜀, ∃ explicit (k,𝜀)-extractor with

seed length d = n

output length m = k - 2 log(1/𝜀)

– Collision prob.: useful way to bounds distance to uniform 

• Best-known explicit construction

seed length d = O(log n) + O(log(1/𝜀))

output length m = 0.99k
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