
 

Manoj Prabhakaran
IIT Bombay

MPC: Emulating Trusted
Computation

Encryption/Authentication allow us to emulate a trusted
channel

Secure Multi-Party Computation (MPC): to emulate a
source of trusted computation

Trusted means it will not “leak” a party’s information to
others

And it will not cheat in the computation

Emulate: there is no trusted party!

 

 

⟷ ⟷  
⟷ ⟷ ⟷

REAL
IDEAL

⨉

Quiz

What’s the complexity of the following 3 functions (defined
over say [0,100] × [0,100]), w.r.t, passive secure MPC?

max(x,y)

[x < y]

(max(x,y), [x < y])

 

 

 
 

 

 

•

 

 

∃  

•

 

•

∃

 

 

•

 

 

•

 

⟷ ⟷  
⟷ ⟷ ⟷

Simulation-Based Security

Secure (and
correct) if:

∀

∃ s.t.

∀

output of is
distributed
identically in
REAL and IDEAL

proto proto

Env
REAL

i’face i’face

Env

IDEAL

FF

⇔

 
 

 
 

 

Distinction > ½

 
 

 
 

 

Distinction > ½

 

 
 

≪ ⇒  

≫ ⇒

 

⇔

Impossibility of UC Security

Figure 1: 2-party splittability (for F ∈ 2regular). The
shaded box shows FT

split.

Figure 2: Secure protocol (over private
channels) for a splittable functionality F .

Figure 3: Steps in the proof of Theorem 1. Given a protocol securely realizing F , we apply the security
guarantee three times: first with no parties corrupted (between boxes 1 and 2), then with a corrupt party
P1 which plays a man-in-the-middle between P2 and an honest P1 inside the environment (between boxes 3
and 4), and finally with a corrupt party P2 which plays a man-in-the-middle between P1 and the simulator
from the previous step (between boxes 5 and 6), all with appropriately defined environments. The machine
T required by the definition of splittability is derived from the simulators for the last two cases, by letting
them simulate the protocol to each other.

Figure 4: A visual
representation of gen-
eral 2-party splittability
(Definition 3.4). If these
two compound functional-
ities are indistinguishable
then F ≺ G.

7

Figure 1: 2-party splittability (for F ∈ 2regular). The
shaded box shows FT

split.

Figure 2: Secure protocol (over private
channels) for a splittable functionality F .

Figure 3: Steps in the proof of Theorem 1. Given a protocol securely realizing F , we apply the security
guarantee three times: first with no parties corrupted (between boxes 1 and 2), then with a corrupt party
P1 which plays a man-in-the-middle between P2 and an honest P1 inside the environment (between boxes 3
and 4), and finally with a corrupt party P2 which plays a man-in-the-middle between P1 and the simulator
from the previous step (between boxes 5 and 6), all with appropriately defined environments. The machine
T required by the definition of splittability is derived from the simulators for the last two cases, by letting
them simulate the protocol to each other.

Figure 4: A visual
representation of gen-
eral 2-party splittability
(Definition 3.4). If these
two compound functional-
ities are indistinguishable
then F ≺ G.

7

Figure 1: 2-party splittability (for F ∈ 2regular). The
shaded box shows FT

split.

Figure 2: Secure protocol (over private
channels) for a splittable functionality F .

Figure 3: Steps in the proof of Theorem 1. Given a protocol securely realizing F , we apply the security
guarantee three times: first with no parties corrupted (between boxes 1 and 2), then with a corrupt party
P1 which plays a man-in-the-middle between P2 and an honest P1 inside the environment (between boxes 3
and 4), and finally with a corrupt party P2 which plays a man-in-the-middle between P1 and the simulator
from the previous step (between boxes 5 and 6), all with appropriately defined environments. The machine
T required by the definition of splittability is derived from the simulators for the last two cases, by letting
them simulate the protocol to each other.

Figure 4: A visual
representation of gen-
eral 2-party splittability
(Definition 3.4). If these
two compound functional-
ities are indistinguishable
then F ≺ G.

7

Figure 1: 2-party splittability (for F ∈ 2regular). The
shaded box shows FT

split.

Figure 2: Secure protocol (over private
channels) for a splittable functionality F .

Figure 3: Steps in the proof of Theorem 1. Given a protocol securely realizing F , we apply the security
guarantee three times: first with no parties corrupted (between boxes 1 and 2), then with a corrupt party
P1 which plays a man-in-the-middle between P2 and an honest P1 inside the environment (between boxes 3
and 4), and finally with a corrupt party P2 which plays a man-in-the-middle between P1 and the simulator
from the previous step (between boxes 5 and 6), all with appropriately defined environments. The machine
T required by the definition of splittability is derived from the simulators for the last two cases, by letting
them simulate the protocol to each other.

Figure 4: A visual
representation of gen-
eral 2-party splittability
(Definition 3.4). If these
two compound functional-
ities are indistinguishable
then F ≺ G.

7

Party 1 corrupt

No corruption

Indist. by security.

Identical systems

Figure 1: 2-party splittability (for F ∈ 2regular). The
shaded box shows FT

split.

Figure 2: Secure protocol (over private
channels) for a splittable functionality F .

Figure 3: Steps in the proof of Theorem 1. Given a protocol securely realizing F , we apply the security
guarantee three times: first with no parties corrupted (between boxes 1 and 2), then with a corrupt party
P1 which plays a man-in-the-middle between P2 and an honest P1 inside the environment (between boxes 3
and 4), and finally with a corrupt party P2 which plays a man-in-the-middle between P1 and the simulator
from the previous step (between boxes 5 and 6), all with appropriately defined environments. The machine
T required by the definition of splittability is derived from the simulators for the last two cases, by letting
them simulate the protocol to each other.

Figure 4: A visual
representation of gen-
eral 2-party splittability
(Definition 3.4). If these
two compound functional-
ities are indistinguishable
then F ≺ G.

7

Party 2 corrupt

Figure 1: 2-party splittability (for F ∈ 2regular). The
shaded box shows FT

split.

Figure 2: Secure protocol (over private
channels) for a splittable functionality F .

Figure 3: Steps in the proof of Theorem 1. Given a protocol securely realizing F , we apply the security
guarantee three times: first with no parties corrupted (between boxes 1 and 2), then with a corrupt party
P1 which plays a man-in-the-middle between P2 and an honest P1 inside the environment (between boxes 3
and 4), and finally with a corrupt party P2 which plays a man-in-the-middle between P1 and the simulator
from the previous step (between boxes 5 and 6), all with appropriately defined environments. The machine
T required by the definition of splittability is derived from the simulators for the last two cases, by letting
them simulate the protocol to each other.

Figure 4: A visual
representation of gen-
eral 2-party splittability
(Definition 3.4). If these
two compound functional-
ities are indistinguishable
then F ≺ G.

7

Figure 1: 2-party splittability (for F ∈ 2regular). The
shaded box shows FT

split.

Figure 2: Secure protocol (over private
channels) for a splittable functionality F .

Figure 3: Steps in the proof of Theorem 1. Given a protocol securely realizing F , we apply the security
guarantee three times: first with no parties corrupted (between boxes 1 and 2), then with a corrupt party
P1 which plays a man-in-the-middle between P2 and an honest P1 inside the environment (between boxes 3
and 4), and finally with a corrupt party P2 which plays a man-in-the-middle between P1 and the simulator
from the previous step (between boxes 5 and 6), all with appropriately defined environments. The machine
T required by the definition of splittability is derived from the simulators for the last two cases, by letting
them simulate the protocol to each other.

Figure 4: A visual
representation of gen-
eral 2-party splittability
(Definition 3.4). If these
two compound functional-
ities are indistinguishable
then F ≺ G.

7

F has a UC-secure protocol
only if F is “splittable”

Very few are splittable!

Splittable Functionalities
F splittable if ∃T ∀Z the outputs of Z in the following two
experiments are negligibly far from each other:  
 
 
 
 
 

Splittable functionality essentially involve only communication and
local computation. All splittable functionalities have UC-secure
protocols.

Most interesting functionalities are unsplittable. E.g., coin-tossing,
commitment, XOR, OT, decomposable functions with depth > 1, …

Figure 1: 2-party splittability (for F ∈ 2regular). The
shaded box shows FT

split.

Figure 2: Secure protocol (over private
channels) for a splittable functionality F .

Figure 3: Steps in the proof of Theorem 1. Given a protocol securely realizing F , we apply the security
guarantee three times: first with no parties corrupted (between boxes 1 and 2), then with a corrupt party
P1 which plays a man-in-the-middle between P2 and an honest P1 inside the environment (between boxes 3
and 4), and finally with a corrupt party P2 which plays a man-in-the-middle between P1 and the simulator
from the previous step (between boxes 5 and 6), all with appropriately defined environments. The machine
T required by the definition of splittability is derived from the simulators for the last two cases, by letting
them simulate the protocol to each other.

Figure 4: A visual
representation of gen-
eral 2-party splittability
(Definition 3.4). If these
two compound functional-
ities are indistinguishable
then F ≺ G.

7

A Map of 2-Party Functions

Decomposable

Splittable

* OR

* Max  
(no ties)

* x

Uniquely  
Decomposable

Saturated

* XOR * “(x+5y)/2”

P NP

PH

PSPACE

NP-HARD

REAL
IDEAL

⨉

 
 

 
 

∝

∧

∧

A Map of 2-Party Functions
Non-Simple

Decomposable

Splittable

* OR

* Max  
(no ties)

* x

Uniquely  
Decomposable

Saturated

* XOR * “(x+5y)/2”

* “Spiral”

Quiz

What’s the complexity of the following  
3 functions, w.r.t, passive secure MPC?

max(x,y)

[x < y]

(max(x,y), [x < y])

0 1 2 3

0 0 1 2 3

1 1 1 2 3

2 2 2 2 3

3 3 3 3 3

0 1 2 3

0 0 1 2 3

1 1’ 1 2 3

2 2’ 2’ 2 3

3 3’ 3’ 3’ 3

0 1 2 3

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

Complete

Complete

Trivial

(Passive and

Standalone/Active)

 

Manoj Prabhakaran
IIT Bombay

∈

 

⇒
⊆

 

 
⇒

 

 

X Y

[][]H(X|Y) H(Y|X)
I(X;Y)

X Y

𝔗 ∃

 
 
 

H(X|Y) H(Y|X)
I(X;Y)

Q

I(X;Y|Q)

I(X;Q|Y) I(Y;Q|X)

𝔗(X;Y)

𝔗(X;Y)𝔗  
 

𝔗 𝔗

 
𝔗 ⊆ 𝔗

𝔗 ⊆ 𝔗

𝔗 ∃

 
 
 

⊆ 𝔗

𝔗(X;Y)

I(
X;

Y)
 -

C
I G

K
(X

;Y
)

CIWyner(X;Y) - I(X;Y)
H(Y↘︎X | X)

 

 

 

 

𝔗 ∃

 
 
 

𝔗 𝔗

𝔗  

 

𝔗  

𝔗Sym-OT(L)

touches!

2⋅𝔗bit-OT

⇒
⊆

 

