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MOTIVATION

▶ Secure Computation essentially guarantees that whatever computation n players can do with
the help of a trusted party, they can also do by themselves. Fundamentally, however, this
notion depends on the honesty of at least some players. The authors propose a notion that
depends solely on rationality rather than honesty.

▶ Game theory doesn’t talk about privacy.
▶ Secure computation doesn’t take payoffs (which may exist) into account.
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MOTIVATION
WHY BRIDGE GAME THEORY AND SECURE COMPUTATION?

▶ Strategic form games are simultaneous and will be realized by having a trusted mediator. (Ideal
game Γ)

▶ Secure computation can get rid of trusted mediators (when payoffs are not considered or with
simple payoffs).

▶ Goal: Guarantee security even when all players pursue their selfish interests.
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PROBLEM STATEMENT

Realize any (ideal) mechanism cryptographically. Albeit, in the ballot box model.
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DEFINITION AND ITS ANALYSIS
ROUGH IDEA

Rational secure computation (ILM1 security) has a ideal world/real world definition. The ideal
world game Γ is a finite, normal-form, mediated game of incomplete information with the players
having their own privates types, utility functions and the game has a well-defined outcome. The the
real world game (i.e the protocol) G is unmediated, extensive form game of incomplete information
(having the same players, type sets, outcome set, and utility functions as Γ). We say that the
protocol is ILM1 secure iff all the players find both these games equivalent.
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DEFINITION AND ITS ANALYSIS
HOW ARE ABORTS MODELLED?

▶ In Γ assume that, when player i aborts, a predetermined outcome Yi (an unfavourable outcome
for i.) is realized, and that no information about the players’ reports is revealed.

▶ Any player i can abort G’s communication prematurely, in which case the same predetermined
outcome Yi is realized as when i aborts in Γ.

▶ As Yi is unfavourable outcome for i, no rational player will abort in Γ or G.
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DEFINITION AND ITS ANALYSIS
INFORMAL DEFINITION (ILM1)

G rationally and securely simulates (or realizes) Γ if the following two conditions hold:
1. For any equilibrium of Γ, of any strength (e.g., Bayesian-Nash, dominant strategy, ex post, etc.),

there exists an equilibrium of G that has the same strength and induces the same payoffs for
every player—and vice versa for any equilibrium of G.

2. The privacy of the players in Γ is exactly preserved in G: no group of players (whether
collaborating or not) may acquire more information about other players’ types or reports in G
than they may in Γ.

The proposed protocol achieves a slightly more demanding (forced action) notion of security. Also,
the protocol achieves perfect security.
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DEFINITION AND ITS ANALYSIS
DIFFICULTIES

1. Unlike Γ, G is an extensive form game so if it isn’t constructed properly then it may lead to
additional equilibria, but this is a problem. Why?

2. As in an extensive form game the players could transfer information from one player to another
they may try to signal their type to other players. Can this be prevented by just restricting the
message they can send.
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DEFINITION AND ITS ANALYSIS
WHY NOT LET PLAYERS ENJOY BENEFITS OF ADDITIONAL EQUILIBRIA?

The answer is that such additional equilibria may be detrimental to “the larger context.” For
instance, in mechanism design, the whole point is to find a game whose equilibria implement a
desired function (i.e the social choice function), typically deemed to be beneficial to Society. If the
players were able to introduce additional equilibria that benefit solely them, Society may suffer.
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DEFINITION AND ITS ANALYSIS
CAN RESTRICTING MESSAGES PREVENT SIGNALLING?

The answer is no. Preventing players in G from saying outright “I am of type X” is not enough. In
order to guarantee privacy, players’ communication strategies in G must be probabilistic. But even a
minimal amount of entropy in a communication strategy enables steganography, that is, subliminal
communication between two players that is provably undetectable by any one else.
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DEFINITION AND ITS ANALYSIS
ESSENCE OF RATIONAL SECURE COMPUTATION

Assume that in Γ the mediator evaluates a function f : M1 × · · · × Mn → Y . We say that G perfectly
simulates Γ if the following properties hold:

1. At any time before G ends, the information available to the players coincides with that
available to them before the game begins.

2. G begins with an input stage in which each player i, independently, commits to one of his
possible inputs. (Any later attempt of i to change his committed input results in an abort.)

3. G is forced-action: namely, (1) the players act in predetermined order (by acting out of turn, a
player aborts); (2) during the input stage, for any possible input, there is a single sequence of
actions a player may take for committing it without aborting the game; and (3) after the input
stage, when it is a player’s turn to act, there is a single action he may take without aborting.

4. If no player aborts G then all players receive outputs distributed identically to those produced
by a random evaluation of f on the committed inputs.
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DEFINITION AND ITS ANALYSIS
WHY FORCED-ACTION IS CRUCIAL?

Forced-action property is absolutely crucial to the notion of Rational Secure Computation. It is very
demanding, but not impossible to implement. Let us clarify that forced-action does not mean that
each player’s action is predictable by the other players, nor that it is immediately apparent when a
player chooses an “alternative action.” For example, in a ballot-box game, player i’s only
“non-aborting” action may consist of sealing a specific value v into a specific envelope E. But the
other players may not know v: G’s being forced-action only guarantees them that if i does not seal
the “right” value, G will eventually abort. By sealing in E a value v’ instead, i would be committing
to his aborting G, but his abort may become apparent only later on —e.g., when opening E will
reveal a content different from that of another, specific envelope.
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DEFINITION AND ITS ANALYSIS
WHY DOES THE PROPERTIES CAPTURE THE DEFINITION?

▶ First of all, notice that, for any player i, aborting in G is fully equivalent to aborting in Γ.
Though i may decide to abort at any time, Property 1 guarantees that when making this
decision he has absolutely no additional information about other players’s types or inputs; nor
any idea of what the outcome of the game will be. Thus, i may decide to abort in G with exactly
the same information as in Γ. To be sure, i can abort Γ only at the very beginning. In G, instead,
he can choose the communication round at which to abort. This choice provides him with the
ability to signal information about his own type, if he so desires. But this signaling does not
affect any payoffs, because whenever i aborts the outcome always is the default value Yi.

▶ Second of all, notice that for any player i, provided that no player aborts the game, sending a
report mi to the mediator in Γ is fully equivalent to committing mi in the input stage of G. In
either case, mi cannot be changed any more: in Γ because there is no other action available to
player i, and in G because of Property 2. Furthermore, in either case, f will be evaluated
correctly: in Γ thanks to the trusted mediator, in G thanks to Property 4.
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DEFINITION AND ITS ANALYSIS
WHY DOES THE PROPERTIES CAPTURE THE DEFINITION? (CONTINUED)

▶ Finally, Property 3 implies that there are no strategies in G available to player i other than
“abort” or “commit to an input mi and then follow the prescribed strategy until the very end.”
Therefore, as shown above, these strategies perfectly correspond to those available to i in Γ:
namely “send a report ∈ Mi” and “send a report mi ∈ Mi.”
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COMMUNICATION MODEL: ENVELOPES AND SUPER ENVELOPES

▶ Players sitting around a table.
▶ Any player can communicate by broadcasting.
▶ Communicate via envelopes (a player create envelopes with the concealed value exposed

publicly or private to the player). They contain a concealed message and can be read only by
the owner. Transfer ownership by passing envelopes around. Envelopes guarantee privacy and
integrity.

▶ Envelopes can be nested (these are called super-envelopes). The protocol does not nest more
than two levels. The (super-)envelopes are ordered within a super-envelope.

▶ Whatever operation a player performs is transparent to all other players. So, no ’under the
table’ shenanigans can take place.

▶ A bunch of envelopes (respectively super-envelopes. If super-envelopes the number of
envelopes within them must be equal) can be put into a ballot box and randomly shuffled
(uniformly at random) and taken out. No one will know the exact permutation (guaranteed to
be a permutation) unless the envelopes are read.

▶ (Super-)Envelopes can be discarded.
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COMPUTATION MODEL
S5 BASED REALIZATION OF BOOLEAN CIRCUITS

▶ Compute based on elements of S5. Seven constant permutations Id, a, b, [a → b], [a−1 → a] and
[aba−1b−1 → a] satisfying certain properties (see paper for details).

▶ Bit 0 is represented by Id and bit 1 by a.
▶ Using these constants and the group operation and group inverse operation, we can implement

the NOT gate and AND gate (see paper for details). As we will see we can realize the cloning
operation and random bit operation in the ballot box model, hence we can realize any
computable (probabilistic) function.
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COMPUTATION MODEL
ENVELOPED PERMUTATION

We represent an element of S5 as an enveloped permutation. That is a super-envelope containing 5
ordered envelopes where the ith envelope contains the ith component of the permutation.
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COMPUTATION MODEL
PERMUTATION LABELLING

Evaluating circuit C realizing on f on specific inputs x1, . . . , xn yields a specific bit value for each

wire w of C. A permutation-labeling of C is a function mapping each wire w of C to a label (
→
P, p),

where p ∈ Sn is a permutation of the n players and
→
P is a sequence of n permutations in

S5 : P = (P1, . . . ,Pn) ∈ (S5)
n. This is essentially used for secret sharing bit(w) hence it needs to

satisfy:

▶ The permutations
→
P are random and (n − 1)-wise independent elements of S5.

▶ The product P1 · · ·Pn equals permutation a if bit(w) = 1 and Id otherwise.
▶ If w is not an input wire for Player i, then Player i knows permutation Pp(i) and has no

information about any permutation Pp(j) for all j = i. If w is an input wire for Player i, then
Player i knows all permutations P1, . . . ,Pn.
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HIGH-LEVEL OVERVIEW

For all possible private inputs x1, . . . , xn, the players compute a valid permutation labeling of C by
the following conceptual steps.

1. Initial Step. For each input wire w of Player j, Player j computes a valid label (
→
P, p), and gives to

each player i the enveloped permutation Pp(i).
2. Inductive Step. For each gate g, and for each output wire w of g, the players use their enveloped

permutations for g’s input wire(s) to jointly compute enveloped permutations P1, . . . ,Pn such

that each player i owns Pp(i), and (
→
P, p) is a valid label for w.

3. Final Step After processing all gates as in the Inductive Step, each output wire w has a valid
label (P, p) such that the product P1 · · ·Pn is Id if bit(w) = 0, and a otherwise. However, each
enveloped permutations Pj belongs to a different player. Therefore in the final step, the players
swap envelopes such that for all output wires w, if bit(w) is a bit of Player i’s output then Player
i now owns the enveloped permutations P1, . . . ,Pn. After the swap, he can open all relevant
envelopes to learn P1, . . . ,Pn and thus compute the bit carried by w. 1

1We will see how to implement this simultaneous swap later.
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COMMONLY USED ROUTINES
CLONING ROUTINE

Player i needs to clone his input ρ (which is known to him and is an envelope permutation).
1. Player i publicly creates three envelope permutations of Id: Id1, Id2, Id3.
2. Then creates 5 super-envelopes where the kth one contains the kth envelope of Idj for all j.
3. He places these super-envelopes into the ballot box, shakes it and obtains three copies σ1, σ2, σ3

(group them rank wise) of a random permutation (i.e σ) of them. That no one knows the
permutation at this point.

4. Player i reads and reseals2 σ3. He computes and broadcasts a permutation π such that πσ = ρ
(this does not leak any information).

5. Reorder σ1, σ2, σ3 according to π to obtain τ1, τ2, τ3. Now, everyone knows
τ = τ1 = τ2 = τ3 = πσ. However, they have no reason to believe τ = ρ. So, Player i will give a
"Perfect ZK Proof" for the same.

2Can do without resealing but will need additional copies in step 1
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COMMONLY USED ROUTINES
EQUALITY "PERFECT ZK PROOF" ROUTINE

To show equality of ρ and τ3.
1. Create a super-envelope grouping ρ and τ3 rank wise.
2. Put it in the ballot box and obtain a random permutation.
3. Now, open each super-envelope and the two sub-envelopes within them publicly and show

they are equal.
Observe that this also proves that ρ is an envelope permutation and not an invalid value like
[1, 3, 1, 2, 4].
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COMMONLY USED ROUTINES
WELL-FORMEDNESS OF INPUT WIRE "PERFECT ZK PROOF" ROUTINE

This routine is used by Player i to prove that ρ is either a or Id without revealing what it is.
1. Publicly create enveloped permutations of a and Id.
2. Use the ballot box to obtain a random permutation of the enveloped permutations.
3. Player i reads both of them, picks the one that equals ρ and groups it rank-wise with ρ.
4. Again, uses the ballot box to obtain a random permutation. Now, open each super-envelope

and the two sub-envelopes within them publicly and show they are equal.
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COMMONLY USED ROUTINES
PERMUTATION LABELLING ROUTINE

At this point, Player i must compute from ρ, in a forced-action manner, enveloped permutations
P1, . . . ,Pn such that (P, Idn) is a valid label of his input wire w, where P = P1, . . . ,Pn and Idn is the
identity of Sn.

1. To begin with, for j = 1 to n − 1, Player i generates Pj by publicly creating an enveloped
permutation Id and then using the ballot box to randomly permute these five envelopes.

2. Next, Player i privately opens, reads and reseals each envelope of P1, . . . ,Pn−1 so as to learn
P1, . . . ,Pn−1.

3. Then, he computes Pn so that P1 · · ·Pn = ρ and generates the enveloped permutation Pn. At this
point other players don’t know if Pn is an enveloped permutation at all, much less P1 · · ·Pn = ρ.
So, player i provides a "perfect zk proof" for the same.

4. Finally, Player i transfers each enveloped permutation Pj to Player j, who privately opens, reads
and reseals each of its envelope to learn Pj. Thus, (P = (P1, ...,Pn), Idn) is a valid permutation
labeling of w.
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COMMONLY USED ROUTINES
PERMUTATION LABELLING "PERFECT ZK" PROOF

1. First, for each j, he uses the same cloning procedure of Input Commitment to produce a clone P’
j

of Pj. This also proves Pj is an enveloped permutation.

2. Next, Player i uses n − 1 times the group operation routine to produce P from P’
1, . . . ,P’

n.
3. After Player i finishes using group operation routine n − 1 times, all players are guaranteed that

P = P’
1 · · ·P’

n, and yet gain no additional information about any P’
j. Because each P’

j is a clone of
Pj, they are also guaranteed that indeed P = P1 · · ·Pn.
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COMMONLY USED ROUTINES
GROUP OPERATION ROUTINE

Let α and β be two enveloped permutations owned by and known to the same player i. To produce
an enveloped permutation γ and prove in perfect zero knowledge that γ = αβ, Player i acts as
follows.

1. First, he publicly creates an enveloped permutation Id.
2. Next he creates five new super envelopes, E1, . . . ,E5. He packs into each Ek a pair of envelopes:

the first is the kth envelope of Id, and the second is the kth envelope of β.
3. He then uses the ballot box to obtain E’

1, . . . ,E’
5, a random reordering of E1, . . . ,E5.

4. Next, he publicly opens E’
1, . . . ,E’

5, and organizes the “exposed” envelopes into two new
enveloped permutations, µ and ν: the kth envelope of µ (respectively, ν) is the first (respectively,
second) envelope from E’

k.
5. Therefore, everyone is guaranteed that µ is a random element of S5 (unknown to everyone),

and that ν = µβ.
6. At this point, Player i privately opens, reads and reseals each envelope of µ, thus becoming the

only player to know µ.
7. Then, he computes and broadcasts π (leaks no information), a permutation in S5 such that

πµ = α.
8. Finally, Player i publicly reorders (other players monitor) the envelopes of µ according to π so

as to obtain a new enveloped permutation ϕ. Similarly, he reorders the envelopes of ν
according to π to obtain γ. Player i gives "Perfect zk proof" of ϕ = α to complete this routine.

This also gives a simple way perform group inversion operation. 32 / 44



COMMONLY USED ROUTINES
INDUCTIVE STEP

In this step we compute the intermediate parts of circuit C3. This is essentially done using the group
operation and group inversion operation. It is slightly more complicated than just using the
implementation of AND gate (or NOT gate) because one player may not have access to the inputs
directly but they maybe secret shared among all the players. We can re-randomize the secret sharing
using the group inversion operation if it is needed.

3Not in the original paper
33 / 44



COMMONLY USED ROUTINES
IMPLEMENTING SIMULTANEOUS EXCHANGE

The paper lists three different ways of performing simultaneous exchange (everyone needs to
observe this enforce forced action like the other steps) in a footnote but each of them requires some
kind of new assumption or compromise:

1. Using a "revolving-door" like physical device. (Requires an additional assumption of a physical
device)

2. Have a referee who is responsible for transferring who can be held accountable if he fails to
transfer the (super-)envelopes properly. Although, this is a weaker assumption than a mediator
this doesn’t come for free.

3. Lastly, a slightly weaker version of simultaneous in which we punish player(s) who fail to
transfer the envelopes properly. Something like this might be needed to preventing peeking.
Punishing in both these cases can be seen as an abort.
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MAIN THEOREM (INFORMAL)

Any mediated game of incomplete information Γ can be rationally and securely simulated by a
ballot-box game G.
So, once we have a ideal mechanism we can get a perfectly secure protocol essentially for free in the
ballot box model (if we don’t worry too much about concrete efficiency and multiple equilibria (not
an issue when truth telling is a dominant strategy equilibrium)).

37 / 44



MODULAR MECHANISM DESIGN (AND UC SECURITY)

This protocol is universally composable (information theoretically) and enjoys nice properties like
synchronous reducibility. Modularity achieved in follow up paper which deals with a sequence of
mediated (correlated) games.
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PRIVACY AND MECHANISM TRANSPARENCY

The protocol dispenses with the need to trade-off between the amount of information that is
publicly revealed and the amount of trust bestowed on the mechanism. More generally, the protocol
enables one to implement social-choice functions with “private outcomes.” In particular, assuming
that actual transactions can be kept private, we can implement second-price auctions where the
losers learn only that they have lost, the winner learns that he has won and at what price, and the
seller learns only the winner and the price.
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FOLLOW UP PAPERS

Searching google scholar for these three authors brings up this series of papers.
1. Verifiably secure devices [ILM08] (ILM1 and ILM2 security)
2. Perfect implementation [ILM11]
3. Perfect implementation of normal-form mechanisms [ILM05a]
4. Universal mechanism design [ILM05b]
5. Perfect concrete implementation of arbitrary mechanisms: A quick summary of joint work with

Sergei Izmalkov and Matt Lepinski [Mic10]
6. The Security Power of the Ballot Box [LI05]
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LIMITATIONS

▶ Inefficient, practical implementations will likely relax security to be computational (rather than
perfect) for efficiency.

▶ Strong assumption of transparent computation (i.e the ballot box model).
▶ Signalling using other channels. (Prior communication not a problem as G is a mediated game

of incomplete information and these things can considered to be part of the prior.)
▶ How to go about hiding types or prove ignorance of types of other players? (why proofs of

ignorance don’t work)
▶ Mesh network only practical for small n.
▶ What is synchronous reducibility?
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