Towards a Game Theoretic
View of Secure computation



Objective: (Security and Correctness)

 We relate the two formalisms.

* We demonstrate how Game Theoretic concepts and formalisms can
be used to capture cryptographic notions of security of protocols.

* In the setting of two party protocols and fail-stop adversaries, we
show how the traditional notions of secrecy and correctness of
protocols can be captured as properties of Nash equilibria in games
for rational players.

* We first show Game theoretic notions of secrecy and correctness that
are equivalent, respectively, to the standard cryptographic notions of
secret and correct evaluation of deterministic functions in fail-stop
setting.



Objective: (Fairness)

* We formulate a natural Game theoretic notion of fairness and
observe that it is strictly weaker than existing cryptographic notions
of fair two party function evaluation.

* Next, we formulate new cryptographic notions of fairness that are
equivalent to this Game theoretic notion, and a simulation based
notion of fairness that implies the above three.



Basic ldea

* We translate a given protocol into a set of games, in such a way that
the protocol satisfies the cryptographic property in question if and
only if a certain pair of strategies are in a (computational) Nash
equilibrium in each one of the games.

* Precisely, given a protocol, we consider the game where in each step
the relevant party can decide to either continue running the protocol
as prescribed, or alternatively abort the execution. We then ask
whether the pair of strategies that instruct the players to continue the
protocol to completion is in a (computational) Nash equilibrium. Each
cryptographic property is then captured by an appropriate set of
utilities and input distributions (namely, distributions over the types)



Secrecy

* A given protocol is secret if and only if the strategy that never aborts
the protocol is in a computational Nash equilibrium with respect to
the following set of utilities and distributions over the types.

* How do we define secrecy here?

For each pair of values in the domain, we define a distribution that
chooses an input for one party at random from the pair. The party gets
low payoff if the two values lead to the same output value and yet the
other party managed to guess which of the two inputs was used.



Correctness

* A protocol correctly computes a deterministic function if and only if
the strategy that never aborts the protocol is in a computational Nash
equilibrium with respect to the set of utilities

* The utilities are in such a way that the parties get high payoff only if
they output the correct function value on the given inputs (types), or
abort before the protocol starts; in addition, the players get no payoff
for incorrect output.



Fairness

* Basic setting: Two parties interact by exchanging messages in order to
valuate a function f on their inputs.

* The only allowed deviation from the protocol is abortion, in which
event both parties learn that the protocol was aborted.

* Basically, a protocol in this model should specify, in addition to the
next message to be sent, also a prediction of the output value in case
the execution is aborted. (fair exchange function, where the output of
each party is the input of the other)



Current notion of fairness

e Current notions of fairness for two party protocols require there to be
a point in the computation where both parties move from a state of
no knowledge of the output to a full knowledge of it. [Strong notion]



Our notion

 We relax our notion of fairness.
e Gradual Release

* We let each party has, in addition to its own input, some additional
information on the input of the other party. (perhaps two possible values
of input)

* For each valid quadruple, an input for one party is chosen at random from

the first two values and an input for other party is chosen at random from
the other two values.

 When the party aborts the protocol, each party predicts its output.

 Utility is defined in a way that, if the party predicts correctly (incorrectly)
and the other one does not, then it gets payoff +1 (-1). Else, O.



Three different cryptographic notions of
fairness

Game-Based

A

Game-Theoretic Gradual Release

New Ideal Model

Figure 1: Our four notions of fairness and their relationships



“came-based” notion of fairness

e [imits the gain of an arbitrary fail-stop adversary in a game.

* closely mimics the above Game Theoretic interaction except here the
adversary is arbitrary, rather than rational.

* We show that the two notions are equivalent.



Concept of limited gradual release

* The probability of any party to predict its output increases only by a
negligible amount.

* We show that a protocol is fair if and only if it satisfies the limited
gradual release property.



ldeal-model-based notion of fairness

* Allows for limited gradual release of secrets.

* The ideal functionality accepts a “sampling algorithm” M from the
ideal-model adversary.

* The functionality then obtains the inputs from the parties and runs M
on these inputs, and obtains from M the outputs that should be given
to the two parties.

* The functionality then makes the respective outputs available to the
two parties.

* We require M to be both “fair” and “correct” i.e. both parties get
correct output with roughly equal probability.



On the Definitional Choices

* Why use plain Nash equilibria to exhibit correspondence between
cryptographic notions and Game Theoretic ones?

 Why not, for instance, stronger notions such as Dominant Strategy,
Survival Under Iterated Deletions or Subgame Perfect equilibria?

* It turns out that in our setting of two-party computation with fail-stop
faults, Nash equilibria do seem to naturally correspond to
cryptographic secure protocols. In particular, in the fail-stop case any

Nash equilibrium is sub-game perfect, or in other words empty
threats do not hold.



Organization

* the Game Theoretic notion

* the equivalent cryptographic definition

* a new simulation-based definition

* the limited gradual release property and its relation to fairness
* the study of the fairness definition



A positive result!

* Impossibility results, of Cleve and Asharov-Lindell, hold even with
respect to this weaker notion, as long as both parties are required to
receive an output.

* Our notion is meaningful even in the case where parties are not
guaranteed to always learn the correct output when played honestly.

* In cases where correctness holds with probability between 0 and %,
our simulation-based notion of fairness is achievable with no set-up
or trusted third-parties.



Our work, Related Work, Motivation

* Cleve’s impossibility result extension

* We show fairness is impossible to achieve even if correctness holds
with probability <1 (>0.5)

* We overcome this impossibility by relaxing the requirements and
show that fairness can be achieved for protocols with correctness %.

* Recent work, different approach to overcome impossibility [they relax
utility instead of correctness]



Review of some cryptographic definitions

Negligible functions and indistinguishability. A function p(-) is negligible if for every poly-
nomial p(-) there exists a value N such that for all n > N it holds that pu(n) < ﬂ—lﬂj. Let
X = {X(a,n)},enaeqory and Y = {Y(a,n)},cn acfo.1)+ be distribution ensembles. Then, we
say that X and Y are computationally indistinguishable, denoted X = Y. it for every non-uniform

probabilistic polynomial time (PPT) distinguisher D there exists a negligible function p(-) such that
for all sufficiently long a € {0,1}%,

|Pr[D(X(a,n)) = 1] — Pr[D(Y (a,n)) = 1]| < p(n).



Review of some cryptographic definitions

* Protocol: In our setting, we study two party protocols, modelled as a
pair of interacting Turing machines.

* We formulate both the cryptographic and the Game Theoretic
concepts in terms of two-party protocols.

 We restrict attention to PPT machines.

* [Here, to simplify the analysis, we consider machines that are
polynomial in a globally known security parameter, rather than in the
length of their inputs.]



Review of some cryptographic definitions

Two-Party functions. In general, a two-party function is a probability distribution over func-
tions f: {0,1}*x{0,1}*xN — {0,1}*x{0,1}*. Here the first (second) input and output represent
the input and output of the first (second) party, and the third input is taken to be the security
parameter. In this work we consider the restricted model of deterministic functions. We say that
a function is efficiently invertible if, for i = 0, 1, given 1™, an input value x; and an output value v,
it is possible to compute in PPT a value x,_; such that f(xzg,x1,n) =y.



Review of some cryptographic definitions

The Fail-stop setting:
* We consider two-party interaction in the presence of fail-stop faults.

* Both parties follow the protocol specification exactly, with the
exception that any one of the parties may, at any time during the
computation, decide to stop, or abort the computation.

* The abortion operation is explicit and public.

* Note: This modelling of abortion as a public operation is easily
justified in a communication setting with reasonable timeouts on the
communication delays. Protocols in this model should specify the
output of a party in case of early abortion of the protocol. We assume
that this output has a format that distinguishes this output from
output that does not result from early abortion.




Fail-stop Adversary

* Fail-stop adversaries do not change their initial input for the execution, yet,
they may arbitrarily decide on their output.

 The Game Theoretic and the cryptographic approaches differ in the
specifics of the abortion step.

* [n both cases we assume that the abortion operation is explicit and public.

e As soon as one party decides to abort, the other party receives an explicit
notification of this fact and can act accordingly. (in contrast to the setting
where one party decides to abort while the other party keeps waiting
indefinitely to the next incoming message.)



Cryptographic Security



Some definitions

* View:

By definition [10], the View of the ith party (: € {0,1})
during an execution of 7 on (zg,x;) is denoted View ;(zo,z1,n) and equals (z;,r*,mi,...,mj),
where r' equals the contents of the ith party’s internal random tape, and m; represents the jth
message that it received.



Privacy and some Intuitive idea:

* We introduce a definition of private computation.

* Intuitively, it means that no party (that follows the protocol) should
be able to distinguish any two executions when using the same inputs
and seeing the same outputs. This holds even for the case that the
other party uses different inputs.



Formal definition

Definition 2.1 (privacy) Let f and 7 be as above. We say that 7 privately computes f if the
following holds:

1. For every non-uniform PPT adversary A that controls party P,

C

. . /
{View, 4(.)0(%0,71,n) }xo,xl,mg v,2€{0,1}*,neN = {View: 4()0(x0, 1,7) }mo,xl,a:’l,ze{oal}*mEN

where |zo| = |o1] = [a%] and f(wo,w1) = f(x0,a%).

2. For every non-uniform PPT adversary A that controls party Py

C

. . /
{VleWﬂ.’A(z)’l (330, Zy, n) }$0,$6,$1,Z€{0,1}*,REN = {Vlewﬂ’A(Z),l(m()? Iy, n) }$0,$6,$1,Z€{0,1}*,REN

where |xo| = |zg| = |z1| and f(xo,z1) = f(xy, z1).



Correctness (informal)

* We distinguish between output that corresponds to successful
termination of the protocol and output generated as a result of an
abort message.

* The second output starts with a L sign.
* The correctness requirement only applies to the first type of output.

* For the fail-stop setting, it holds that privacy and correctness imply
simulation-based security with abort.



Formal definition

Definition 2.2 (correctness) Let f and 7 be as above. We say that w correctly computes f if
for all sufficiently large inputs xoy and x1 such that |xg| = |x1| = n, we have:

Pr[Output, ; € {Lo{0,1}", f(x0,21)}] > 1 — pu(n)

where Output, ; # L denotes the output returned by P; upon the completion of ™ whenever the
strategqy of the parties is continue, and p 18 a negligible function.



Review of some concepts and Game theoretic
definitions

* Here, we extend some concepts to put then on equal footing as
cryptographlc concepts. ( mtroducm% asymptotic, computationally bounded
players, and negligible error probabillities.)

* We consider the case of two-player games.

* Traditionally a 2-player (normal form, full information) game ' = é{AO' A1},
{uo, u1}) is determined by specifying, for each player Pi, a set Ai of possible
actions and a utility function. ui: Ao x A1 - R

* We refer to a tuple of actions a = (a0, al) € A = Ao x A1 as an outcome.

. The utility function of party expresses the player’s preferences over
outcomes.

e A strategy ai for Piis a distribution on actions in A.i.
 Strategy vector, utility on strategy vector.



Definition for Nash Equilibria(normal form,
complete inf. Game)

Definition 2.3 (Nash equilibria for normal form, complete information games) Let ' =

({Ao, A1}, {uo,u1}) be as above, and let o = og,01 be a pair of strategies as above. Then o is in a

Nash equilibrium if for all i and any strategy o) it holds that u;(o(,07) < u;(o), where o] = o] and
1



* Naturally extended to the case of extensive form games. (Parties take
turn while taking actions).

 Strategy is probabilistic function of a sequence of actions taken so far
by players.

* Execution of game is represented naturally via history.
e Utility is applied to the history.



* Another natural extension is to games with incomplete information.
(Player has additional information called type, only known to itself).

* Additional input. Utility also depends on types (of both players), along
with history.

 However, a party cannot necessarily compute its own utility.

* It is assumed that an a priori distribution on the inputs (types) is
fixed.

* The expected utility is computed wrt this distribution.



Definition 2.4 (Nash equilibria for extensive form, incomplete information games) Let
I = ({Ag, A1}, {uo, u1}) be as above, and let D be a distribution over ({0,1}*)%. Also, let o = 09, 01
be a pair of extensive-form strategies as described above. Then o is in a Nash equilibrium for D if for
all i and any strategy o) it holds that w;(xo, 1,00 (o), 07 (z1)) < ui(xo, x1,00(70), 01(21)), where
(xg,x1) is taken from distribution D, o;(x) denotes the strategy of P; with type x, o! = o, and
Ji’_i = 01—4-



Extension for the cryptographic model

* Further extension to computationally bounded players.

e Step 1: Model a strategy as interactive probabilistic Turing machine
that algorithmically generates the next move given the type and a
sequence of moves so far.

* Next, we move to an asymptotic treatment to capture
computationally bound behaviour. (We consider infinite sequence of
games. Security parameter is given as an additional input to each
utility function, set of possible actions and distribution over types.)

* The only strategies which we consider are polynomial in n.
* Relaxed notion of “greater or equal to” to “not significantly less than.”



Extension to the case of computationally
bounded players

Definition 2.5 (Computational Nash equilibria for extensive form, incomplete inf. games)
Let T' = ({Ao, A1}, {uo,u1}) be as above, and let D = {Dy,},en be a family of distributions over
({0,1}*)2. Let 0 = 0g,01 be a pair of PPT extensive-form strategies as described above. Then o is
in a Nash equilibrium for D if for all sufficiently large n’s, all i and any PPT strategy o, it holds that
ui(n, g, x1, 04 (n, xg), 0] (n, x1)) < ui(n, zg, 1, 00(n, z9), 01(n, 1)) + p(n), where (xg, 1) is taken
from distribution Dy, o;(z,n) denotes the strateqy of P; with type x, o) = o, and of_, = 01_;, and

118 a negligible function.



Our Setting: (informal understanding)

* Two-party protocol

* At each step, the relevant party can make a binary decision: Either
abort or continue running the protocol t scrupulously. (binary choice)

* We let each player have local history (consists only of the type of the
player and its internal randomness).

* The notion of an “action” is extended to include potentially complex
algorithmic operations. (algorithm, configuration)

* The outcome of this action is appended to the history of the
execution, and the new configuration of the algorithm is added to the
local history of the player.




Formally defined,

Definition 2.6 Let 7 = (Fy, P1) be a two-party protocol (i.e., a pair of Interactive Turing Ma-
chines). Then, the local history of P; (fori € {0,1}), during an execution of w on input (zg,x1) and
internal random tape r°, is denoted by Historym(:ltg,xl,n) and equals (x;,r,mY,...,m), where
m;",- represents its jth message. The history of ™ during this execution is captured by (m{,m1), ..., (m?,m})

1
and is denoted by History_. The configuration of m at some point during the interaction consists

of the local configurations of Py, Py.



Fail-stop games

* Party makes strategic decision whether to continue or abort.

* If continue:
Outgoing message is generated
New configuration added to local history

e If abort:

Abort symbol is added to configuration of both parties.
Protocols run to completion producing local outputs.



Basic idea

 Utility may depend on all the histories. Convenient to define utility
that consider local output of a player. [Outputnr, ]

* We investigate the basic Game Theoretic property of protocols
whether the pair of strategies (ocontinue, Gcontinue) is in @ (computational)

Nash equilibrium in fail-stop games, with respect to a given set of
utilities and input distributions.

Definition 2.7. (Nash protocols) Let D be a set of distribution ensembles over pairs of
strings, and letl/ be a set of extensive form binary utility functions. A two-party protocol
7t 1s called Nash Protocol with respect to U/, D if, for any u € 4 and D € D, the pair of

strategies o = (o CORtLIRUe gcontinue) jqin 3 computational Nash equilibrium for the
fail-stop game I'; ,, and distribution ensemble D.



On subgame perfect equilibria and related
concepts.

 Solution concept for extensive for games. [not encumbered by
“empty threats.”]

* We note that in our limited case of fail-stop games any Nash
equilibrium is subgame perfect.

* Indeed, once one of the parties aborts the computation, there is no
chance for the other party to “retaliate”; hence, empty threats are
meaningless.

* Some variants of this notion that are better suited to our
computational setting have been recently proposed.



Privacy and Correctness in Game Theoretic
View



Privacy (Basic setting)

* A protocol is private if no (failstop) PPT adversary is able to distinguish
any two executions where the adversary’s inputs and outputs are the
same, even when the honest party uses different inputs in the two
executions.

* Goal is to define a set of utility functions that preserve this property
for Nash protocols.

* Restrict to input distributions over triples of inputs. Input given to one
of the parties is fixed, input of the other party is uniformly chosen
from the remaining pair. [captures the strength of cryptographic
(semantic) security; other party input is one of two possible values,
cannot tell which one.]



Privacy (Defining utility)

* One could define privacy by having each party gain whenever it learns
something meaningful on the other party’s private input.

 Seems that it is better to make a party lose if the other party learns
anything about its secret information.

* Intuition: It must be worthwhile for the party who holds the data to
maintain it a secret. Having the other party gain any profit when
breaking secrecy is irrelevant, since it does not introduce any
incentive for the former party to prevent this leakage.



More formally

* For each n we consider a sequence of input distributions for
generating inputs of this length. Each distribution is denoted by D and

indexed by triples (ao, a1, b), and is defined by picking x ¢ (ao, a1) and
returning (x, b).

Definition 3.1. (distribution ensembles for privacy) The distribution ensemble for
privacy for Py for a two-party function f is the ensemble D? = {Dp.n}HEN where

R
D?ﬁ = {Duy,a1,bag,a1,be{0,1)", f(ag.b)=f(a1,b)> and Dy 4, p outputs (x, b), where x <
(ao, ar).



* For every (n, ao, a1, b) and for every PPT algorithm B, let the
augmented protocol for privacy for i, with guess algorithm B, be the
protocol that first runs m and then runs B on the local state of m and
two additional auxiliary values.

* We assume that B outputs a binary value, denoted by guess P .
where Piis the identity of the attacker.

* This value is interpreted as a guess for which one of the two auxiliary
values is the input value of the other party.



Defined utility

Definition 3.2. (utility function for privacy) Let  be a two-party protocol and f be a
two-party function. Then, forevery ag, a;, b suchthat f(ag, b) = f (a1, b),and forevery
guessing algorithm B, the utility function for privacy for party Py, on input x € {ag, a},
1s defined by:

—1 it guess_p —gandx =a
(x,b,n),a0,a1,b) — TAug. 55| 8

D yye
u, (History_p
| i 0 otherwise

Aug,.B°



Understanding

* If the history of the execution is empty and inputs of the parties are
taken from a distribution ensemble for privacy, then uy? equals at
least —1/2. [P1 can only guess x with probability at most 1/2.

* Therefore, intuitively, it will be rational for Poto participate in the
protocol (rather than to abort at the beginning) if and only if the
other party cannot guess the input of Po with probability significantly
greater than 1/2.



Definition 3.3. (game theoretic private protocols) Let f and m be as above. Then, we
say that t 1s Game Theoretic private for party Py if nEug g 18 @ Nash protocol with

respect to uE, u‘lj and D? and all valid ppt1 B.

* A protocol is Game Theoretic private if it is Game Theoretic private for
both parties.



Theorem 3.4. Let f be a deterministic two-party function, and let ™ be a two-party
protocol that computes f correctly (cf. Definition 2.2). Then, r is Game Theoretic private

if and only if 7 privately computes [ in the presence of fail-stop adversaries.



Proof of theorem



Correctness in Game Theoretic View



Basic setting

e We formulate utilities.

* We show that a protocol correctly computes a deterministic function
if and only if the strategy that never aborts the protocolisin a
computational Nash equilibrium with respect to the set of utilities
specified.

* The parties get high payoff only if they output the correct function
value on the given inputs (types), or abort before the protocol starts;
in addition, the players get no payoff for incorrect output.



Definition 3.5. (distribution ensemble for correctness) Let f be a deterministic two-
party function. Then, the distribution ensemble for correctness is the ensemble D =

{DC},enx wWhere DS = {Dg p}a.befo.1y2, and D, , outputs (a, b) w.p. 1.



* A fail-stop adversary cannot affect the correctness of the protocol [plays
honestly with the exception that it may abort.] An incorrect protocol in the
presence of fail-stop adversary implies that the protocol is incorrect
regardless of the parties’ actions.

* Upon receiving an abort message we have the following:

(i) The honest party already learnt its output. So, correctness should be
guaranteed. Or,

(ii) The honest party did not learn the output yet, for which it outputs L
together with its guess for the output.

Note: The guess is different from the case of privacy as here, we assume that
the protocol instructs the honest party how to behave in case of an abort.



Modelling utility

* The parties gain a higher utility if they output the correct output, and
lose if they output an incorrect output. Therefore, the continue
strategy would not induce a Nash equilibrium in case of an incorrect
protocol, as the parties gain a higher utility by not participating in the
execution.



Defined utility

Definition 3.6. (utility function for correctness) Let m be a two-party fail-stop game
as above. Then, for every a, b as above the utility function for correctness for party
Py, denoted ug, is defined by:

o uS(History” ;) = 1.
1 if Output,, o = f(a, b)

c
e ug(Output_ ,a,b) — I 0 otherwise

where Historyivo denotes the case that the local history of Py 1s empty (namely, Py does
not participate in the protocol).



Theorem 3.7. Let f be a deterministic two-party function, and let &t a two-party
protocol. Then,  is a Nash protocol with respect to ug, u$ and D?c if and only if r
correctly computes f in the presence of fail-stop adversaries.



Proof of theorem






