
Towards a Game Theoretic 
View of Secure computation



Objective: (Security and Correctness)

• We relate the two formalisms. 

• We demonstrate how Game Theoretic concepts and formalisms can 
be used to capture cryptographic notions of security of protocols.

• In the setting of two party protocols and fail-stop adversaries, we 
show how the traditional notions of secrecy and correctness of 
protocols can be captured as properties of Nash equilibria in games 
for rational players.

• We first show Game theoretic notions of secrecy and correctness that 
are equivalent, respectively, to the standard cryptographic notions of 
secret and correct evaluation of deterministic functions in fail-stop 
setting.



Objective: (Fairness)

• We formulate a natural Game theoretic notion of fairness and 
observe that it is strictly weaker than existing cryptographic notions 
of fair two party function evaluation.

• Next, we formulate new cryptographic notions of fairness that are 
equivalent to this Game theoretic notion, and a simulation based 
notion of fairness that implies the above three. 



Basic Idea

• We translate a given protocol into a set of games, in such a way that 
the protocol satisfies the cryptographic property in question if and 
only if a certain pair of strategies are in a (computational) Nash 
equilibrium in each one of the games.

• Precisely, given a protocol, we consider the game where in each step 
the relevant party can decide to either continue running the protocol 
as prescribed, or alternatively abort the execution. We then ask 
whether the pair of strategies that instruct the players to continue the 
protocol to completion is in a (computational) Nash equilibrium. Each 
cryptographic property is then captured by an appropriate set of 
utilities and input distributions (namely, distributions over the types)



Secrecy

• A given protocol is secret if and only if the strategy that never aborts 
the protocol is in a computational Nash equilibrium with respect to 
the following set of utilities and distributions over the types. 

• How do we define secrecy here? 

For each pair of values in the domain, we define a distribution that 
chooses an input for one party at random from the pair. The party gets 
low payoff if the two values lead to the same output value and yet the 
other party managed to guess which of the two inputs was used. 



Correctness

• A protocol correctly computes a deterministic function if and only if 
the strategy that never aborts the protocol is in a computational Nash 
equilibrium with respect to the set of utilities 

• The utilities are in such a way that the parties get high payoff only if 
they output the correct function value on the given inputs (types), or 
abort before the protocol starts; in addition, the players get no payoff 
for incorrect output.



Fairness

• Basic setting: Two parties interact by exchanging messages in order to 
valuate a function f on their inputs.

• The only allowed deviation from the protocol is abortion, in which 
event both parties learn that the protocol was aborted.

• Basically, a protocol in this model should specify, in addition to the 
next message to be sent, also a prediction of the output value in case 
the execution is aborted. (fair exchange function, where the output of 
each party is the input of the other)



Current notion of fairness

• Current notions of fairness for two party protocols require there to be 
a point in the computation where both parties move from a state of 
no knowledge of the output to a full knowledge of it. [Strong notion]



Our notion

• We relax our notion of fairness. 

• Gradual Release

• We let each party has, in addition to its own input, some additional 
information on the input of the other party. (perhaps two possible values 
of input)

• For each valid quadruple, an input for one party is chosen at random from 
the first two values and an input for other party is chosen at random from 
the other two values.

• When the party aborts the protocol, each party predicts its output.

• Utility is defined in a way that, if the party predicts correctly (incorrectly) 
and the other one does not, then it gets payoff +1 (-1). Else, 0.



Three different cryptographic notions of 
fairness



“game-based” notion of fairness

• limits the gain of an arbitrary fail-stop adversary in a game.

• closely mimics the above Game Theoretic interaction except here the 
adversary is arbitrary, rather than rational.

• We show that the two notions are equivalent.



Concept of limited gradual release

• The probability of any party to predict its output increases only by a 
negligible amount.

• We show that a protocol is fair if and only if it satisfies the limited 
gradual release property. 



Ideal-model-based notion of fairness 

• Allows for limited gradual release of secrets.

• The ideal functionality accepts a “sampling algorithm” M from the 
ideal-model adversary.

• The functionality then obtains the inputs from the parties and runs M 
on these inputs, and obtains from M the outputs that should be given 
to the two parties.

• The functionality then makes the respective outputs available to the 
two parties.

• We require M to be both “fair” and “correct” i.e. both parties get 
correct output with roughly equal probability.



On the Definitional Choices

• Why use plain Nash equilibria to exhibit correspondence between 
cryptographic notions and Game Theoretic ones?

• Why not, for instance, stronger notions such as Dominant Strategy, 
Survival Under Iterated Deletions or Subgame Perfect equilibria?

• It turns out that in our setting of two-party computation with fail-stop 
faults, Nash equilibria do seem to naturally correspond to 
cryptographic secure protocols. In particular, in the fail-stop case any 
Nash equilibrium is sub-game perfect, or in other words empty 
threats do not hold.



Organization

• the Game Theoretic notion 

• the equivalent cryptographic definition 

• a new simulation-based definition

• the limited gradual release property and its relation to fairness

• the study of the fairness definition



A positive result!

• Impossibility results, of Cleve and Asharov-Lindell, hold even with 
respect to this weaker notion, as long as both parties are required to 
receive an output.

• Our notion is meaningful even in the case where parties are not 
guaranteed to always learn the correct output when played honestly. 

• In cases where correctness holds with probability between 0 and ½, 
our simulation-based notion of fairness is achievable with no set-up 
or trusted third-parties. 



Our work, Related Work, Motivation

• Cleve’s impossibility result extension

• We show fairness is impossible to achieve even if correctness holds 
with probability <1 (>0.5)

• We overcome this impossibility by relaxing the requirements and 
show that fairness can be achieved for protocols with correctness ½.

• Recent work, different approach to overcome impossibility [they relax 
utility instead of correctness]



Review of some cryptographic definitions



Review of some cryptographic definitions

• Protocol: In our setting, we study two party protocols, modelled as a 
pair of interacting Turing machines.

• We formulate both the cryptographic and the Game Theoretic 
concepts in terms of two-party protocols. 

• We restrict attention to PPT machines. 

• [Here, to simplify the analysis, we consider machines that are 
polynomial in a globally known security parameter, rather than in the 
length of their inputs.]



Review of some cryptographic definitions



Review of some cryptographic definitions

The Fail-stop setting: 

• We consider two-party interaction in the presence of fail-stop faults.

• Both parties follow the protocol specification exactly, with the 
exception that any one of the parties may, at any time during the 
computation, decide to stop, or abort the computation. 

• The abortion operation is explicit and public.

• Note: This modelling of abortion as a public operation is easily 
justified in a communication setting with reasonable timeouts on the 
communication delays. Protocols in this model should specify the 
output of a party in case of early abortion of the protocol. We assume 
that this output has a format that distinguishes this output from 
output that does not result from early abortion.



Fail-stop Adversary

• Fail-stop adversaries do not change their initial input for the execution, yet, 
they may arbitrarily decide on their output.

• The Game Theoretic and the cryptographic approaches differ in the 
specifics of the abortion step.

• In both cases we assume that the abortion operation is explicit and public.

• As soon as one party decides to abort, the other party receives an explicit 

notification of this fact and can act accordingly. (in contrast to the setting 

where one party decides to abort while the other party keeps waiting 

indefinitely to the next incoming message.) 



Cryptographic Security



Some definitions

• View:



Privacy and some Intuitive idea:

• We introduce a definition of private computation.

• Intuitively, it means that no party (that follows the protocol) should 
be able to distinguish any two executions when using the same inputs 
and seeing the same outputs. This holds even for the case that the 
other party uses different inputs.



Formal definition



Correctness (informal) 

• We distinguish between output that corresponds to successful 
termination of the protocol and output generated as a result of an 
abort message.

• The second output starts with a ⊥ sign.

• The correctness requirement only applies to the first type of output.

• For the fail-stop setting, it holds that privacy and correctness imply 
simulation-based security with abort.



Formal definition



Review of some concepts and Game theoretic 
definitions
• Here, we extend some concepts to put then on equal footing as 

cryptographic concepts. (introducing asymptotic, computationally bounded 
players, and negligible error probabilities.)

• We consider the case of two-player games.
• Traditionally a 2-player (normal form, full information) game Γ = ({A0, A1}, 

{u0, u1}) is determined by specifying, for each player Pi, a set Ai of possible 
actions and a utility function. ui : A0 × A1 → R

• We refer to a tuple of actions a = (a0, a1) ∈ A = A0 × A1 as an outcome.
• . The utility function of party expresses the player’s preferences over 

outcomes.

• A strategy σi for Pi is a distribution on actions in Ai.
• Strategy vector, utility on strategy vector.



Definition for Nash Equilibria(normal form, 
complete inf. Game)



• Naturally extended to the case of extensive form games. (Parties take 
turn while taking actions). 

• Strategy is probabilistic function of a sequence of actions taken so far 
by players.

• Execution of game is represented naturally via history.

• Utility is applied to the history.



• Another natural extension is to games with incomplete information. 
(Player has additional information called type, only known to itself). 

• Additional input. Utility also depends on types (of both players), along 
with history. 

• However, a party cannot necessarily compute its own utility.

• It is assumed that an a priori distribution on the inputs (types) is 
fixed.

• The expected utility is computed wrt this distribution.





Extension for the cryptographic model

• Further extension to computationally bounded players.

• Step 1: Model a strategy as interactive probabilistic Turing machine 
that algorithmically generates the next move given the type and a 
sequence of moves so far.

• Next, we move to an asymptotic treatment to capture 
computationally bound behaviour. (We consider infinite sequence of 
games. Security parameter is given as an additional input to each 
utility function, set of possible actions and distribution over types.)

• The only strategies which we consider are polynomial in n.

• Relaxed notion of “greater or equal to” to “not significantly less than.”



Extension to the case of computationally 
bounded players



Our Setting: (informal understanding)

• Two-party protocol

• At each step, the relevant party can make a binary decision: Either 
abort or continue running the protocol π scrupulously. (binary choice)

• We let each player have local history (consists only of the type of the 
player and its internal randomness).

• The notion of an “action” is extended to include potentially complex 
algorithmic operations. (algorithm, configuration)

• The outcome of this action is appended to the history of the 
execution, and the new configuration of the algorithm is added to the 
local history of the player.



Formally defined,



Fail-stop games

• Party makes strategic decision whether to continue or abort.

• If continue:
Outgoing message is generated

New configuration added to local history

• If abort:
Abort symbol is added to configuration of both parties.

Protocols run to completion producing local outputs.



Basic idea

• Utility may depend on all the histories. Convenient to define utility 
that consider local output of a player. [Outputπ,i ]

• We investigate the basic Game Theoretic property of protocols 
whether the pair of strategies (σcontinue, σcontinue) is in a (computational) 
Nash equilibrium in fail-stop games, with respect to a given set of 
utilities and input distributions.



On subgame perfect equilibria and related 
concepts.
• Solution concept for extensive for games. [not encumbered by 

“empty threats.”]

• We note that in our limited case of fail-stop games any Nash 
equilibrium is subgame perfect. 

• Indeed, once one of the parties aborts the computation, there is no 
chance for the other party to “retaliate”; hence, empty threats are 
meaningless.

• Some variants of this notion that are better suited to our 
computational setting have been recently proposed.



Privacy and Correctness in Game Theoretic 
View



Privacy (Basic setting)

• A protocol is private if no (failstop) PPT adversary is able to distinguish 
any two executions where the adversary’s inputs and outputs are the 
same, even when the honest party uses different inputs in the two 
executions. 

• Goal is to define a set of utility functions that preserve this property 
for Nash protocols.

• Restrict to input distributions over triples of inputs. Input given to one 
of the parties is fixed, input of the other party is uniformly chosen 
from the remaining pair. [captures the strength of cryptographic 
(semantic) security; other party input is one of two possible values, 
cannot tell which one.] 



Privacy (Defining utility)

• One could define privacy by having each party gain whenever it learns 
something meaningful on the other party’s private input. 

• Seems that it is better to make a party lose if the other party learns 
anything about its secret information.

• Intuition: It must be worthwhile for the party who holds the data to 
maintain it a secret. Having the other party gain any profit when 
breaking secrecy is irrelevant, since it does not introduce any 
incentive for the former party to prevent this leakage.



More formally

• For each n we consider a sequence of input distributions for 
generating inputs of this length. Each distribution is denoted by D and 
indexed by triples (a0, a1, b), and is defined by picking x ← (a0, a1) and 
returning (x, b).



• For every (n, a0, a1, b) and for every PPT algorithm B, let the 
augmented protocol for privacy for π, with guess algorithm B, be the 
protocol that first runs π and then runs B on the local state of π and 
two additional auxiliary values.

• We assume that B outputs a binary value, denoted by guessπ
p

Aug,B,
where Pi is the identity of the attacker. 

• This value is interpreted as a guess for which one of the two auxiliary 
values is the input value of the other party.



Defined utility



Understanding

• If the history of the execution is empty and inputs of the parties are 
taken from a distribution ensemble for privacy, then u0

p equals at 
least −1/2. [P1 can only guess x with probability at most 1/2.

• Therefore, intuitively, it will be rational for P0 to participate in the 
protocol (rather than to abort at the beginning) if and only if the 
other party cannot guess the input of P0 with probability significantly 
greater than 1/2.



• A protocol is Game Theoretic private if it is Game Theoretic private for 
both parties.





Proof of theorem



Correctness in Game Theoretic View



Basic setting

• We formulate utilities.

• We show that a protocol correctly computes a deterministic function 
if and only if the strategy that never aborts the protocol is in a 
computational Nash equilibrium with respect to the set of utilities 
specified.

• The parties get high payoff only if they output the correct function 
value on the given inputs (types), or abort before the protocol starts; 
in addition, the players get no payoff for incorrect output. 





• A fail-stop adversary cannot affect the correctness of the protocol [plays 
honestly with the exception that it may abort.] An incorrect protocol in the 
presence of fail-stop adversary implies that the protocol is incorrect 
regardless of the parties’ actions.

• Upon receiving an abort message we have the following: 

(i) The honest party already learnt its output. So, correctness should be 
guaranteed. Or, 

(ii) The honest party did not learn the output yet, for which it outputs ⊥
together with its guess for the output.

Note: The guess is different from the case of privacy as here, we assume that 
the protocol instructs the honest party how to behave in case of an abort. 



Modelling utility

• The parties gain a higher utility if they output the correct output, and 
lose if they output an incorrect output. Therefore, the continue 
strategy would not induce a Nash equilibrium in case of an incorrect 
protocol, as the parties gain a higher utility by not participating in the 
execution.



Defined utility





Proof of theorem




