


Two-party coin toss protocol

• Definition. 

• Fairness notions: strong and weak. 

• Strong fairness ⇒ Weak fairness but not the reverse. 

• Feasibility results:

• Assuming the existence of one-way functions, a weakly fair 2-party 
protocol can be constructed for malicious, comp. bounded adversaries. 
[Blum. Coin flipping by telephone.]

• There is no 2-party protocol guaranteeing strong fairness even for 
computationally bounded, fail-stop adversaries. [Cleve. Limits on the 
security of coin flips when half the processors are faulty.]



Results about Multiparty coin toss

• Strong fairness can be achieved in a multiparty coin toss protocol assuming 
honest majority and existence of one-way functions even against malicious 
computationally bounded adversaries. [Goldreich et al.]

• For corrupt majority, Cleve’s result extends to multiple parties, i.e., strong 
fairness cannot be achieved even for fail-stop and computationally bounded 
adversaries. 

• But these are only about strong fairness!!



What about weak fairness for multiparty coin toss?

• Can we achieve Blum’s weak fairness notion in multi-party coin toss 
protocols?

• Note that strong fairness has been extensively studied for multiparty coin 
toss protocols. 

• Can we overcome Cleve’s impossibility for a corrupt majority multi-party coin 
toss with weak fairness?

• How do we even define weak fairness in multi-party coin toss protocols?



Focus of the 
paper

Explore different fairness notions in case of 
multiparty protocols, particularly for the case of 
corrupt majority. (For honest majority, all these are 
achievable because strong fairness is achievable.)
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(fail-stop, malicious).

• Formal definition of a multiparty coin toss protocol.

• Defining strong fairness (for the sake of 
completeness).

• Maximin fairness 

• Cooperative Strategy Proof (CSP) fairness

• Strong Nash Equilibrium (SNE) fairness

• The case of private preference profiles
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Execution Model

• Parties modelled by ITMs

• All the corrupt parties are controlled by an adversary 𝓐

• Synchronous broadcast medium. (Messages sent by honest parties in round r will be 
delivered to all honest parties at the beginning of round r + 1).

• Identifiable abort. (If a party i aborts the protocol in round r without sending any 
message, then all honest parties can detect such abort by detecting the absence of i s 
message at the beginning of round r + 1.)



Corruption Model

• For any fixed adversary algorithm 𝓐, the set of parties it wants to corrupt is 
deterministically encoded in the description of 𝓐 (i.e., for any fixed adversary 𝓐, there 
is no randomness in the choice of the corrupt coalition).

• 𝓐 can be fail-stop or malicious:

• Fail-stop: Corrupt nodes always follow the honest protocol but may abort in the 
middle of the protocol. The decision to abort (or not) can depend on the corrupt 
parties’ view in the protocol so far.

• Malicious: The adversary can make corrupt parties deviate arbitrarily from the 
prescribed protocol, including sending arbitrary messages, choosing randomness 
arbitrarily, and aborting prematurely.
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Preference profile (Def.)



Coin toss protocol (Def.)

• A protocol Π with n parties (each with a preference of some bit) is said to be a coin 
toss protocol if there is a polynomial-time computable deterministic function, which, 
given the transcript of the protocol execution, outputs a bit  b ∈ {0,1}, often said to be 
the outcome of the protocol.

• Correctness:

• If some parties have differing preferences, in an all-honest execution (when all 
parties are honest), the probability that the outcome is 0 (or 1) is exactly 1/2.

• If all parties happen to prefer the same bit b ∈ {0,1}, the honest execution should 
output the preferred bit b with probability 1. 

• Note: Payoff function. If the protocol’s outcome is b, a party who prefers b receives 
a reward (or payoff ) of 1; else, it receives a reward (or payoff ) of 0.



Preference profile (Characterization)

Types of preference profiles:

• Unanimous: Every party prefers the same bit b.

• Almost unanimous: All parties but one prefer the same bit b. 

• Amply divided: ≥2 parties prefer the bit 0, and ≥2 parties prefer the bit 1. 

• Observation. The above types are disjoint and exhaustive. 



Trivial case: Unanimous preference profile

• In this case, it is not required that an honest execution produce an unbiased 
coin, since it makes sense for the outcome to be the bit that is globally 
preferred.

• In the remainder of the paper, for the case of public preference, if everyone 
prefers the same bit  b ∈ {0,1}, it is assumed that the protocol simply fixes the 
outcome to be the universally preferred bit b regardless of how parties act.

• Everyone obtains a payoff of 1, and no deviation from the protocol can 
influence the outcome. 

• Therefore, all game-theoretic fairness notions considered now are trivially 
satisfied when the preference profile is unanimous. So, this case is ignored for 
the rest of the presentation. 



Strong fairness



Adversarial power and strength of fairness

• Adversarial power: 

Fail-stop < Computationally bounded malicious 

< Computationally unbounded malicious

• Strength of fairness: 

Computational fairness         <          Statistical fairness         <        Perfect fairness

(fair against p.p.t. adversaries) (against unbounded adversaries) (perfectly fair)
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Maximin Fairness (Def.)



Maximin Fairness (at most = exactly)

Proof.  Consider an adversary that controls a coalition C of size at most 𝑛 − 1. So 
there is at least one honest party 𝑃𝑖 . View this execution as a coalition 𝐶′ that consists 
of all the parties except 𝑃𝑖. The parties in 𝐶′ but not in 𝐶 are just assumed to be 
adversaries following the honest protocol. 



Maximin Fairness (game theoretic interpretation)

• If a coin-toss protocol is maximin fair, then the following hold:
• The honest strategy maximizes a player’s worst-case expected payoff (even when 

everyone else is colluding against the player); this explains the name maximin 
fairness.

• When playing the honest strategy, a player’s worst-case payoff is what it would 
have gained in an all-honest execution – note that a player’s worst-case 
(expected) payoff obviously cannot be more than its payoff in an all-honest 
execution.



Maximin Fairness (Amply divided preference profiles)



Maximin Fairness (Characterization)

Computational 
fairness

Statistical 
fairness

Perfect 
fairness

Fail-stop 
adversary No No No

Comp. bounded 
malicious adversary No No No

Comp. unbounded 
malicious adversary No No No

• Amply divided preference profile:



Maximin Fairness (Almost unanimous preference profiles)

• Fail-stop adversaries:

• The protocol:



Maximin Fairness (Almost unanimous preference profiles)

• Malicious adversaries:

• So, to sum it up, for the Maximin fairness notion for an almost unanimous 
preference profile, even perfect fairness is possible against fail-stop 
adversaries, but not even computational fairness is possible against even 
computationally bound malicious adversaries. 



Maximin Fairness (Characterization)

Computational 
fairness

Statistical 
fairness

Perfect 
fairness

Fail-stop 
adversary Yes Yes Yes

Comp. bounded 
malicious adversary No No No

Comp. unbounded 
malicious adversary No No No

• Almost unanimous preference profile:
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