A CRYPTOGRAPHIC SOLUTION TO A GAME THEORETIC PROBLEM Yevgeniy Dodis, Shai Halevi, Tal Rabin, [DHR00] CRYPTO'00

Aditya Damodhar D

Indian Institute of Science

December 8, 2023

PART I: MOTIVATIONS AND PROBLEM STATEMENT

1	Motivation
2	Problem Statement

Part I

MOTIVATIONS AND PROBLEM STATEMENT

MOTIVATION

- Two player games consists of two players with a set of moves and a payoff for each player which depends on the moves chosen by both the players.
- Strategy is a (randomized) function for choosing a move.
- Players are selfish and rational.
- Equilibrium achieved when strategies are self-enforcing (Nash Equilibrium).
- ▶ Payoff increased in the presence of a trusted third party (Correlated Equilibrium).
- Can we get the higher payoff even after removing TTP?

PROBLEM STATEMENT

Can a two player game achieve Correlated Equilibria with only two players involved?

PART II: BACKGROUND

1	Notation .	•••	• •	•	•	•	•••	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	7	′

3	Definition: Correlated Equilibrium	•	•	•			•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	9
---	---	---	---	---	--	--	---	---	---	---	---	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---

Part II

BACKGROUND

NOTATION

We discuss in terms of finite strategy two-player games: $i \in \{0, 1\}$

- ▶ Players: P_i
- Set of Actions: A_i
- Payoff Function: $U : A_0 \mathbf{x} A_1 \rightarrow R$
- Payoff of Player i: $u_i(a_0, a_1)$
- Strategy of player i: *s*_i
- Conditional Distribution: $s(\cdot|a_i)$
- ▶ Utility in a conditional distribution: $u_0(a_0, s_1^*|a_0^*), u_1(s_0^*, a_1|a_1^*)$

DEFINITION: NASH EQUILIBRIUM

Definition 1 A Nash equilibrium of a game G is an independent strategy profile (s_1^*, s_2^*) , such that for any $a_1 \in A_1$, $a_2 \in A_2$, we have $u_1(s_1^*, s_2^*) \ge u_1(a_1, s_2^*)$ and $u_2(s_1^*, s_2^*) \ge u_2(s_1^*, a_2)$.

In other words, given that player 2 follows s_2^* , s_1^* is an optimal response of player 1 and vice versa.

DEFINITION: CORRELATED EQUILIBRIUM

Definition 2 A Correlated equilibrium is a strategy profile $s^* = s^*(A_1 \times A_2) = (s_1^*, s_2^*)$, such that for any (a_1^*, a_2^*) in the support of s^* , and any $a_1 \in A_1$ and $a_2 \in A_2$, we have $u_1(a_1^*, s_2^* \mid a_1^*) \ge u_1(a_1, s_2^* \mid a_1^*)$ and $u_2(s_1^*, a_2^* \mid a_2^*) \ge u_2(s_1^*, a_2 \mid a_2^*)$.

Given Nash (resp. Correlated) equilibrium (s_1^*, s_2^*) , we say that (s_1^*, s_2^*) achieves *Nash (resp. Correlated)* equilibrium payoffs $[u_1(s_1^*, s_2^*), u_2(s_1^*, s_2^*)]$.

PART III: THE SOLUTION

1	Gettin	g Rid of the Mediator
	1.1	Deviation Consideration
	1.2	Lemma 1 Proof
	1.3	Theorem
	1.4	Proof Sketch

Part III

SOLUTION

Getting Rid of the Mediator

- Extended Games = Regular Game + two party protocol.
- Consider two party protocol to be the mediator.

Getting Rid of the Mediator

DEVIATION CONSIDERATION

Deviation: Any party which deviates is forced to get its minimum possible payoff while the other party maximises its own payoff. THis is called the *minmax level* Lemma 1: Let [v₀, v₁] be the payoffs achieved by Correlated equilibrium s*. Then, v_i > v_i.

GETTING RID OF THE MEDIATOR LEMMA 1 PROOF

Proof: Consider player 1. Let s_2^* be the marginal strategy of player 2 in the Correlated equilibrium s^* , and let s_1' be the best (independent) response of player 1 to s_2^* . (The strategy s_1' can be thought of as what player 1 should do if it knows that player 2 plays according to s_2^* , but it did not get any "recommendation" from the mediator.)

Since s^* is a Correlated equilibrium, it follows that $v_1 \ge u_1(s'_1; s^*_2)$, since a particular deviation of player 1 from the correlated equilibrium is to "ignore" its recommendation and always play s'_1 , and we know that no such deviation can increase the payoff of player 1. Also, recall that s'_1 is the best (independent) strategy in response to s^*_2 , so we have $u_1(s'_1; s^*_2) = max_{s_1}u_1(s_1; s^*_2)$. Hence we get $v_1 \ge u_1(s'_1; s^*_2) = max_{s_1}u_1(s_1; s^*_2) \ge min_{s_2}max_{s_1}u_1(s_1; s_2) = \underline{v_1}$

GETTING RID OF THE MEDIATOR THEOREM

Theorem 1 If secure two-party protocols exist for non-trivial functions, then for any Correlated equilibrium s of the original game G, there exists an extended game G' with a computational Nash equilibrium σ , such that the payoffs for both players are the same in σ and s.

GETTING RID OF THE MEDIATOR Proof Sketch

- Extended protocol *G*′ is protocol *G* with a protocol *P* to compute *s*.
- Computational Nash equilibrium consists of both players following their steps in P, then executing the moves they get from this protocol.
- This achieves the same payoffs as the correlated equilibrium for *G*. For it to be a computational Nash Equilibrium, Any deviation in the protocol will result in lower payoffs for the deviating party.
- When a player is caught deviating, the minmax level is enforced.
- ▶ When a player deviatesd without getting caught, we assume the probaility of that happening is µ(k), and the payoff achieved is v_i, then the expected payoff in a protocol which involves cheating is given as follows:

 $\mu(k)\overline{v_i} + (1-\mu(k))\underline{v_i} = v_i + \mu(k)(\overline{v_i} - v_i) - (1-\mu(k))(v_i - \underline{v_i}) \le v_i + \mu(k)(\overline{v_i} - v_i)$

• Inequality continues from Lemma 1, and as $\overline{v_i} - v_i$ is constant, the advantage in deviation is negligible.

PART IV: THE 2PC, CRYPTOGRAPHICALLY

1	The P	roblem and the Primitive	19
	1.1	Correlated Element Selection Problem	20
	1.2	Blindable Encryption	21
	1.3	Honest Players:	22
	1.4	Dishonest Players:	23

Part IV

The 2PC, Cryptographically

We consider the Correlated Element Selection Problem and a2PC solution for it using Blindable Encryption.

CORRELATED ELEMENT SELECTION PROBLEM

- ► Players: *A*, *B*
- List of Pairs: $\{(a_1, b_1), \ldots, (a_n, b_n)\}$
- ▶ Result: $A \leftarrow a_i, B \leftarrow b_i$

BLINDABLE ENCRYPTION

Notation:

- ▶ [*n*] is the set {1, 2, . . . , *n*}
- A(x) output distribution on of randomized algorithm A on x.
- A(x;r) output value of randomized algorithm A on x.
- ▶ Algorithms of blindable encryption scheme: *Gen, Enc, Dec, Blind* and *Combine*.
- *Gen, Enc* and *Dec* are typical functions from an Encryption Scheme.
- **Blind** function is given as follows:

There exists a Blindable encryption scheme \mathcal{E} and for every message m and ciphertext $c \in Enc_{pk}(m)$, for any message m' (called blinding factor), $Blind_{pk}(c, m')$ produces a random encryption of m + m'.

 $Enc_{pk}(m+m') \equiv Blind_{pk}(c,m')$

• **Combine** function is given is as follows:

There exists a Blindable encryption scheme \mathcal{E} and for every message m and ciphertext $c \in Enc_{pk}(m)$. For successive blindings using random coins r_1, r_2 , then for any blinding factors m_1, m_2

 $Blind_{pk}(Blind_{pk}(c, m_1; r_1), m_2; r_2) = Blind_{pk}(c, m_1 + m_2; Combine_{pk}(r_1, r_2))$

THE PROBLEM AND THE PRIMITIVE HONEST PLAYERS:

Common inputs: List of pairs $\{(a_i, b_i)\}_{i=1}^n$, public key *pk*. *Preparer knows*: secret key *sk*. **1.** Permute and Encrypt. P: Pick a random permutation π over [n]. Let $(c_i, d_i) = (Enc_{pk}(a_{\pi(i)}), Enc_{pk}(b_{\pi(i)}))$, for all $i \in [n]$. Send the list $\{(c_i, d_i)\}_{i=1}^n$ to *C*. C: 2. Choose and Blind. Pick a random index $\ell \in [n]$, and a random blinding factor β . Let $(e, f) = (Blind_{pk}(c_{\ell}, 0), Blind_{pk}(d_{\ell}, \beta)).$ Send (e, f) to P. P: 3. Decrypt and Output. Set $a = Dec_{sk}(e)$, $\tilde{b} = Dec_{sk}(f)$. Output a. Send \tilde{b} to C. C: 4. Unblind and Output. Set $b = \tilde{b} - \beta$. Output b.

DISHONEST PLAYERS:

Common inputs: List of pairs $\{(a_i, b_i)\}_{i=1}^n$, public key pk. *Preparer knows*: secret key sk.

P : **1. Permute and Encrypt**.

Pick a random permutation π over [n], and random strings $\{(r_i, s_i)\}_{i=1}^n$. Let $(c_i, d_i) = (Enc_{pk}(a_{\pi(i)}; r_{\pi(i)}), Enc_{pk}(b_{\pi(i)}; s_{\pi(i)}))$, for all $i \in [n]$. Send $\{(c_i, d_i)\}_{i=1}^n$ to C.

Sub-protocol Π_1 : *P* proves in zero-knowledge that it knows the randomness $\overline{\{(r_i, s_i)\}_{i=1}^n}$ and permutation π that were used to obtain the list $\{(c_i, d_i)\}_{i=1}^n$.

C : **2.** Choose and Blind.

Pick a random index $\ell \in [n]$. Send to *P* the ciphertext $e = Blind_{pk}(c_{\ell}, 0)$.

Sub-protocol Π_2 : *C* proves in a witness-hiding manner that it knows the randomness and index ℓ that were used to obtain *e*.

P : **3. Decrypt and Output.**

Set $a = Dec_{sk}(e)$. Output a. Send to C the list of pairs $\{(b_{\pi(i)}, s_{\pi(i)})\}_{i=1}^{n}$ (in this order).

C : **4. Verify and Output**.

Denote by (b, s) the ℓ 'th entry in this lists (i.e., $(b, s) = (b_{\pi(\ell)}, s_{\pi(\ell)})$). If $d_{\ell} = Enc_{pk}(b; s)$ then output b.

REFERENCES

[DHR00] Yevgeniy Dodis, Shai Halevi, and Tal Rabin. "A Cryptographic Solution to a Game Theoretic Problem". In: Advances in Cryptology — CRYPTO 2000. Ed. by Mihir Bellare. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 112–130. ISBN: 978-3-540-44598-2.