Rational Protocol Design

Motivation

e Secure MPC protocols offer security against two classes of adversaries; semi-
honest adversaries and malicious adversaries.
e Semi-Honest adversaries are too optimistic to assume; malicious adversaries

are too pessimistic.
e \We require a middle-ground; security against adversaries that deviate only if

Incentivised to do so.

Rational Cryptography

e Analysing security of cryptographic protocols assuming that the parties involved in the protocol
are rational.

e Rational Secret Sharing: parties are given shares to a secret by a trusted third party and they
have to reconstruct the secret.

e Rational Multiparty Computation: The party P_i has a value x_i such that the parties want to
securely compute f(x_1,.....,x_n) such that the parties involved in the computation are rational.

e The parties involved in this protocol have incentive to learn the output of the protocol and stop
other parties from learning the output.

e Rational Protocol Design by Garay et. al. \cite{} present a new framework, where the parties
themselves are assumed to be “honest”, and the adversary corrupting parties is assumed to be
incentive-driven.

Overview

e Propose a model for incentive-driven attacks; a two-party game between the
protocol designer D and adversary A that corrupts a subset of parties in the
protocol and deviates from protocol execution.

e D and A are unbounded; can be modelled as a Zero Sum Game with perfect
information and observable action (Stackleberg Game)

e Modelling the utility of attacker: Execution in the real protocol can be
simulated by an ideal adversary interacting with a defective ideal functionality
<F>; utility of the attacker proportional to the probability of interacting with the
defective functionality that lead to “security breaches”

Contd.

e Defective Ideal functionality <F>

o (query, \stackrel{x_[}{\rightarrow}) : The ideal functionality returns the output $f(\stackrel{x_I}\
rightarrow}, \stackrel{x_{-I}}{\rightarrow})$ to the ideal adversary.

o (out,y) : Upon receiving this message, the ideal functionality replaces the output of the
function by y. Let this event be called Breaking Correctness event.

o (inp, \stackrel{x_I}{\rightarrow}) : upon the ideal adversary sending this query, it get the value
$f(\stackrel{x’_I}{\rightarrow}, \stackrel{x_{-1}}{\rightarrow})$ from the functionality, where
$x’_I\neq x_I$. Let this event be Breaking Privacy event.

Utility of Attacker

e Corrupting subset of parties: The attacker incurs a cost of γ_1 when
it corrupts the subset 1 of parties. A simpler model is considered where cost
of corrupting one party = $\gamma_{$}$

e Breaking Correctness: The attacker gains a utility of γ_c if it triggers
the Breaking Correctness event in the defective ideal functionality

e Breaking Privacy: The attacker gains a utility of $\gamma_c#$ if it triggers the
Breaking Privacy event in the defective ideal functionality

Results

e Secure Function Evaluation protocol (Attack Payoff Secure) for computing
arbitrary functionality assuming cost of corruption >> breaking privacy utility.

e Conversely, there exist function f such that it can’t be securely evaluated
assuming cost of corruption < breaking privacy/correctness utility.

e In 2-party setting, the above impossibility result is sidestepped; the authors
propose an attack payoff optimal protocol to evaluate arbitrary function f

Two party Attack Game G_M

e Define the game M = (F,<F>,v), where F is the functionality, <F> is the
defective ideal functionality, and v is the utility function.

e First move by the protocol designer D. Chooses a protocol to compute
functionality F from the set of n-party polynomial time computable protocoils.
Sends the protocol to A

e The attacker A chooses an ITM \Adv to attack the protocol and the utility of
the attacker is defined proportional to the probability that it triggers corrupting
party/breaking correctness/breaking privacy event in the ideal model.

e The notion of equilibrium used is \epsilon-subgame perfect equilibrium

Contd.

v_{<F>,S,Z} -> Random variable denoting the utility of ideal attacker S with access to
functionality <F> in the environment Z

U _IN<F>}S,2) = E(v_{<F>,S,Z})
Expected payoff of attacker A in the real world -> U_i*{\Pi,<F>}(A,Z) = inf_{S} (U_I{<F>}(S,2))

Why minimum?

Maximal payoff of attacker A is the quantity we consider as the utility of A. It is defined as:

U_iM\Pi,<F>}(A) = max_{Z} (U_i*\Pi,<F>}(A,2))

Security Definitions

An ITM A is the M-maximising adversary for protocol Π if
UM\Pi,<F>}(A) \compindis max_{ATUMN\Pi,<F>}(A) =: UM\Pi,<F>}

Protocol Π is attack payoff optimal in M if for any other protocol Π',
UMN\Pi,<F>} <= UM\Pi‘,<F>} + negl

Protocol Π is attack payoff secure in M if for any other protocol $\Pi’$,

UM\Pi,<F>} <= UM\phiM{F},<F>} + negl

Is there a difference between attack-payoff optimal and attack-payoff secure?

Interesting Intermediate Results

Theorem 1: A protocol \Pi is attack-payoff optimal in M iff the strategy profile (\Pi,A)
IS \epsilon-subgame-perfect equilibrium of M

Theorem 2 (Universal Composibilty) Any sub-protocol can be replaced with the
corresponding ideal functionality without affecting the utility of M-maximising
adversary

Secure Function Evaluation for $\gamma_p < n/2\
gamma_{$} $.

Idea: Take a protocol that is secure in the presence of honest majority. If the adversary
corrupts a minority of parties, then the protocol is secure. If it corrupts a majority of
parties, the cost of corruption exceeds the Breaking Privacy utility earned by the
attacker.

The protocol should have the following features:

1. The parties should commit to their inputs before the protocol, thus limiting the privacy
breaking queries the attacker can ask.

2. If a party refuses to reveal its shares or aborts during protocol execution, the protocol
should restart with the other parties inputs (See Guaranteed Output Delivery)

I
Protocol l'I:,‘.t_:,“,.E

PHASE 1 (InrPuT CoMMITMENT): The following steps are executed. Initially D :=@:

1.1 Every party p; € P computes a commitment on his imput and broadcasts it. Denote this value
by com; and the corresponding decommitment information {(known exclusively to p;) by dec;. Any
party that does not broadcast a commitment is added to D.

1.2 Every p; signs (using his private signing key sk;) all the commitments comg, comy, g, broad-
cast by the parties in P\ D = {pe,,....pip, o | and broadeasts these signatures. If some p;
broadcasts an inconsistent message or an invalid signature, then D := DU {p;}.

PHASE 2 { COMPUTATION |- Let ."i'],-;w_jl denote the vector of all commitments and signatures from parties
in P D Using an SFE protocol which is secure with identifiable abort for arbitrarily many corruptions
(e.g. Mgy, the partiesin PY D = {py, P p o | evaluate the functionality o — A L3] —
1D, (pkg,s - - oo PRy g, o)) o0 input S|py . If the evaluation cutputs (detect, p;) or aborts with p; then
set [:= DU {p;} and repeat Phase 2 in this updated setting.

Prase 3 (QuTPUT): Let s¢,,..., 8¢, be the shares output in Phase 2.

3.1 Every party broadcasts his share s; along with the corresponding signature.

3.2 If at least |5 | — |D| +1 announced shares with valid signatures, then interpolate the corresponding
polvnomial and output the shared value. Otherwise, let IV denote the set of parties that announced
no share or an invalid signature. Set [:= DU D' and repeat Phase 2 in this updated setting.

Functionality Fo, . (P, (pky.. ... ki))

The functionality is parametrized by a function f : FIPl = F, a player set P, a threshold

t < |P|, a non-interactive commitment scheme, a signature scheme, and a vector of public

(verification] keys (pky,....pkip). Flpyep proceeds in rounds/steps as described below,

keeping a set D of detected parties which is initialized to D := 0.

1.

G

Every p; € P hands Fi g 50 a vector (com;, ..., com; p) of commitments along
with signatures on each com;; matching each of the keys pk,, k€ {1,....|P|}: fur-
thermore, every p; € P hands i cpe 8 decommitment deg;. If some p; does not send
[P| commitments along with the all |P|? corresponding valid signatures then output
{detect,) and halt (if there are many such p’s output the one with the smallest
index) || Denote by 8§ the set of all wlid signed commitments.

Fronespe computes the follvwing set for each p; € P

C; :={com;; | com;; € 5 has valid signatures for every pk,. k€ [|P|]}

If for some p; @ |Cy # 1 then set {detect, ;) and halt (if there is many such p;'s
output the one with the smallest index). Otherwise, for each p; € P denote by com;
the unique element of C}.

For each p; use dec; to open com;. If opening fails then issue (detect,p;) and halt.
Otherwise, let r; denote the opened value.

Compute y := f(ry,...,z,). Choose a polynomial g € F[X] of degree at most ¢
uniformly at random so that g(0) = y; for each p; € P set 5 := g(j).

Use the key generation algorithm for generating a (fresh) signing /verification key-pair
(sk, pk); for each p; € P compute a sipnature o; on s; using key sk.

For each p; € P output (5,05, pk) to p;.

“The signatures are assumed to have s unique party ID and messape 1D, which are checked to determine

their validity.

Impossibility result when Breaking Privacy/Correctness cost is significantly greater than cost of corruption

Fact 1 (|KatO7, Theorem 1]). There is a finite, deterministic functionality Fxo7 for which there
is no polynomial-round protocol 11 that simultaneously satisfies the following two properties: (1) Il
securely realizes Fxo7 in the presence of t corrupted parties, and (2) Il is (n — t)-private.

Theorem 8. Let t > n/2. If vp > v4t and e > vg(n —t), then there exists no (polynomial-round)
attack-payoff secure protocol 11 in the attack model (Fxort, (FK07), Qﬁ).

Positive Result for an Impossibility Case

Theorem 10. Let M = (F. _ {(F. v o7y be an attack-model where mind~,.~.} > ~e. Then for
W SFEY VY SFES pr e s
: : : 3 fE negl i 4p e }
any static adversary attacking Moy _spe in M, U - L] Vs-

r.

