
Rational Protocol Design



Motivation

● Secure MPC protocols offer security against two classes of adversaries; semi-
honest adversaries and malicious adversaries.

● Semi-Honest adversaries are too optimistic to assume; malicious adversaries 
are too pessimistic.

● We require a middle-ground; security against adversaries that deviate only if 
incentivised to do so.



Rational Cryptography

● Analysing security of cryptographic protocols assuming that the parties involved in the protocol 
are rational.

● Rational Secret Sharing: parties are given shares to a secret by a trusted third party and they 
have to reconstruct the secret. 

● Rational Multiparty Computation: The party P_i has a value x_i such that the parties want to 
securely compute f(x_1,.....,x_n) such that the parties involved in the computation are rational. 

● The parties involved in this protocol have incentive to learn the output of the protocol and stop 
other parties from learning the output.

● Rational Protocol Design by Garay et. al. \cite{} present a new framework, where the parties 
themselves are assumed to be “honest”, and the adversary corrupting parties is assumed to be 
incentive-driven.



Overview

● Propose a model for incentive-driven attacks; a two-party game between the 
protocol designer D and adversary A that corrupts a subset of parties in the 
protocol and deviates from protocol execution.

● D and A are unbounded; can be modelled as a Zero Sum Game with perfect 
information and observable action (Stackleberg Game)

● Modelling the utility of attacker: Execution in the real protocol can be 
simulated by an ideal adversary interacting with a defective ideal functionality 
<F>; utility of the attacker proportional to the probability of interacting with the 
defective functionality that lead to “security breaches”



Contd.

● Defective Ideal functionality <F>
○ (query, \stackrel{x_I}{\rightarrow} ) : The ideal functionality returns the output $f(\stackrel{x_I}{\

rightarrow}, \stackrel{x_{-I}}{\rightarrow})$ to the ideal adversary.
○ (out,y) : Upon receiving this message, the ideal functionality replaces the output of the 

function by y. Let this event be called Breaking Correctness event.
○ (inp, \stackrel{x_I}{\rightarrow}) : upon the ideal adversary sending this query, it get the value 

$f(\stackrel{x’_I}{\rightarrow}, \stackrel{x_{-I}}{\rightarrow})$ from the functionality, where 
$x’_I \neq x_I$. Let this event be Breaking Privacy event.



Utility of Attacker

● Corrupting subset of parties: The attacker incurs a cost of $\gamma_I$ when 
it corrupts the subset $I$ of parties. A simpler model is considered where cost 
of corrupting one party = $\gamma_{$}$

● Breaking Correctness: The attacker gains a utility of $\gamma_c$ if it triggers 
the Breaking Correctness event in the defective ideal functionality

● Breaking Privacy: The attacker gains a utility of $\gamma_c$ if it triggers the 
Breaking Privacy event in the defective ideal functionality



Results

● Secure Function Evaluation protocol (Attack Payoff Secure) for computing 
arbitrary functionality assuming cost of corruption >> breaking privacy utility.

● Conversely, there exist function f such that it can’t be securely evaluated 
assuming cost of corruption < breaking privacy/correctness utility.

● In 2-party setting, the above impossibility result is sidestepped; the authors 
propose an attack payoff optimal protocol to evaluate arbitrary function f



Two party Attack Game G_M

● Define the game M = (F,<F>,v), where F is the functionality, <F> is the 
defective ideal functionality, and v is the utility function.

● First move by the protocol designer D. Chooses a protocol to compute 
functionality F from the set of n-party polynomial time computable protocols. 
Sends the protocol to A

● The attacker A chooses an ITM \Adv to attack the protocol and the utility of 
the attacker is defined proportional to the probability that it triggers corrupting 
party/breaking correctness/breaking privacy event in the ideal model.

● The notion of equilibrium used is \epsilon-subgame perfect equilibrium
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v_{<F>,S,Z} -> Random variable denoting the utility of ideal attacker S with access to 
functionality <F> in the environment Z

U_I^{<F>}(S,Z) = E(v_{<F>,S,Z}) 

Expected payoff of attacker A in the real world -> U_i^{\Pi,<F>}(A,Z) = inf_{S} (U_I^{<F>}(S,Z))

Why minimum?

Maximal payoff of attacker A is the quantity we consider as the utility of A. It is defined as:

U_i^{\Pi,<F>}(A) = max_{Z} (U_i^{\Pi,<F>}(A,Z))



Security Definitions

An ITM A is the M-maximising adversary for protocol $\Pi$ if

U^{\Pi,<F>}(A) \compindis max_{A’}U^{\Pi,<F>}(A’) =: U^{\Pi,<F>}

Protocol $\Pi$ is attack payoff optimal in M if for any other protocol $\Pi’$,

U^{\Pi,<F>} <= U^{\Pi‘,<F>} + negl

Protocol $\Pi$ is attack payoff secure in M if for any other protocol $\Pi’$,

U^{\Pi,<F>} <= U^{\phi^{F},<F>} + negl

Is there a difference between attack-payoff optimal and attack-payoff secure?



Interesting Intermediate Results

Theorem 1: A protocol \Pi is attack-payoff optimal in M iff the strategy profile (\Pi,A) 
is \epsilon-subgame-perfect equilibrium of M

Theorem 2 (Universal Composibilty) Any sub-protocol can be replaced with the 
corresponding ideal functionality without affecting the utility of M-maximising 
adversary



Secure Function Evaluation for $\gamma_p < n/2 \
gamma_{$} $.

Idea: Take a protocol that is secure in the presence of honest majority. If the adversary 
corrupts a minority of parties, then the protocol is secure. If it corrupts a majority of 
parties, the cost of corruption exceeds the Breaking Privacy utility earned by the 
attacker.

The protocol should have the following features:

1. The parties should commit to their inputs before the protocol, thus limiting the privacy 
breaking queries the attacker can ask.

2. If a party refuses to reveal its shares or aborts during protocol execution, the protocol 
should restart with the other parties inputs (See Guaranteed Output Delivery)







Impossibility result when Breaking Privacy/Correctness cost is significantly greater than cost of corruption



Positive Result for an Impossibility Case


