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Abstract. Non-malleable codes (NMCs), introduced by Dziembowski,
Pietrzak and Wichs [16], generalize the classical notion of error correct-
ing codes by providing a powerful guarantee even in scenarios where
error correcting codes cannot provide any guarantee: a decoded message
is either the same or completely independent of the underlying message,
regardless of the number of errors introduced into the codeword. Infor-
mally, NMCs are defined with respect to a family of tampering functions
F and guarantee that any tampered codeword either decodes to the same
message or to an independent message, so long as it is tampered using a
function f ∈ F .
Nearly all known constructions of NMCs are for the t-split-state family,
where the adversary tampers each of the t blocks (typically of equal size,
called state) of a codeword, arbitrarily but independently. Cheraghchi
and Guruswami [8] obtain a Rate-1 non-malleable code for the case where
t = O(n) with n being the codeword length and, in [7], show an upper
bound of 1− 1/t on the best achievable rate for any t−split state NMC.
For t = 10, Chattopadhyay and Zuckerman [6] achieve a constant rate
construction where the constant is unknown. In summary, there is no
known construction of an NMC with an explicit constant rate for any
t = o(n), let alone one that comes close to matching Cheraghchi and
Guruswami’s lowerbound!
In this work, we construct an efficient non-malleable code in the t-split-
state model, for t = 4, that achieves a constant rate of 1

3+ζ
, for any

constant ζ > 0, and error 2−Ω(`/logc+1`), where ` is the length of the
message and c > 0 is a constant.
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1 Introduction

Error correcting codes allow for the correction of errors introduced in data.
However, their applicability is limited by the fact that they can only correct a
bounded number of errors. When data is completely overwritten, no protection
can be guaranteed. Non-malleable codes, introduced in the work of Dziembowski,
Pietrzak and Wichs [16], guarantee that, errors caused to the data will render it
either independent of the underlying message or leave it unchanged.

Non-malleable codes are parameterized by a family of tampering functions,
F , and they guarantee non-malleability only when m∗ = Dec(f(Enc(m))) where
f ∈ F and Enc,Dec are the encode and decode functions respectively. (In other
words, there is no guarantee when f /∈ F .) Informally, given a tampering family
F , a non-malleable code (Enc,Dec) encodes a given message m into a codeword
c ← Enc(m) s.t. if c is modified to c̃ = f(c) by some f ∈ F , then the message
m̃ = Dec(c̃) contained in the modified codeword, is either the original message
m or is “unrelated” to and “independent” of m.

To understand the motivation of studying non-malleable codes, consider their
application to cryptography. In any standard cryptographic security game, secu-
rity is typically guaranteed even when the adversary has access to some permis-
sible input-output behaviour on the secret key sk. 1 If the adversary is allowed
to observe input-output behaviour with respect to some modified sk∗, we can
no longer guarantee any security with respect to the original key sk. Consider a
situation where sk∗, if different from sk, is guaranteed to be independent of sk.
In such a case, no input-output behaviour on sk∗ can help break the security
with respect to sk. (After all, if obtaining information about an independent
sk∗ can help break the security with respect to sk, then an adversary for sk
can generate this information on his own.) If sk is encoded with a non-malleable
code, then non-malleability will prevent sk∗ from ever taking a related value and
the scheme will continue to remain secure with respect to sk.

It is no surprise that, since their introduction, non-malleable codes have found
many applications such as in securing functionalities against physical –leakage
and tampering– attacks [16,23], domain extension of CCA secure encryption [9]
and non-malleable commitments [18]. Additionally, non-malleable codes have
inspired an impressive line of theoretical research drawing connections across
topics such as non-malleable extractors, additive combinatorics and so on. Re-
searchers have been fascinated with two aspects of non-malleable codes:
(a.) the richness of the tampering function family which NMCs can protect
against and
(b.) the rate (= message length

codeword length ) they achieve.

Our work too falls into this domain with a specific focus on the rate.

1 For example, this input-output behaviour may be decryption of ciphertexts in the
case of Chosen Ciphertext Security of Encryption or signatures of messages in the
case of Digital Signatures.



1.1 Related Work

In [16], Dziembowski et al. observe that it is impossible to build non-malleable
codes which are secure with respect to the class of all functions. The intuition
behind this is that, this class would contain the function which decodes Enc(m)
and re-encodes it into a related value m∗. Further, [16] proves an existential
result for non-malleable codes w.r.t tampering families of size less than 22n .

A natural but restricted class of tampering functions is the class of bit-
wise tampering functions which modify each bit of the codeword independently.
Dziembowski et al. [16] presented a construction of non-malleable codes with
respect to this family. Their construction used a composition of Linear error
correcting secret sharing scheme (LECSS)2 and Algebraic Manipulation Detec-
tion codes (AMD codes)3. Following this, Cheraghchi and Guruswami [8] gave an
explicit construction of an optimal rate NMC w.r.t. bit-wise tampering family.
Their construction combines the properties of a LECSS scheme, a sub-optimal
NMC for small messages and pseudorandom permutations.

A natural generalization of the bit-wise tampering family is the split-state
tampering family, where a codeword is split into blocks (typically of equal length
though not necessarily) and each block of the codeword, called a state, is tam-
pered independently. A t−split-state family consists of a family of t functions
acting independently on a state of length n/t, where n is the codeword length 4.

Improving on an existential result due to Dziembowski et al. [16], in [7],
Cheraghchi and Guruswami show that for a t-split state family, with each state
of codeword containing n/t bits, the upper bound on best achievable rate is
1−1/t. Both [16] and [7] give a Monte-Carlo construction of non-malleable codes
for the 2-split-state model which show the existence of such codes in the random
oracle model. The work of [8] also makes an elegant connection between seedless
t-source non-malleable extractors and non-malleable codes in the t-split-state
model.

In spite of the progress on bit-wise tampering function family, the first effi-
cient constructions of split-state non-malleable codes made strong assumptions
such as the random oracle model [16] or were in the computational setting [23]5.

2 LECSS ensures that the bits of codeword are t-wise independent and detects tam-
pering if the codeword is modified by an offset ∆, when ∆ is not a valid codeword
of the scheme.

3 AMD codes detect tampering attacks that add some pre-determined offset ∆ to the
codeword.

4 This tampering family captures other tampering attacks such as bit-wise tampering,
identity function, constant function etc. A motivation to study this model comes from
practical applications like cloud storage, where a single file may be stored in t parts
at t different locations and an adversary tampers each of these parts independent
of the other. It is therefore both of theoretical as well as practical interest to obtain
non-malleable codes for t−split state family where t > 1 is as small as possible.

5 Specifically, Liu and Lysyanskaya [23] present a computational non-malleable code
w.r.t. split-state tampering functions in the common reference string (CRS) model,
using number theoretic assumptions and assuming existence of robust non-interactive
zero-knowledge proof systems for an appropriate NP language.



Dziembowski, Kazana and Obremski [15] were the first to present an explicit
construction of a non-malleable code for the split-state model. Specifically, they
used the inner product extractor to construct a non-malleable code for 1-bit mes-
sages in the 2-split-state model. Improving upon this result, Aggarwal, Dodis and
Lovett [3] gave the first information theoretic construction for k-bit messages in
2-split-state model, achieving rate Ω(n−6/7). This construction relies on an el-
egant property of inner-product functions, which is obtained using results from
additive combinatorics, including the Quasi-polynomial Freiman-Ruzsa Theo-
rem.

NMC with improved rates: All of the above works focused on improving the
richness of tampering functions which NMCs can tolerate. However, none of
them, barring the codes of [8] for the bit-wise tampering family, achieve optimal
rate. Chattopadhyay and Zuckerman [6] were the first to construct an efficient
constant rate non-malleable code in 10-split-state model. Unfortunately, the rate
they achieve is an unknown constant which is typically undesirable while building
information-theoretic primitives. Additionally, as observed in [2], the rate is
likely to be a small (i.e., poor) constant due to their use of additive combinatorics.

For the 2-split-state model, the construction by Li in [22] achieves the best
known rate to date, of Ω(1/ log n). Both these works use the connection be-
tween seedless t-source non-malleable extractors and non-malleable codes in t-
split-state model, due to [8]. The work of Aggarwal et al. [2] gives beautiful
connections between various split-state models. Unfortunately, due to a subtle
error pointed by Li [22], their proposed construction of a 2-split state, constant
rate, non-malleable code no longer holds, making Li’s result the best known for
the 2-split state model. However, there are two conjectured constant-rate NMC
constructions. Specifically, in [3], under an inner product conjecture, the authors
get a constant-rate 2-split-state scheme. Further, while [2], as it stands, gives a
linear-rate code using existing methods, it gives a constant-rate 2-split-state un-
der an appropriate conjecture.

We know the following, about the best achievable rate, from [7] :

Lemma 1 (Section 1.1,[7]). For non-malleable codes in the t-split-state
model, with each state of equal length, the best achievable rate is 1− 1

t .

While Cheraghchi et al. in [8], obtain a Rate-1 (optimal) NMC for t = O(n),
there is no known construction for t = o(n), which achieves the optimal rate
1 − 1

t , for t-split-state family. In this work, we construct a non-malleable code
with rate 1

3+ζ , for any constant ζ > 0 in the 4-split-state model.

Computational setting: If we resort to computational assumptions, Aggarwal
et al.[1] show that a NMC with the best possible rate as well as the least re-
stricted of the t-split-state families can obtained. Concretely, they obtain a rate
1 computational NMC w.r.t. 2-split-state tampering function family. Unfortu-
nately, despite significant efforts, there has been a large gap between the rates of
the best known constructions in the computational setting and the information-
theoretic setting.



We give an overview of the Rate-1 construction in the computational setting
due to Aggrawal et al. [1] and then highlight the challenges of building such codes
in the information-theoretic setting. Their construction works by choosing a key
kae to a computational authenticated encryption scheme. It encodes this key
with a poor-rate 2-split-state non-malleable code to get states c1, c2. This key is
used to compute an authenticated encryption ciphertext (c3) of the message to
be encoded. This gives a three state nmc: (c1, c2, c3). (They obtain a two-split-
state construction by using an enhanced notion of “augmented” non-malleable
codes. They also prove that the 2-state construction of [3] achieves augmented
non-malleability.) The key behind the optimality of the rate is the observation
that the length of the key for authenticated encryption (in the computational
setting) can be short (and independent of the message length).
We have summarized the prior work on NMCs for the t-split-state model in
Figure 1.

Fig. 1: Summarizing prior work on t-split-state family

1.2 Our Result

Informally, in this work, we obtain information-theoretic constant-rate non-
malleable codes in the 4-split-state model. The fact that we make no compu-



tational assumptions brings up some unique challenges in both the construction
as well as the proof, which we now highlight. As a starting point, consider the
same construction [1] described above but replace the computational authenti-
cated encryption scheme with an information-theoretic one: we would still obtain
a secure non-malleable code. However, for an information-theoretic encryption
scheme to be secure, we require the length of the key to be as much as the
length of the message. This means that to obtain good rate, the split-state non-
malleable code used as a building block should have good rate as it is encoding
a key that is as long as the message – this is precisely the problem we are trying
to solve!

To resolve this chicken-and-egg problem, we observe that an authenticated
encryption scheme can be modularly decomposed into an authentication scheme
and an encryption scheme: namely, encrypting a message first with a generic
(one-time) encryption scheme and then authenticating it with a one-time mes-
sage authentication code, gives us a construction of an (one-time) authenticated
encryption scheme. The good news is that message authentication codes only
require short keys (informally, as long as the security parameter) and can, there-
fore, be encoded using a non-malleable code without compromising on the rate.
This leads to the following approach: can we leverage the non-malleability of
authentication key to non-malleably encode larger messages?

We shall motivate our construction by discussing some incorrect construc-
tions. Consider the following attempt: c1 = (Encke(m),Tagka(Encke(m))); c2 =
ke; (c3, c4) = NMEnc(ka) where Enc is just a one-time pad encryption,
MAC = (Tag,Vrfy) is a one-time message authentication code, NMEnc is a 2-
split-state non-malleable code and {ci}i∈[4] are all stored in separate states. A
fundamental problem with this proposal is that the encryption key is not encoded
with a non-malleable code. By simply changing the key ke and leaving the rest
of the encoding unchanged, the adversary can relate the tampered message m̃ to
the underlying message m. We can fix this problem by requiring the encryption
key to be authenticated as well. Let c1 = (Encke(m),Tagka(Encke(m)||ke)); c2 =
ke; (c3, c4) = NMEnc(ka). While the authenticity of ke may no longer be an is-
sue, this introduces another problem: c1 contains a MAC value computed on the
key ke and could reveal some information about ke and therefore, the ciphertext
c1 may no longer be secure. The standard definition of a one-time MAC does
not guarantee privacy of the underlying message. (We could consider specific
MACs which do guarantee privacy as well but such information-theoretic MACs
cannot have short keys, which we require, as mentioned above.) Let us try to
remove this dependency by encoding the tag using the non-malleable code. Let
c1 = (Encke(m)); c2 = ke; (c3, c4) = NMEnc(ka,Tagka(Encke(m)||ke)).
This leads to the following candidate construction to encode a message m:

1. Choose a key ke for one-time pad encryption (Enc) and a key ka for a one-
time message authentication code (MAC).

2. Compute c1 = Encke(m), tag t = Tagka(c1||ke) and set c2 = ke.
3. Compute (c3, c4) ← NMEnc(ka, t), using a 2-split-state non-malleable code

with poor rate.



4. Output c1, c2, c3, c4 as the four states of the non-malleable code.

Intuitively, this might seem secure as the encryption key ke is authenticated
and its’ tag is non-malleably encoded. Therefore, at best, the tampering func-
tion can make the tampered k̃a, t̃ become independent of the underlying values.
Assuming that the MAC verifies on the tampered key and tag, one might like to
believe that it guarantees independence of k̃e and, therefore, of the underlying
message m̃ as well. Unfortunately, this reasoning is not true for message authen-
tication codes with short tags. Specifically, when tags are much shorter than the
message, there will necessarily be collisions in the tag space of a given key – i.e.,
on a given key, there could be multiple message that map to the same tag value.
6 As we describe in the attack below, these “collisions” can be exploited to make
the code “malleable”.

Attack on the Candidate Construction: To describe an attack, we need to specify
tampering functions f1, f2, f3, f4. We use x[0] to denote the least significant bit
of the binary string x in the description below.

1. Choose constants k0, k1 from encryption key space, ct0, ct1 from cipher-
text space such that ct0[0] = k0[0] = 0, ct1[0] = k1[0] = 1 and a tag t∗

and a key k∗a such that Tagk∗a(ct0||k0) = Tagk∗a(ct0||k1) = Tagk∗a(ct1||k0) =
Tagk∗a(ct1||k1) = t∗. Observe that these values are all independent of the
message as well as the randomness of the encoding scheme described above.
Now we describe the four tampering functions.

2. f1(c1): If c1[0] = 0, set c∗1 = ct0 otherwise c∗1 = ct1.
3. f2(c2): If c2[0] = 0, set c∗2 = k0 otherwise c∗2 = k1.
4. Compute c∗3, c

∗
4 = NMEnc(k∗a, t

∗)
5. f3(c3) = c∗3
6. f4(c4) = c∗4

Carefully working through our choice of the various constants will show us
that the tampered message will retain the least significant bit of the underlying
message i.e., m̃[0] = m[0], where m̃ is the tampered message. Furthermore, colli-
sions in the MAC scheme have been exploited to ensure that tag of the tampered
message and key will always verify. Thus any tampering is undetected and reveals
information about the underlying message, thus violating non-malleability.

Analyzing the intuition behind the attack, we observe that the main challenge
is that, even though the key and the ciphertext are tampered independently,
jointly they may retain information about the original message. To overcome
this issue, we modify the construction to ensure that the tampered key is never
related to the original key. Ensuring this independence proves to be our ma-
jor bottleneck. We are able to overcome this bottleneck through a somewhat
surprising use of (strong) randomness extractors.

6 This problem does not arise with a MAC such as ax + b where (a, b) is the MAC
key and x is the underlying message. There, for a fixed key and fixed tag, there is a
unique message which satisfies the linear equation.



Using Randomness Extractors to “Amplify” Non-Malleability: Informally, ran-
domness extractors allow us to transform non-uniform randomness into uni-
form randomness. Here we use randomness extractors to generate the key ke
i.e., ke = Ext(w; s) where w and s are uniformly random string of appropriate
lengths. At the outset, this might seem completely pointless: after all, extractors
are typically used in settings where one does not have perfect randomness. This
is clearly not the case here: indeed, the encoding scheme is allowed to choose its’
own randomness! How can choosing ke as the output of an extractor be of any
help? Showing how the randomness extractor helps in this scenario is the crux
of our proof. We consider the following cases:

1. s, w are both unchanged: In this case, the extracted encryption key remains
unchanged. While it remains unclear how to argue non-malleability in this
scenario, for now, it suffices to note that the attack described above is no
longer relevant and, therefore, we defer a discussion on this case to later.

2. s is changed to an independent seed s̃: 7 In this case, k̃e is independent of
ke, regardless of how w̃ depends on w. As mentioned earlier, here too the
attack described above is no longer relevant.

3. s is unchanged but w is changed in a related manner: In this case, k̃e could
contain information about ke.

Case 3 seems to still retain our original bottleneck and we handle it by
ensuring that, in our construction, whenever the source w is changed, the seed
s also needs to be changed. This reduces it to Case 2. What remains, is to show
how we can ensure this through a delicate use of randomness extractors, message
authentication codes and non-malleable codes.

Overview of Our construction: We use the following tools in our construction:
a) A non-malleable code for 2-split-state model achieving rate Ω(1/ log n) ([22])
where n is the block-length ; b) a one-time information theoretic message au-
thentication code; c) an average-case strong randomness extractor; d) a perfectly
secure encryption scheme, like One Time Pad.

Step I: We use a randomness extractor (which typically have short seeds)
to extract the encryption key.
Step II: We encrypt the message using the extracted key.
Step III: To detect modification of the source (used to extract the key) and
the ciphertext, we authenticate them using two different one time MACs 8

Step IV: Finally, we encode the authentication keys and tags along with
the seed (used to extract the key) using a 2-state non-malleable code. We
output the 2-state codeword, the source and the ciphertext.

The non-malleable encoding in Step IV ties various key components of our con-
struction together and is crucial in overcoming the challenge described in Case
3.
7 We ensure this by encoding s using a non-malleable code
8 It is crucial to authenticate them separately as, a construction where we do not

authenticate them separately is insecure. This is brought out in the security proof
later.



Proof techniques: We prove non-malleability via a series of statistically-close hy-
brids which take us from the tampered game to a simulated game. But some
non-trivial challenges arise in our proof: firstly, there are dependencies across
states (e.g.: we include the source in one state and the encoding of its tag in
another). So, even though the states are modified independently, the modifica-
tions will be interlinked through this dependency. Secondly, even though in our
encoding, we choose the source uniformly at random, the decode process reveals
information about the source. This will prevent us from using extractor secu-
rity directly. The trick that helps us here is that we capture all the information
learnt via the decoding using auxiliary information that is independent of the
seed. This will allow us to use the crucial extractor security in our proof.

1.3 Organization of the Paper

We describe preliminaries and building blocks of the construction in Sections 2
and 3, respectively. We then give the main construction in Section 4.2, followed
by the proof in Section 4.3. We then give a detailed analysis of the rate and error
in Sections 4.4, 4.5, 4.6 and 4.7.

2 Preliminaries

Notation. κ denotes security parameter throughout. s ∈R S denotes uniform
sampling from set S. x← X denotes sampling from a probability distribution X.
x||y represents concatenation of two binary strings x and y. |x| denotes length
of binary string x. Ul denotes the uniform distribution on {0, 1}l. All logarithms
are base 2.

Statistical distance and Entropy. Let X1, X2 be two probability distributions
over some set S. Their statistical distance is

SD (X1, X2)
def
= max

T⊆S
{Pr[X1 ∈ T ]− Pr[X2 ∈ T ]} =

1

2

∑
s∈S

∣∣∣∣Pr
X1

[s]− Pr
X2

[s]

∣∣∣∣
(they are said to be ε-close if SD (X1, X2) ≤ ε and denoted by X1 ≈ε X2). The
min-entropy of a random variable W is H∞(W ) = − log(maxw Pr[W = w]). For
a joint distribution (W,E), define the (average) conditional min-entropy of W
given E [13] as

H̃∞(W | E) = − log( E
e←E

(2−H∞(W |E=e)))

(here the expectation is taken over e for which Pr[E = e] is nonzero). For
a random variable W over {0, 1}n, W |E is said to be an (n, t) - source if

H̃∞(W |E) ≥ t.



Proposition 1. Let A1, ..., An be mutually exclusive and exhaustive events.
Then, for probability distributions X1, X2 over some set S, we have:

SD (X1, X2) ≤
n∑
i=1

Pr[Ai].SD (X1|Ai, X2|Ai)

where Xj |Ai is the distribution of Xj conditioned on the event Ai.

Proof.

2SD (X1, X2) =
∑
s∈S
|Pr[X1 = s]− Pr[X2 = s]|

=
∑
s∈S
| n∑
i=1

(Pr[Ai] Pr[X1 = s|Ai]− Pr[Ai] Pr[X2 = s|Ai])|
≤
∑
s∈S

n∑
i=1

Pr[Ai]|Pr[X1 = s|Ai]− Pr[X2 = s|Ai]|
=

n∑
i=1

Pr[Ai]
∑
s∈S
|Pr[X1 = s|Ai]− Pr[X2 = s|Ai]|

= 2

n∑
i=1

Pr[Ai]SD (X1|Ai, X2|Ai)

Lemma 2. For any random variables A,B,C if (A,B) ≈ε (A,C), then B ≈ε C

Lemma 3. For any random variables A,B if A ≈ε B, then for any function f,
f(A) ≈ε f(B)

Lemma 4. Let A,B be correlated random variables over A,B. For randomized
functions F : A → X , G : A → X (randomness used is independent of B)
if ∀ a ∈ A, F (a) ≈ε G(a), then (B,A, F (A)) ≈ε (B,A,G(A))

Proof. 2SD ((B,A, F (A)), (B,A,G(A)))



=
∑

b∈B,a∈A,x∈X

|Pr[B = b ∧A = a ∧ F (A) = x]− Pr[B = b ∧A = a ∧G(A) = x]|
=

∑
b∈B,a∈A,x∈X

Pr[B = b]|Pr[A = a ∧ F (A) = x|B = b]− Pr[A = a ∧G(A) = x|B = b]|
=

∑
b∈B,a∈A,x∈X

Pr[B = b] Pr[A = a|B = b].

|Pr[F (A) = x|A = a,B = b]− Pr[G(A) = x|A = a,B = b]|
=

∑
b∈B,a∈A,x∈X

Pr[B = b] Pr[A = a|B = b].

|Pr[F (a) = x|B = b]− Pr[G(a) = x|B = b]|
=

∑
b∈B,a∈A,x∈X

Pr[B = b] Pr[A = a|B = b]|Pr[F (a) = x]− Pr[G(a) = x]|
=

∑
b∈B,a∈A

Pr[A = a ∧B = b]
∑
x∈X
|Pr[F (a) = x]− Pr[G(a) = x]|

≤
∑

b∈B,a∈A

Pr[A = a ∧B = b] · 2ε = 2ε

We also use the following lemma [13, Lemma 2.2b], which says that average
min-entropy of a random variable does not decrease by more than the length of
the correlated random variable.

Lemma 5. If B has at most 2λ possible values, then H̃∞(A | B) ≥ H∞(A,B)−
λ ≥ H∞(A) − λ. and, more generally, H̃∞(A | B,C) ≥ H̃∞(A,B | C) − λ ≥
H̃∞(A | C)− λ

2.1 Definitions

Definition 1. [8] A (possibly randomized) function Enc : {0, 1}l → {0, 1}n
and a deterministic function Dec : {0, 1}n → {0, 1}l ∪ {⊥} is said to be a
coding scheme if ∀ m ∈ {0, 1}l, Pr[Dec(Enc(m)) = m] = 1. l is called the



message length and n is called the block length or the codeword length. Rate of a

coding scheme is given by
l

n
.

Definition 2. [8] A coding scheme (Enc,Dec) with message and codeword
spaces as {0, 1}l, {0, 1}n respectively, is ε- non-malleable with respect to a func-
tion family F ⊆ {f : {0, 1}n → {0, 1}n} if ∀ f ∈ F , ∃ a distribution Simf over
{0, 1}l ∪ {same∗,⊥} such that ∀ m ∈ {0, 1}l

Tampermf ≈ε Copy
m
Simf

where Tampermf denotes the distribution Dec(f(Enc(m))) and CopymSimf is defined
as

m̃← Simf

CopymSimf =

{
m if m̃ = same∗

m̃ otherwise

Simf should be efficiently samplable given oracle access to f(.).

3 Building blocks

We use information-theoretic message authentication codes, strong average case
extractor and an existing 2-split state non-malleable codes construction by
Li [22], as building blocks to our construction. We briefly discuss about these
building blocks below.

3.1 One-Time Message Authentication Codes [14]

A family of pair of functions {Tagka : {0, 1}γ → {0, 1}δ, Vrfyka : {0, 1}γ ×
{0, 1}δ → {0, 1}}ka∈{0,1}τ is said to be a µ− secure one time MAC if

1. For ka ∈R {0, 1}τ , ∀ m ∈ {0, 1}γ , Pr[Vrfyka(m,Tagka(m)) = 1] = 1
2. For any m 6= m′, t, t′, Pr

ka
[Tagka(m) = t|Tagka(m′) = t′] ≤ µ for ka ∈R {0, 1}τ

3.2 Extractors

Extractors [24] yield a close-to-uniform string from a random variable with high
min-entropy, using a uniformly random seed i as a kind of catalyst. Strong ex-
tractors are ones in which the extracted string looks random even in the presence
of the seed. We will use only strong extractors in this paper and thus sometimes
omit the adjective “strong.”

Definition 3. Let Ext : {0, 1}n × {0, 1}d → {0, 1}l be a polynomial time proba-
bilistic function that uses d bits of randomness. We say that Ext is an (n, t, d, l, ε)-
strong extractor if for all random variables W over {0, 1}n such that H∞(W ) ≥ t,
we have SD ((Ext(W ;X), X), (Ul, X)) ≤ ε, where X is the uniform distribution
over {0, 1}d.



Universal hash functions are perhaps the simplest extractors, allowing t =
`− 2 + 2 log 1

ε (see [25, Theorem 8.1], [20, Lemma 4.8], and references therein).
If an extractor works when the guarantee on W is for conditional min-entropy

rather than min-entropy, it is called an average-case extractor. This notation
was introduced in [13, Section 2.5]. Vadhan [26, Problem 6.8] showed that all
extractors are average-case extractors with a slight loss of parameters: namely,
any (t, ε)-extractor for t ≤ n − 1 is also a (t, 3ε)-average-case extractor. Some
extractors—namely, universal hash function [4]—don’t lose parameters at all in
the average case [13, Section 2.5] (in fact, almost universal hash functions [25]
work as well [12]).

3.3 Li’s construction of 2-split state Non-malleable code

Lemma 6. [22, Theorem 7.12] For any β ∈ N there exists an explicit non-
malleable code with efficient encoder/decoder in 2-split state model with block

length 2β, rate Ω

(
1

log β

)
and error = 2

−Ω

 β

log β



Let the message length be α for the non-malleable code in Lemma 6. By
Lemma 6, we have

α

2β
= Ω

(
1

log β

)

⇒ α = Ω

(
β

log(β)

)
By Lemma 10, we have

β = O(α. log(α)) (1)

4 Construction

Before we present our construction, we briefly summarize some important points
that we discussed in Section 1. We observe that a non-malleable code is unlikely
to be secure if the message m is revealed in the clear in any of the states. If
it did, then the tampering function for that state could choose whether or not
to tamper depending on the information it learns. It is for this reason that, in
our construction, we need to encrypt the message (using a one-time pad) and
then store the key as well as the ciphertext in separate states. To prevent the
adversary from tampering with these in a related manner, we authenticate it
using a key ka. We encode ka as well as the tags using a non-malleable code
to ensure that any non-trivial tampering will render these independent of the
underlying ka and tags. However, as described in Section 1, if we store the
encryption key k in the clear, then using the collisions in MAC, we can tamper
the key and the ciphertext in a related way, hence leading to a related tampered



message. We observe that if we are able to relate the tampered cipher-text but
not the tampered encryption key k̃ to k, then the attack described in Section 1
no longer holds. Therefore, a key concern we address as we design our scheme is
the following: can we ensure the independence of any tampered encryption key k̃
from the underlying encryption key k?

We show that a use of randomness extractors to generate k, combined with a
careful use of message authentication codes helps us achieve this independence.

4.1 Notation

– NMEnc,NMDec be an ε1-secure two split state non-malleable code over mes-
sage and codeword spaces as {0, 1}α, {0, 1}β1 × {0, 1}β2 respectively (as in
Lemma 6), with the message length α and the length of the two states, β1, β2,
respectively. NMTampermf1,f2 ,NMSimf1,f2 denote the tampered message distri-
bution of m and the simulator of NMEnc,NMDec with respect to tampering
functions f1, f2

– Tag,Vrfy be an information theoretic ε2 secure one time MAC (as in Lemma
9) over key, message, tag spaces as {0, 1}τ1 , {0, 1}n, {0, 1}δ1 respectively.

– Tag′,Vrfy′ be an information theoretic ε3 secure one time MAC (as in Lemma
9) over key, message, tag spaces as {0, 1}τ2 , {0, 1}l, {0, 1}δ2 respectively.

– Ext be an (n, t, d, l, ε4) average case strong extractor.

The parameters will be chosen such that α = τ1 + τ2 + δ1 + δ2 + d and n >
1 + τ2 + δ2 + l + t. (Refer to Section 4.5 for details)

4.2 Construction Overview

We now define a construction for l bit messages in the four split state model.
The idea is to use a randomness extractor (which typically have short seeds) to
extract the key and then encode the seed using the underlying non-malleable
code. Further, the source and the ciphertext are stored in separate parts of
the codeword. We then authenticate the source and the ciphertext using two
different one time MAC schemes and then encode the authentication keys and
tags using the underlying non-malleable code. In other words, we define an
encoder, which sends the ciphertext, the source (used to extract the encryption
key) and the 2-state codeword encoding the two pairs of authentication keys
and tags and the seed. The construction is described below:

Enc(m) :

– w ∈R {0, 1}n, s ∈R {0, 1}d
– ka1 ∈R {0, 1}τ1 , ka2 ∈R {0, 1}τ2
– k = Ext(w, s)
– C = m⊕ k
– t1 = Tagka1 (w), t2 = Tag′ka2 (C)

– (L,R) = NMEnc(ka1 ||ka2 ||t1||t2||s)
– output :(L,R,w,C)

Dec(L,R,w,C) :

– ka1 ||ka2 ||t1||t2||s = NMDec(L,R)
– If ka1 ||ka2 ||t1||t2||s = ⊥ output ⊥
– else if Vrfyka1 (w, t1) = 1

∧ Vrfy′ka2 (C, t2) = 1

output C ⊕ Ext(w, s)
– else output ⊥



Theorem 1. Let NMEnc,NMDec be an ε1-secure two split state non-malleable
code, Tag,Vrfy be an information theoretic ε2 secure one time MAC and
Tag′,Vrfy′ be an information theoretic ε3 secure one time MAC as given above.
Let Ext be an (n, t, d, l, ε4) average case strong extractor. Let α = τ1 + τ2 + δ1 +
δ2 + d and n > 1 + τ2 + δ2 + l + t. Then (Enc,Dec) is a non-malleable code for
the four split-state family.
Further, for any constant ζ > 0, messages of length l, any κ such that κ =

o

(
l

log l

)
, the construction in figure above has block length (3 + ζ)l+ o(l), there

by achieves asymptotic rate
1

3 + ζ
and error 2−κ.

Proof. We give the proof in two steps. Firstly, we prove that the proposed con-
struction is a non-malleable coding scheme (Section 4.3). Secondly, we set the
parameters to achieve the desired rate and error (Section 4.4).

4.3 Security proof

Define the 4-split-state tampering family for the above construction as

F = {(h1, h2, f, g) : h1 : {0, 1}β1 → {0, 1}β1 , h2 : {0, 1}β2 → {0, 1}β2 ,

f : {0, 1}n → {0, 1}n, g : {0, 1}l → {0, 1}l}
To show that (Enc,Dec) is non-malleable we need to show that ∀ (h1, h2, f, g) ∈
F , ∃ Simh1,h2,f,g such that ∀ m ∈ {0, 1}l

Tampermh1,h2,f,g ≈ε Copy
m
Simh1,h2,f,g

Let (h1, h2, f, g) ∈ F . We define the following simulator:

Simh1,h2,f,g :

1. k ∈R {0, 1}l
2. C = 0⊕ k
3. w ∈R {0, 1}n
4. (w̃, C̃) = (f(w), g(C))
5. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃← NMSimh1,h2

6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output ⊥
7. else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

a. If w̃ = w and C̃ = C output same∗

b. else output ⊥
8. else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧ Vrfy′ ˜ka2
(C̃, t̃2) = 1 output C̃ ⊕ Ext(w̃; s̃)

9. else output ⊥

We now prove the statistical closeness of the tampered random variable and the
simulated random variable through a sequence of hybrids.



Proof Overview. At a high level, our goal is to remove the dependency of m̃ on m,
through a series of hybrids. The codeword depends on m, directly or indirectly,
through various random variables such as the seed s, w, the authentication keys
as well as the tags. To begin with, we wish to remove the dependence of the
tampered extracted key (used to decrypt the codeword) on the original extracted
key. Through a series of hybrids, we achieve this by removing the dependence of
the tampered extracted key on the seed s. Once we do this, we use the extractor
property, to remove the dependency of C on w and s. Finally, we use perfect
security of the one-time pad to remove dependency of C̃ on m.

Going from Tamper experiment to Hybrid1mh1,h2,f,g: Hybrid1mh1,h2,f,g is the same

as the standard tampering experiment except that we use the simulator for
the underlying non-malleable code to generate the tampered random variable
˜ka1 || ˜ka2 ||t̃1||t̃2||s̃.

Claim. If (NMEnc,NMDec) is an ε1-secure non-malleable code, then
Tampermh1,h2,f,g ≈ε1 Hybrid1mh1,h2,f,g

Tampermh1,h2,f,g :

1. w ∈R {0, 1}n, s ∈R {0, 1}d
2. ka1 ∈R {0, 1}τ1 , ka2 ∈R {0, 1}τ2
3. k = Ext(w; s)
4. C = m⊕ k
5. t1 = Tagka1 (w), t2 = Tag′ka2 (C)

6. (w̃, C̃) = (f(w), g(C))
7. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃←

NMTamper
ka1 ||ka2 ||t1||t2||s
h1,h2

8. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output ⊥
9. else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧
Vrfy′ ˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
10. else output ⊥

Hybrid1mh1,h2,f,g :

1. w ∈R {0, 1}n, s ∈R {0, 1}d
2. ka1 ∈R {0, 1}τ1 , ka2 ∈R {0, 1}τ2
3. k = Ext(w; s)
4. C = m⊕ k
5. t1 = Tagka1 (w), t2 = Tag′ka2 (C)

6. (w̃, C̃) = (f(w), g(C))
7a. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃← NMSimh1,h2

7b. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗,

assign ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ =
ka1 ||ka2 ||t1||t2||s

8. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output ⊥
9. else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧
Vrfy′ ˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
10. else output ⊥

Proof. We wish to use the statistical closeness of the tampered and simulated
random variables corresponding to (NMEnc,NMDec), to prove the claim.
Now, we apply Lemma 4, taking B = (w,C), A = (ka1 ||ka2 ||t1||t2||s), and the
functions as NMTamperh1,h2

,CopyNMSimh1,h2
to get:

Since, NMTamper
ka1 ||ka2 ||t1||t2||s
h1,h2

≈ε1 Copy
ka1 ||ka2 ||t1||t2||s
NMSimh1,h2

hence we get,

(w,C, ka1 ||ka2 ||t1||t2||s,NMTamper
ka1 ||ka2 ||t1||t2||s
h1,h2

) ≈ε1
(w,C, ka1 ||ka2 ||t1||t2||s,Copy

ka1 ||ka2 ||t1||t2||s
NMSimh1,h2

)



=⇒ By Lemma 2, (w,C,NMTamper
ka1 ||ka2 ||t1||t2||s
h1,h2

) ≈ε1 (w,C,Copy
ka1 ||ka2 ||t1||t2||s
NMSimh1,h2

)

=⇒ By Lemma 3, (w̃, C̃,NMTamper
ka1 ||ka2 ||t1||t2||s
h1,h2

) ≈ε1 (w̃, C̃,Copy
ka1 ||ka2 ||t1||t2||s
NMSimh1,h2

)

(2)

Now, we express the outputs of the hybrids as a deterministic function, Q, of
the above variables, to apply Lemma 3 and hence prove the claim.

Q(w̃, C̃, ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃):

– If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output ⊥
– else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧ Vrfy′ ˜ka2
(C̃, t̃2) = 1 output C̃ ⊕ Ext(w̃; s̃)

– else output ⊥

Then, using Eq. 2 and Lemma 3, we get

Q(w̃, C̃,NMTamper
ka1 ||ka2 ||t1||t2||s
h1,h2

) ≈ε1 Q(w̃, C̃,Copy
ka1 ||ka2 ||t1||t2||s
NMSimh1,h2

)

=⇒ Tampermh1,h2,f,g ≈ε1 Hybrid1mh1,h2,f,g

Going from Hybrid1mh1,h2,f,g to Hybrid2mh1,h2,f,g: As will become evident later,

Hybrid1mh1,h2,f,g is what will allow us to argue that, in the restricted case where

s̃ 6= s, the extracted key k̃ is independent of s. We now move to Hybrid2mh1,h2,f,g

which is the same as Hybrid1mh1,h2,f,g except for the the case where s is un-
changed. In this case, as we show in Hybrid2mh1,h2,f,g, the output of the experi-

ment can be computed without evaluating k̃. We prove that Hybrid1mh1,h2,f,g and
Hybrid2mh1,h2,f,g are statistically close by using the unforgeability of the message
authentication scheme.



Claim. If (Tag,Vrfy) and (Tag′,Vrfy′) are ε2-, ε3-secure information theoretic
one-time MAC (respectively), then Hybrid1mh1,h2,f,g ≈ε2+ε3 Hybrid2mh1,h2,f,g

Hybrid1mh1,h2,f,g :

1. w ∈R {0, 1}n, s ∈R {0, 1}d
2. ka1 ∈R {0, 1}τ1 , ka2 ∈R {0, 1}τ2
3. k = Ext(w; s)
4. C = m⊕ k
5. t1 = Tagka1 (w), t2 = Tag′ka2 (C)

6. (w̃, C̃) = (f(w), g(C))
7. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃← NMSimh1,h2

8. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗,

assign ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ =
ka1 ||ka2 ||t1||t2||s

9. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output ⊥
10. else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧
Vrfy′ ˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
11. else output ⊥

Hybrid2mh1,h2,f,g :

1. w ∈R {0, 1}n, s ∈R {0, 1}d

3. k = Ext(w; s)
4. C = m⊕ k

6. (w̃, C̃) = (f(w), g(C))
7. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃← NMSimh1,h2

8. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output
m
• else output ⊥

9. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output ⊥
10. else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧
Vrfy′ ˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
11. else output ⊥

Proof. If same∗ is not the value sampled from NMSimh1,h2
, then Hybrid1mh1,h2,f,g

and Hybrid2mh1,h2,f,g can be evaluated without steps (2,5,8) and (8) respectively.
The output of the two hybrids are identical in this case. Therefore, the statistical
distance is zero in this case. When same∗ is sampled, the key difference between
Hybrid1mh1,h2,f,g and Hybrid2mh1,h2,f,g is that, corresponding to this case, we remove
the two verify checks (of Step 10) in Hybrid2mh1,h2,f,g and simply replace it with
the checks shown in Step 8. By Proposition 1 and above observation, we get:

SD
(
Hybrid1mh1,h2,f,g;Hybrid2

m
h1,h2,f,g

)
≤ Pr[NMSimh1,h2

= same∗]·
SD

(
Hybrid1mh1,h2,f,g|NMSimh1, h2 = same∗;Hybrid2mh1,h2,f,g|NMSimh1, h2 = same∗

)
So, now remains the case when NMSimh1,h2 outputs same∗. By using unforgeabil-
ity of (Tag,Vrfy) and (Tag′,Vrfy′) we show the that two hybrids are statistically
close.

– Let E be the event that same∗ is sampled from NMSimh1,h2
and Ẽ be its

compliment.

– Let F be the event that w̃ = w ∧ C̃ = C and F̃ its complement.

– E and F are independent because w̃, C̃ are deterministic functions of w and
C respectively (which are independent of NMSimh1, h2) and NMSimh1, h2

does not take any input except for the a-priori fixed tampering functions
h1, h2.



2SD
(
Hybrid1mh1,h2,f,g;Hybrid2

m
h1,h2,f,g

)

=
∑

m̃∈{0,1}l∪{⊥}

|Pr[Hybrid1mh1,h2,f,g = m̃]− Pr[Hybrid2mh1,h2,f,g = m̃]|
=

∑
m̃∈{0,1}l∪{⊥}

|Pr[E](Pr[Hybrid1mh1,h2,f,g = m̃|E]− Pr[Hybrid2mh1,h2,f,g = m̃|E])

+ Pr[Ẽ](Pr[Hybrid1mh1,h2,f,g = m̃|Ẽ]− Pr[Hybrid2mh1,h2,f,g = m̃|Ẽ])︸ ︷︷ ︸
=0 as given Ẽ both the hybrids are identical.

|

=
∑

m̃∈{0,1}l∪{⊥}

Pr[E]|Pr[Hybrid1mh1,h2,f,g = m̃|E]− Pr[Hybrid2mh1,h2,f,g = m̃|E]|
= Pr[E]

∑
m̃∈{0,1}l∪{⊥}

|Pr[F |E].

( Pr[Hybrid1mh1,h2,f,g = m̃|E,F ]− Pr[Hybrid2mh1,h2,f,g = m̃|E,F ]︸ ︷︷ ︸
=0 as given E and F both the hybrids output m. So for any m̃ the difference is 0

)+ Pr[F̃ |E].

(Pr[Hybrid1mh1,h2,f,g = m̃|E, F̃ ]− Pr[Hybrid2mh1,h2,f,g = m̃|E, F̃ ])|
= Pr[E]

∑
m̃∈{0,1}l∪{⊥}

|Pr[F̃ ](Pr[Hybrid1mh1,h2,f,g = m̃|E, F̃ ]−

Pr[Hybrid2mh1,h2,f,g = m̃|E, F̃ ])|
= Pr[E] Pr[F̃ ]

∑
m̃∈{0,1}l
|Pr[Hybrid1mh1,h2,f,g = m̃|E, F̃ ]− Pr[Hybrid2mh1,h2,f,g = m̃|E, F̃ ]|

+ |Pr[Hybrid1mh1,h2,f,g = ⊥|E, F̃ ]− Pr[Hybrid2mh1,h2,f,g = ⊥|E, F̃ ]︸ ︷︷ ︸
= 1 as given E,F̃ Hybrid 2 outputs ⊥

|

= Pr[E] Pr[F̃ ]
∑

m̃∈{0,1}l
Pr[Hybrid1mh1,h2,f,g = m̃|E, F̃ ] + 1− Pr[Hybrid1mh1,h2,f,g = ⊥|E, F̃ ]

= 2 Pr[E] Pr[F̃ ](Pr[Hybrid1mh1,h2,f,g 6= ⊥|E, F̃ ])

≤ 2 Pr[E] Pr[F̃ ] Pr[Vrfy ˜ka1
(w̃, t̃1) = 1 ∧ Vrfy′ ˜ka2

(C̃, t̃2) = 1|t1 = Tagka1 (w), t2 = Tag′ka2 (C), E, F̃ ]

≤ 2 Pr[E] Pr[F̃ ] Pr[Vrfyka1 (w̃, t1) = 1 ∧ Vrfy′ka2 (C̃, t2) = 1|t1 = Tagka1 (w), t2 = Tag′ka2 (C), F̃ ]

≤ 2(ε2 + ε3)



∴ Hybrid1mh1,h2,f,g ≈ε2+ε3 Hybrid2mh1,h2,f,g

Rewriting Hybrid2mh1,h2,f,g as Hybrid3mh1,h2,f,g: Now we simply rewrite the

Hybrid2mh1,h2,f,g, starting with sampling from NMSimh1,h2
.

Hybrid2mh1,h2,f,g :

1. w ∈R {0, 1}n, s ∈R {0, 1}d
2. k = Ext(w; s)
3. C = m⊕ k
4. (w̃, C̃) = (f(w), g(C))
5. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃← NMSimh1,h2

6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output
m

• else output ⊥
7. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output ⊥
8. else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧
Vrfy′ ˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

Hybrid3mh1,h2,f,g :

1. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃← NMSimh1,h2

2. w ∈R {0, 1}n, s ∈R {0, 1}d
3. k = Ext(w; s)
4. C = m⊕ k
5. (w̃, C̃) = (f(w), g(C))
6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output
m
• else output ⊥

7. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output ⊥
8. else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧
Vrfy′ ˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

It is easy to see that we have rearranged the steps without changing the
distributions of any of the random variable, Hybrid2mh1,h2,f,g ≡ Hybrid3mh1,h2,f,g.

Going from Hybrid3mh1,h2,f,g to Hybrid4mh1,h2,f,g: We now wish to remove depen-

dency of the ciphertext on the source. This removes the dependency across the
two states containing w and C, which might have led to related tampering of the
message. To do this we would like to use the security of our randomness extrac-
tor and replace the extracted key k by uniform. The main challenge in doing so
is that, the decoded (tampered) message might itself reveal information about
the key k. This is a challenge because this information is learnt after the seed s
is chosen. This is the main bottleneck of our proof. The way we overcome it is by
carefully arguing that the information revealed by the decoded message might
be learnt from auxiliary information. Importantly, this auxiliary information is
completely independent of s and therefore, we can use extractor security.



Claim. If Ext is an (n, t, d, l, ε4) average case extractor, then Hybrid3mh1,h2,f,g ≈ε4
Hybrid4mh1,h2,f,g

Hybrid3mh1,h2,f,g :

1. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃← NMSimh1,h2

2. w ∈R {0, 1}n,s ∈R {0, 1}d
3. k = Ext(w; s)
4. C = m⊕ k
5. (w̃, C̃) = (f(w), g(C))
6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output
m
• else output ⊥

7. else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, out-
put ⊥

8. else if Vrfy ˜ka1
(w̃, t̃1) = 1 ∧

Vrfy′ ˜ka2
(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

Hybrid4mh1,h2,f,g :

1. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃← NMSimh1,h2

2. w ∈R {0, 1}n
3. k ∈R {0, 1}l
4. C = m⊕ k
5. (w̃, C̃) = (f(w), g(C))
6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output
m
• else output ⊥

7. else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, out-
put ⊥

8. else if Vrfy ˜ka1
(w̃, t̃1) = 1 ∧

Vrfy′ ˜ka2
(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

Proof. As explained in the motivation to this claim, we wish to replace the
extractor output with a uniform string. But the main challenge in this, is to
capture the security, given an auxiliary information.We consider two cases and
carefully analyze the auxiliary information that we use in each of them. We show
that in both these cases, the auxiliary information is completely independent of
s. We then use the average extractor property to argue security. We define two
mutually exclusive events:

– Let Case1 denote the event that ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗.
– Let Case2 denote the event that ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ 6= same∗.

By Proposition 1, we get:
SD

(
Hybrid3mh1,h2,f,g,Hybrid4

m
h1,h2,f,g

)
≤ Pr[Case1] SD

(
Hybrid3mh1,h2,f,g|Case1,Hybrid4

m
h1,h2,f,g|Case1

)
+Pr[Case2] SD

(
Hybrid3mh1,h2,f,g|Case2,Hybrid4

m
h1,h2,f,g|Case2

) (3)

We now use the security of the average case extractor to get the desired statistical
closeness in each of the two cases separately. The auxiliary information in each
case is different.
Case1 : k̃a1 ||k̃a2 ||t̃1||t̃2||̃s = same∗

In this case , the auxiliary information just includes a single bit, indicating
whether w is modified or remains the same. So, we first define this indicator
function:

eq(w) =

{
0 if f(w) 6= w

1 if f(w) = w



Let the auxiliary information be denoted by E1 ≡ (eq(W )). E1 is independent
of S because E1 is determined given W and W is independent of S. Now, E1

and W are correlated and E1 can take at most two possible values.
Hence, H̃∞(W |E1) ≥ H∞(W ) − 1 = n − 1 by Lemma 5. As n − 1 > t, by
security of average case extractor, we get:

E1,Ext(W ;S) ≈ε4 E1, Ul

As m is independent of (W,S), we get:

m,E1,Ext(W ;S) ≈ε4 m,E1, Ul (4)

Now, we wish to apply Lemma 3, for which, we express the output of the hybrids
in Case1 as a deterministic function of the variables above. Let
Q1(m, eq(w), k) :

– C = m⊕ k
– C̃ = g(C)
– If eq(w) = 1 and C̃ = C output m
– else output ⊥

Then, the outputs of Hybrid3mh1,h2,f,g|Case1 and Hybrid4mh1,h2,f,g|Case1 are ex-
pressible by Q1 above.

Hence, Eq.4 =⇒ By Lemma 3, Q1(m,E1,Ext(W ;S)) ≈ε4 Q1(m,E1, Ul)

i.e., Hybrid3mh1,h2,f,g|Case1 ≈ε4 Hybrid4mh1,h2,f,g|Case1
(5)

Case2 : k̃a1 ||k̃a2 ||t̃1||t̃2||̃s 6= same∗

This case is further divided into two mutually exclusive events of Case2.
Case2a : k̃a1 ||k̃a2 ||t̃1||t̃2||̃s = ⊥
Given ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥ both hybrids output ⊥ with probability 1. Therefore

SD
(
Hybrid3mh1,h2,f,g|case2a,Hybrid4

m
h1,h2,f,g|case2a

)
= 0 (6)

Case2b : k̃a1 ||k̃a2 ||t̃1||t̃2||̃s 6= ⊥ ∧ k̃a1 ||k̃a2 ||t̃1||t̃2||̃s 6= same∗

When ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ 6= (same∗,⊥) , the auxiliary information consists of an
indicator of verification of w̃, the simulated authentication key and tag (corre-
sponding to the ciphertext) distributions and the modified encryption key. We
first define the indicator of verification bit:

V erify(w) = Vrfy ˜ka1
(f(w), t̃1)

Now, let the auxiliary information be denoted by E2 ≡
(V erify(W ), K̃a2 , T̃2,Ext(W̃ ; S̃)), where K̃a1 , K̃a2 , T̃1, T̃2, S̃ denote the dis-
tributions on the authentication key, tag spaces and the seed, when sampled
from the simulator conditioned on the event Case2b. E2 is clearly a deterministic



function of K̃a1 , K̃a2 , W̃ , T̃1, T̃2, S̃, all of which are independent of S (as we use
the simulator). Hence, E2 is independent of S. Now, E2 and W are correlated.
E2 can take at most 21+τ2+δ2+l possible values.
Hence, H̃∞(W |E2) ≥ H∞(W ) − (1 + τ2 + δ2 + l) = n − (1 + τ2 + δ2 + l), by
Lemma 5. As n − (1 + τ2 + δ2 + l) > t (due to the way we set parameters in
section 4.5), by security of average case extractor, we get:

E2,Ext(W ;S) ≈ε4 E2, Ul

As m is independent of (W,S), we get:

m,E2,Ext(W ;S) ≈ε4 m,E2, Ul (7)

Now, we wish to apply Lemma 3 and again, we express the outputs of
Hybrid3mh1,h2,f,g|Case2b and Hybrid4mh1,h2,f,g|Case2b as a deterministic function
of the variables above. Define function Q2 as follows.
Q2(m,V erify(w), ˜ka2 , t̃2,Ext(w̃; s̃), k) :

– C = m⊕ k
– C̃ = g(C)
– If V erify(w) = 1 and Vrfy′ ˜ka2

(C̃, t̃2) = 1 output C̃ ⊕ Ext(w̃; s̃)

– else output ⊥

Then, the outputs of Hybrid3mh1,h2,f,g|Case2b and Hybrid4mh1,h2,f,g|Case2b are ex-
pressible by Q2 above.

Hence, Eq.7 =⇒ By Lemma 3, Q2(m,E2,Ext(W ;S)) ≈ε4 Q2(m,E2, Ul)

i.e., Hybrid3mh1,h2,f,g|Case2b ≈ε4 Hybrid4mh1,h2,f,g|Case2b
(8)

Hence, by Proposition 1, Equations 3, 5, 6 and 8 above, we get:

Hybrid3mh1,h2,f,g ≈ε4 Hybrid4mh1,h2,f,g

Remark on Auxiliary Information. We first observe that the auxiliary infor-
mation in both the cases contains the additional information required to get
the outputs of the hybrids, which are independent of the seed. In Case1, we
just have a single bit of auxiliary information, which is independent of s. In
Case2 however, as we add the verification bit to E2, it is important that this
verification check is independent of s. If we authenticate w and C together,
under a single MAC, then the verify check would be dependent on C as well,
which in turn depends on s in the third hybrid. So, it is important that we
authenticate w and C using separate one time MAC. Then, we give the modified
authentication key and tag corresponding to C in E2, which are independent of s.



Rewriting Hybrid4mh1,h2,f,g as Hybrid5mh1,h2,f,g: We again rewrite Hybrid4mh1,h2,f,g

such that we first choose the encryption key k uniformly at random, to get
Hybrid5mh1,h2,f,g. This reordering of steps is to stress on the fact that, we have
now removed the dependency of the encryption key on w and s and we sample
it uniformly at random.

Hybrid4mh1,h2,f,g :

1. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃← NMSimh1,h2

2. w ∈R {0, 1}n
3. k ∈R {0, 1}l
4. C = m⊕ k
5. (w̃, C̃) = (f(w), g(C))
6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output
m

• else output ⊥
7. else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, out-

put ⊥
8. else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧
Vrfy′ ˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

Hybrid5mh1,h2,f,g :

1. k ∈R {0, 1}l
2. C = m⊕ k
3. w ∈R {0, 1}n
4. (w̃, C̃) = (f(w), g(C))
5. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃← NMSimh1,h2

6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output
m
• else output ⊥

7. else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, out-
put ⊥

8. else if Vrfy ˜ka1
(w̃, t̃1) = 1 ∧

Vrfy′ ˜ka2
(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

As we have only reordered the steps without changing any of the distributions,
clearly Hybrid4mh1,h2,f,g ≡ Hybrid5mh1,h2,f,g.

Going from Hybrid5mh1,h2,f,g to Hybrid6mh1,h2,f,g: In the final hybrid,

Hybrid6mh1,h2,f,g, we use the perfect security of the one time pad to re-

move the dependency of C (and hence, of C̃) on m. This gives us the simulated
view, independent of m.

Claim. Hybrid5mh1,h2,f,g ≡ Hybrid6mh1,h2,f,g by perfect security of One Time Pad
encryption.

Proof. We begin by expressing the hybrid outputs as a deterministic function of
the message and the ciphertext. Define function Q3 as follows:
Q3(m,C) :

– ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃← NMSimh1,h2

– w ∈R {0, 1}n
– (w̃, C̃) = (f(w), g(C))
– If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output m
• else output ⊥



Hybrid5mh1,h2,f,g :

1. k ∈R {0, 1}l
2. C = m⊕ k
3. w ∈R {0, 1}n
4. (w̃, C̃) = (f(w), g(C))
5. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃← NMSimh1,h2

6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output
m

• else output ⊥
7. else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, out-

put ⊥
8. else if Vrfy ˜ka1

(w̃, t̃1) = 1 ∧
Vrfy′ ˜ka2

(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

Hybrid6mh1,h2,f,g :

1. k ∈R {0, 1}l
2. C = 0⊕ k
3. w ∈R {0, 1}n
4. (w̃, C̃) = (f(w), g(C))
5. ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃← NMSimh1,h2

6. If ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = same∗

• If w̃ = w and C̃ = C output
m
• else output ⊥

7. else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, out-
put ⊥

8. else if Vrfy ˜ka1
(w̃, t̃1) = 1 ∧

Vrfy′ ˜ka2
(C̃, t̃2) = 1

output C̃ ⊕ Ext(w̃; s̃)
9. else output ⊥

– else if ˜ka1 || ˜ka2 ||t̃1||t̃2||s̃ = ⊥, output ⊥
– else If Vrfy ˜ka1

(w̃, t̃1) = 1 and Vrfy′ ˜ka2
(C̃, t̃2) = 1 Output C̃ ⊕ Ext(w̃, s̃)

– else Output ⊥

Replace sequence of steps 3-9 with an output of Q3(m,C) in both the hybrids.
By perfect security of OTP encryption, for any message m and a uniformly
random key k

(m, (m⊕ k)) ≡ (m, (0⊕ k))

Q3(m, (m⊕ k)) ≡ Q3(m, (0⊕ k))

Hybrid5mh1,h2,f,g ≡ Hybrid6mh1,h2,f,g

Combining results of above claims 4.3, 4.3, 4.3 and 4.3, we get

Tampermh1,h2,f,g ≈ε1 Hybrid1mh1,h2,f,g ≈ε2+ε3 Hybrid2mh1,h2,f,g ≡ Hybrid3mh1,h2,f,g

Hybrid3mh1,h2,f,g ≈ε4 Hybrid4mh1,h2,f,g ≡ Hybrid5mh1,h2,f,g

Hybrid5mh1,h2,f,g ≡ Hybrid6mh1,h2,f,g ≡ Copy
m
Simh1,h2,f,g

=⇒ Tampermh1,h2,f,g ≈ε1+ε2+ε3+ε4 Copy
m
Simh1,h2,f,g

4.4 Rate and Error analysis

We now present the details of the rate of the code as well as the error it achieves.
As we are encoding the seed of the extractor using the underlying non-malleable
code, it is important that the strong extractor we use has short seed length. This
is guaranteed by the following lemma.



Lemma 7. [19] For every constant ν > 0 all integers n ≥ t and all ε ≥ 0,
there is an explicit (efficient) (n, t, d, l, ε)−strong extractor with l = (1 − ν)t −
O(log(n) + log(

1

ε
)) and d = O(log(n) + log(

1

ε
)).

Now, as we give some auxiliary information about the source, we require the
security of the extractor to hold, even given this information. Hence, we use
average case extractors, given in the following lemma.

Lemma 8. [13] For any µ > 0, if Ext is a (worst case)(n, t, d, l, ε)−strong ex-

tractor, then Ext is also an average-case (n, t+log(
1

µ
), d, l, ε+µ) strong extractor.

We now combine the Lemmata 7 and 8 to get an average case extractor with
optimal seed length.

Corollary 1. For any µ > 0 and every constant ν > 0 all integers n ≥ t and all

ε ≥ 0, there is an explicit (efficient) (n, t+log(
1

µ
), d, l, ε+µ)− average case strong

extractor with l = (1− ν)t−O(log(n) + log(
1

ε
)) and d = O(log(n) + log(

1

ε
)).

Now, we also encode the authentication keys and tags using the underlying non-
malleable code. Hence, we require them to have short lengths. This is guaranteed
by the following lemma.

Lemma 9. [[14], Lemma 26] For any n′, ε2 > 0 there is an efficient ε2−secure

one time MAC with δ ≤ (log(n′) + log(
1

ε2
)), τ ≤ 2δ, where τ, n′, δ are key,

message, tag length respectively.

We refer the reader to [12] for a construction satisfying these parameters.

4.5 Setting parameters

– Set all the error parameters ε, µ, ε1ε2, ε3 = 2−λ and ε4 = ε+ µ
– The codeword of the construction in Figure 1 has four states: a two-split

state NMC codeword(L,R), source(w), ciphertext(C). In order to estimate
the rate we need to estimate the length of each of these states.

– Let l be the length of the message for construction in Figure 1. As we are
using the one-time pad encryption scheme, |C| = l.

– We now estimate the length of the source - n. Although the source has full
entropy (i.e., uniformly random), as we can see from the proof of Claim 4.3,
we do reveal some auxiliary information which needs to be taken into ac-
count. The amount of auxiliary information that is revealed in Claim 4.3 can
be upper bounded by the amount of auxiliary information that is revealed
in Case 2b. So we need to upper bound this entropy loss. This auxiliary
information consists of an indicator bit, the key, tag of cipher text, and an
extractor output. Of these, we know that the extractor output is of length l
bits and the indicator is just one bit. So we need to estimate the length of
the authentication key, tag pair of the cipher text.



– τ2, δ2- length of key, tag to authenticate cipher text(C) of length l.
• Applying Lemma 9 with n′ = l, ε3 = 2−λ gives δ2 ≤ (log(l) + λ) and
τ2 ≤ 2δ2. Therefore

τ2 + δ2 ≤ 3(log(l) + λ) (9)

– By Lemma 5, the average entropy of the source given auxiliary information
is at least n− (1 + τ2 + δ2 + l)︸ ︷︷ ︸

length of aux info

which is at least n− (1 + 3 log(l) + 3λ+ l).

– Also we need to make sure that the average entropy we are left with is at

least the entropy threshold (t+ log(
1

µ
)). So we need to estimate t

• By Corollary 1, we have t = (l +O(log(n) + log(
1

ε
)))

1

1− ν
• It is necessary and sufficient if n− (1 + 3 log(l) + 3λ+ l) > t+ log(

1

µ
)

⇒ n ≥ (1 +
1

1− ν
)l + 3 log(l) + 4(λ) +O(log(n) + λ)

As ν can be very small constant thats close to 0, fixing n = (2 + ζ)l +
O(log(l) + λ) for some constant ζ close to 0, would satisfy the above
equation.

We now estimate the length of the codeword of the underlying NMC. We
encode an authentication key, tag pair of ciphertext , authentication key,
tag pair of the source, extractor seed. The length of the authentication key,
tag pair of ciphertext is given in Equation 9. We estimate the lengths of the
remaining variables below.

– d- seed length of the extractor.

• From Corollary 1. we have d = O(log(n) + log(
1

ε
)).

• Substituting n = (2 + ζ)l +O(log(l) + λ) and ε = 2−λ gives

d = O(log((2+ζ)l+O(log(l)+λ))+λ) = O(log(l+λ)+λ) = O(log(l)+λ)
(10)

– τ1, δ1- length of key, tag to authenticate source(W ) of length n.
• Applying Lemma 9 with n′ = n, ε2 = 2−λ gives δ1 ≤ (log(n) + λ) and
τ1 ≤ 2δ1. Therefore

τ1 + δ1 ≤ 3(log(n) + λ) (11)

– α = τ1 + τ2 + δ1 + δ2 + d - length of message that we are encoding using
NMC in [22].
• By Equations 11, 9, 10

α ≤ (c+ 1)(log(l) + λ) + 3(log(l) + λ) + 3(log(n) + λ)

By the same argument as in equation 10

α = O(log(l) + λ) (12)



– 2β- codeword length of NMC in [22].

• By Equation 1, we have β = O(α log(α))
By Equation 12, we have

α log(α) = O((log(l)+λ). log(log(l)+λ)) = O((log(l))2+λ. log(λ)+2.λ. log(l)))
(13)

Therefore,

β = O((log(l))2 + λ log(λ) + 2λ log(l))) (14)

– Now we have upper bound on the length of all states of the codeword in
terms of l and λ.

4.6 Rate

Let R denote the rate of proposed construction.

R =
l

2β + n+ l

Substituting n and β (by Eq. 14)

=
l

O((log(l))2 + λ. log(λ) + 2.λ. log(l)) + (2 + ζ)l +O(log(l) + λ) + l

For some constant c

≥ l

c((log(l))2 + λ log(λ) + 2λ log(l)) + (2 + ζ)l +O(log(l) + λ) + l

=
1

c((log(l))2 + λ log(λ) + 2λ log(l)) + (2 + ζ)l +O(log(l) + λ) + l

l

For large l

=
1

c(λ log(λ) + 2λ log(l)) +O(λ)

l
+ 3 + ζ

For λ = o

(
l

log l

)
=

1

3 + ζ

Construction in Figure 1 achieves rate that is at least
1

3 + ζ
, for some ζ very

close to 0.



4.7 Error

Error of the proposed construction is ε1 + ε2 + ε3 + ε4 = 5(2−λ). Because λ =

o

(
l

log l

)
the error will be at least 2

−
l

log l . For any ρ > 0, fixing λ =
l

logρ+1 l
,

the error would be at most 5.2
−

l

logρ+1 l . Setting κ = λ − log 5 the error would
be 2−κ = 2−Ω(l/ logρ+1 l).

Conclusion

In this work, we constructed an efficient non-malleable code in the t-split-state
model, for t = 4, that achieves a constant rate of 1

3+ζ , for any constant ζ > 0 and

error 2−Ω(`/ logc+1 `), where ` is the length of the message and c > 0 is a constant.
This improves the constant-rate constructions of Cheraghchi and Guruswami [8]
(by bringing down the number of states from n to 4) and Chattopadhyay and
Zuckerman [6](by making the “constant” in the rate explicit and by bringing
down the number of states from 10 to 4). We stress that as is the case with all
information-theoretic primitives, optimizing constant factors in achieving key
parameters, such as, in this case, the rate/number of states etc., is both crucial
and challenging.

While we obtain our specific parameters by using the 2 state non-malleable
code construction due to [22], our techniques are general and uses the underlying
NMC in a black-box. Hence, our construction can be generalized to obtain a (t+
2)-state NMC from any t-state NMC, leading to interesting trade-offs between
the rate vs the number of states depending on the parameters of underlying
NMC (Appendix A).

An interesting open problem would be to see if our techniques can be used to
improve the rate of non-malleable codes with special features such as “locality”
[11,5,10], security against continuous tampering [17,21], and leakage-resilience
[2].
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A Appendix I

A.1 Building constant rate (t + 2) - state NMC from any t-state
NMC with inverse polynomial rate

Theorem 2. Let NMEnc,NMDec be an ε1-secure t− split state non-malleable

code with rate ω

(
1

αa

)
, for some constant a and message length α. The algo-

rithms (Tag,Vrfy), (Tag′,Vrfy′),Ext be as a specified in Section 4.1.

For any constant ζ > 0, messages of length l, any κ such that κ = o

(
l

la+1

)
, the

(t+ 2)− split state construction in figure below has block length (3 + ζ)l + o(l),

there by achieves asymptotic rate
1

3 + ζ
and error 2−κ.

Enc(m) :

– w ∈R {0, 1}n, s ∈R {0, 1}d
– ka1 ∈R {0, 1}τ1 , ka2 ∈R {0, 1}τ2
– k = Ext(w, s)
– C = m⊕ k
– t1 = Tagka1 (w), t2 = Tag′ka2 (C)

– (L1, L2, · · · , Lt) =
NMEnc(ka1 ||ka2 ||t1||t2||s)

– Output :(L1, L2, · · · , Lt, w, C)

Dec(L1, L2, · · · , Lt, w, C) :

– ka1 ||ka2 ||t1||t2||s =
NMDec(L1, L2, · · · , Lt)

– If ka1 ||ka2 ||t1||t2||s = ⊥ output ⊥
– else if Vrfyka1 (w, t1) = 1

∧ Vrfy′ka2 (C, t2) = 1

output C ⊕ Ext(w, s)
– else output ⊥

Proof. The construction in figure above is a secure (t + 2)- state NMC. The
security proof is similar to the proof in Section 4.3.
Set parameters κ, ε, µ, ε1ε2, ε3, ε4, n, α in terms of l, λ as in Section 4.5.

– Let β be length of t-state codeword of (NMEnc,NMDec) for messages of
length α.

– β = O(αa+1)
– The rate r of the (t+ 2)−state NMC (Enc,Dec) is

r =
l

β + n+ l

Substituting n and β

=
l

O(αa+1) + (2 + ζ)l +O(log(l) + λ) + l

Substituting α = O(log(l) + λ)

=
l

O((log(l) + λ)a+1) + (2 + ζ)l +O(log(l) + λ) + l



For some constant c

≥ 1

c((log(l) + λ)a+1) + (2 + ζ)l +O(log(l) + λ) + l

l

For large l

=
1

c((log(l) + λ)a+1) +O(λ)

l
+ 3 + ζ

For λ = o

(
l

la+1

)
r =

1

3 + ζ

Error analysis is similar to analysis in Section 4.7.

B Appendix II

Lemma 10. If α = Ω(
β

log(β)
), then β = O(α. log(α))

Proof. By the definition of Ω, ∃ a constant c > 0 such that for large α, β

0 ≤ c. β

log(β)
≤ α (15)

cβ ≤ α. log(β)

cβ ≤ α
√
β

If c ≥ 1 √
β ≤ α

log(β) ≤ 2. log(α)

Multiplying with Eq 15, we get

0 ≤ c

2
.β ≤ α log(α) (16)

If c < 1, let c′ =
1

c √
β ≤ c′.α

log(β) ≤ 2(log(c′) + log(α))

log(β) ≤ 4. log(α)

Multiplying with Eq 15

0 ≤ c

4
.β ≤ α log(α) (17)

In either case, for large α, β, for a constant
c

4
> 0

0 ≤ c

4
.β ≤ α log(α)

=⇒ α log(α) = Ω(β)

=⇒ β = O(α log(α))
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