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Bit Commitment Schemes

Zero knowledge proofs
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Coin flipping
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Coin flipping over distance
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Coin flipping over distance by commitment
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Coin flipping over distance by commitment
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Mathematically..
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Properties of Bit-Commitment schemes

Sender’s security: Hiding
The receiver should not know whether the committed bit is 0 or 1, on
seeing the commitment com.
Receiver’s security: Binding
After committing to 0, sender shouldn’t be able to generate dec ′ that
decommits com to 1 and vice-versa.
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Building blocks
Adversary

Information theoretic: Has unbounded computing power

Example: Can easily run exponential time algorithms.

Computational: Has limited computing power

Example: Can only run polynomial time algorithms.
Probabilistic Poly time Adversary is a computational adversary that can
flip coins.

Adversary is an algorithm!!!
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One way function
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Building blocks
One way function

A function f : {0, 1}n → {0, 1}∗ is one-way if

Given x, f(x) is efficiently computable.

Pr[Adversary wins in OWF game] is negligible.
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Building blocks
One way function

Why randomly chosen x ?

Do OWF’s exist information theoretically?

No

Proving existence of a OWF is an open problem.
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Building blocks
Hard core predicate

A boolean function hcp : {0, 1}n → {0, 1}, is hard core predicate of a function
f : {0, 1}n → {0, 1}∗, if

Given x, hcp(x) is efficiently computable.

Pr[Adversary wins in HCP game] is 1
2
+ negligible.

Every OWF has a HCP.
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Building blocks
One way permutation

f : {0, 1}n → {0, 1}n is a OWP if f is a

Permutation

One way function
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Constructing commitments from OWP

O.S.L.Bhavana Interesting Primitives and Applications Of Cryptography July 5, 2017 21 / 49



Constructing commitments from OWP

O.S.L.Bhavana Interesting Primitives and Applications Of Cryptography July 5, 2017 22 / 49



Constructing commitments from OWP

O.S.L.Bhavana Interesting Primitives and Applications Of Cryptography July 5, 2017 23 / 49



Constructing commitments from OWP

O.S.L.Bhavana Interesting Primitives and Applications Of Cryptography July 5, 2017 24 / 49



Constructing commitments from OWP
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Bit commitments : Summary

Motivation

Building blocks

An explicit construction
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Zero Knowledge Proofs

Motivation

Properties

ZKP for graph coloring
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ZKP: Motivation
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ZKP: Motivation
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Important application of ZKP

Cloud computation
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Properties of ZKP

Verifier’s security: Soundness
The prover should not be able to prove verifier false statements
Prover’s security: Zero knowledge
The verifier should not learn any additional information other than the
statement being proved.
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Graph 3-Coloring

Given graph G = (V ,E ), can we assign each vertex a color (one of the
three colors) such that no two adjacent vertices have same color?

For a graph G that is 3-colorable, the witness is the color assignment.

Graph 3-Coloring is an NP-Complete problem.

Therefore, no known algorithm with polynomial running time can
decide whether a graph G is 3-colorable or not?
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ZKP for Graph 3-Coloring
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ZKP for Graph 3-Coloring
Soundness

If G isn’t 3-colorable, there exists an edge (u, v) such that
color(u) = color(v)

Verifier would reject the graph if he chose edge (u, v)

Pr[Verifier rejects the graph] ≥ 1
n2

Pr[Verifier accepts a non 3-colorable graph] ≤ 1− 1
n2

Repeat the experiment n3 times

Pr[Verifier accepts the non 3-colorable graph in all runs]

≤ (1− 1

n2
)n

3 ≤ e−n
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ZKP for Graph 3-Coloring
Zero knowledge

In a single run, verifier would only know colors of two vertices.

Colors of other vertices are hidden by commitments

In the next run the colors are randomly permuted, so the information
of colors about previous run would not help
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Reference

Foundations of Cryptography, Volume 1, Oded Goldreich.
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Thank you
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ZKP for Graph 3-coloring

G=(V,E) is 3-colorable

Prover Verifier

3-coloringC

(com1, .., comn)

Chooses an edge(u, v) ∈ Euniformly

reveal colors of u, v

coloru , colorv , decu , decv

If Decommit(coloru , comu , decu) = 1

and Decommit(colorv , comv , decv ) = 1

Accept that G is 3-colorable Else reject
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Building blocks
Computational hardness

Why bother about Computational adversary?

Theorem

IT secure schemes are costly
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construction from OWP

Sender Receiver Hiding holds as hcp(y) is unpredictable. Binding holds
as f is a OWP. Decommit(com, dec)
{Parse com as (a, b)
Parse dec as y
If a == f (y)
Output b ⊕ hcp(y)
Else Output ⊥}
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Coin flipping over distance

I can count the number of leaves.
Let me test.
Tosses a coin.
Plucks a leaf if heads.
Please count the leaves now.
Prob[cheating wizard fails] = 1

2 Alice makes her call
Locks her call in a box
sends this box to Bob without key
Bob tosses a coin
Bob reveals the toss result
Alice reveals her call and sends the box key
Bob opens the box and crosschecks Alice’s call
Winner is declared according to the toss result
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Building blocks
Algorithms

Deterministic: For a given input, output of the algorithm is fixed

Example: f (x , y) = xy

Randomized: Algorithm that has access to uniform bits.

For a given input there may several possible outputs depending on the
uniform bits

Example: frand(x , y) =

{
xy if r = 01

2xy if r = 10

Randomized algorithm is deterministic given the uniform bits.
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Coin flipping over distance

Alice Bob

Makes her call x

(dec , com) = Commit(x)

com

coin toss results in b

b

x , dec

If Decommit(com, dec) = 1,

Announce winner

else STOP
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