
Theoretical Foundations of Cryptography
Georgia Tech, Spring 2010

Lecture 8
Pseudorandom Functions

Instructor: Chris Peikert
Scribe: Indranil Banerjee

1 Recap: Pseudorandom Generators

1. It is possible to construct a hard-core predicate for any one-way function. Let f : {0, 1}∗ → {0, 1}∗ be
any one-way function (or permutation). We define f ′(r, x) = (r, f(x)) for |r| = |x|. Then f ′ is also a
one way function (or permutation, respectively), and h(r, x) = 〈r, x〉 mod 2 is a hard core predicate
for f ′.

2. A pseudorandom generator exists under the assumption that a one-way permutation exists. Formally, if
f is a OWP and h is a hard-core predicate for f , then G(s) = (f(s), h(s)) is a PRG with output length
`(n) = n + 1.

3. If there exists a PRG G(s) = (f(s), h(s)) with output length `(n) = n + 1, then

G′(s) = (h(s), h(f(s)), h(f (2)(s)), · · · , h(f (m−1)(s)))

is a PRG of output length m for any m = poly(|s|).

While it is well-known that the existence of a PRG implies that a OWF must exist, is the converse also
true? That is, does the existence of a one-way function also imply that a pseudorandom generator must exist?
In fact, this turns out to be true as well. Hastad, Impagliazzo, Levin, and Luby established in 1989 that a PRG
can be constructed from any OWF. Their construction is much more complicated than the one for OWPs,
because it must address the issue that the OWF f may be very “unstructured,” and thus the distribution of
f(x) may be very different from uniform, even when x is uniform. The HILL PRG construction utilizes a
random seed of length n10 for a OWF of input length n. The details of their construction are beyond the
scope of (even) this class.

2 Pseudorandom Functions

2.1 Preliminary Concepts

Having already developed a precise definition for a pseudorandom string of bits, a natural extension is, what
would a random function look like?

A function from {0, 1}n to {0, 1} is given by specifying an output bit for every one of its inputs, of
which there are 2n. Therefore, the set of all functions from {0, 1}n to {0, 1} contains exactly 22n

functions;
a “random function” (with this domain and range) is a uniformly choice from this set. Such a function can
also be viewed as a uniformly random 2n-bit string, which simply lists all the function’s outputs. However,
stated this way, it is impossible to even look at the entire string efficiently (in poly(n) time). Therefore, we
define a model in which we give oracle access to a function.

Writing Af signifies that A has query access to f , i.e., A can (adaptively) query the oracle on any input
x and receive the output f(x). However, A only has a “black-box” (input/output) view of f , without any
knowledge of how the function f is evaluated.

Definition 2.1 (Oracle indistinguishability). Let O = {On} and O′ = {O′n} be ensembles of probability
distributions over functions from {0, 1}`1(n) to {0, 1}`2(n), for some `1(n), `2(n) = poly(n). We say that
O

c
≈ O′ if, for all nuppt distinguishers D,

AdvO,O′(D) :=
∣∣∣∣ Pr
f←On

[Df (1n) = 1]− Pr
f←O′

n

[Df (1n) = 1]
∣∣∣∣ = negl(n).

1

http://wiki.cc.gatech.edu/theory/index.php/CS_8803TFC_-_Theoretical_Foundations_of_Cryptography%2C_Spring_2010
http://www.cc.gatech.edu/~cpeikert/

Naturally, we say that O = {On} is pseudorandom if

O
c
≈
{

U
(
{0, 1}`1(n) → {0, 1}`2(n)

)}
,

i.e., if no efficient adversary can distinguish (given only oracle access) between a function sampled according
to On, and a uniformly random function, with more than negligible advantage.

Definition 2.2 (PRF Family). A family
{
fs : {0, 1}`1(n) → {0, 1}`2(n)

}
s∈{0,1}n is a pseudorandom function

family if it is:

• Efficiently computable: there exists a deterministic polynomial-time algorithm F such that F (s, x) =
fs(x) for all s ∈ {0, 1}n and x ∈ {0, 1}`1(n).

• Pseudorandom: {U({fs})} is pseudorandom.

Having developed a precise definition of a pseudorandom family of functions, the natural questions arises:
Does such a primitive even exist? And under what assumptions?

Notice that if `1(n) = O(log n), all the outputs values of a function f : {0, 1}`1(n) → {0, 1}`2(n) can be
written down as a string of exactly 2`1(n) · `2(n) = poly(n) bits. Moreover, all the function values can be
queried in polynomial time, given oracle access. Therefore, a PRF family with O(log n)-length input may be
seen as a PRG, and vice-versa. But do there exist PRF families with longer input lengths — say, n?

2.2 Constructing PRFs

Theorem 2.3. If a pseudorandom generator exists (i.e., if a one-way function exists), then a pseudorandom
function family exists for any `1(n), `2(n) = poly(n).

At first glance, this theorem may seem completely absurd. The number of functions in the family {fs}
with a seed length |s| = n is at most 2n, whereas the total number of functions overall (even with just one-bit
outputs) is at least 22n

. Therefore, our function family is ≈ 2−2n
-sparse, i.e., the family {fs} makes up only

a doubly exponentially small subset of the entire space of functions.

Proof of Theorem 2.3. For simplicity, we prove the theorem for `1(n) = `2(n) = n; extending to other
values is straightforward.

Our objective is to “stretch” an n-bit uniformly random string to produce an exponential (at least 2n)
number of “random-looking” strings. Assume without loss of generality that G is a PRG with output length
`(n) = 2n. The basic idea is to view the output of G as two length-n pseudorandom strings, which can be
used recursively as inputs to G to generate an exponential number of strings.

Formally, view G as a pair of length-preserving functions G0, G1 (i.e., |G0(s)| = |G1(s)| = |s|), where

G(s) = G0(s) | G1(s).

The idea behind the PRF construction is that the function fs(x) computes a path, specified by the bits of x
starting from the root seed s, as shown below:

2

Formally, we define the function fs(·) as

fs(x) = Gxn(· · ·Gx2(Gx1(s)) · · ·).

Why might we expect fs to “look random,” for a uniformly random (secret) seed s? Intuitively, G0(s)
and G1(s) “look like” independent uniform n-bit strings, and we might expect this pseudorandomness to
propagate downward through the layers of the tree. Let us try to prove this rigorously.

Attempt 1: Design a sequence of hybrid experiments where each leaf of the tree is successively replaced
by its “ideal” form, i.e., with a uniform n-bit string. Clearly, the 0th hybrid corresponds to the “real” tree
construction, and the 2nth corresponds to a truly random function. However, this approach is flawed, as it
requires 2n hybrid steps. (As an exercise, show that the hybrid lemma is false, in general, for an exponential
number of hybrid steps.)

Attempt 2: Successively replace each layer of the tree with ideal uniform, independent entries (all at
once). Thus, H0 corresponds to the real tree construction, and Hn corresponds to a truly random function.
Note that we now have only n hybrid steps.

More formally, we describe hybrid distributions defining (a distribution over functions) f as follows:

• H0 is the real tree construction, with a uniformly random root s, and f(x) = Gxn(· · ·Gx1(s) · · ·).

• For i ∈ [n], Hi is the tree construction, but using uniformly random seeds across the ith layer of
the tree. Formally, f(x) = Gxn(· · ·Gxi+1(sxi···x1), where the seeds sy are uniformly random and
independent for each y ∈ {0, 1}i.

As a warm-up, we first show that H0
c
≈ H1 (in the sense of oracle indistinguishability) assuming that

G is a PRG. To prove this, we need to construct a simulator S that emulates one of H0 or H1 (as oracles),
depending on whether its input is G(Un) or U2n. That is, the simulator should use its input to answer arbitrary
queries. The simulator S works as follows: given (z0, z1) ∈ {0, 1}2n, it answers each query x by returning
Gxn(· · ·Gx2(zx1) · · ·).

3

It is easy to check that the simulator emulates the desired hybrids. First, if (z0, z1) = (G0(s), G1(s)) for
s← Un, then S(z0, z1) answers each query x ∈ {0, 1}n as

Gxn(· · ·Gx2(Gx1(s)) · · ·) = fs(x),

exactly as in H0. Similarly, if (z0, z1) ← (Un, Un), then S answers each query exactly as in H1. Now
because G(Un)

c
≈ U2n and S is efficient, by the hybrid lemma we conclude that H0

c
≈ H1.

Unfortunately, this approach does not seem to scale too well when we go down to the deeper layers of the
tree, because the simulator S would need to take as input an exponential number of input strings. However,
we can make two observations:

• In Hi, all the subtrees growing from the ith level are symmetric, i.e., they are identically distributed
and independent.

• The polynomial-time distinguisher D attacking the PRF can make only a polynomial number of queries
to its oracle.

The key point is that the simulator then only needs to simulate q(n) = poly(n) number of subtrees in order
to answer all the queries of the distinguisher correctly.

For the hybrids Hi−1 and Hi, Algorithm 2.2 defines a simulator that takes q(n) = poly(n) pairs of n-bit
strings.

Algorithm 1 Simulator Si for emulating either Hi−1 or Hi.
Input: (z1

0 , z
1
1), . . . , (z

q
0, z

q
1) ∈ {0, 1}2n for some large enough q(n) = poly(n)

1: j ← 1
2: while there is a query x ∈ {0, 1}n to answer do
3: if prefix x1 · · ·xi is not yet associated with any k then
4: associate j to x1 · · ·xi

5: j ← j + 1
6: end if
7: look up the k associated with prefix x1 · · ·xi

8: answer Gxn(· · ·Gxi+1(z
k
xi

) · · ·)
9: end while

We analyze the behavior of Si. Suppose that the distinguisher D (making queries to Si) makes at most
q queries, so the counter j never “overflows.” Now, if each of the pairs (zj

0, z
j
1)← G(U j

n) are independent
pseudorandom strings, then Si answers each query x by Gxn(· · · (Gxi+1(Gxi(U

k
n)) · · ·), for a distinct k

associated uniquely with the i-bit prefix of x. By construction, Si therefore emulates Hi−1 exactly. Similarly,
if the (zj

0, z
j
1)← U j

2n are uniformly random and independent, then Si simulates Hi.
At this point, we would like to conclude that Hi−1

c
≈ Hi, but can we? To do so using the hybrid

lemma, we would need to show that the two types of inputs to Si (namely, a sequence of q = poly(n)
independent pairs (z0, z1) each drawn from either G(Un) or U2n) are indistinguishable. This can be shown
via a straightforward hybrid argument, using the hypothesis that G is a PRG, and is left as an exercise.

2.3 Consequences for (Un)Learnability

A family of functions is said to be learnable if any member of the family can be reconstructed efficiently (i.e.,
as code), given oracle access to the function. In this sense, a PRF family is completely unlearnable, in that

4

no efficient adversary can determine anything about the values of the function (given oracle access) on any
of the unqueried points. As a consequence, if a class of functions is expressive enough to “contain” a PRF
family, then this class is unlearnable. E.g., under standard assumptions, the class NC1 can implement PRFs,
hence it is unlearnable.

5

	Recap: Pseudorandom Generators
	Pseudorandom Functions
	Preliminary Concepts
	Constructing PRFs
	Consequences for (Un)Learnability

