

# Pseudorandomness

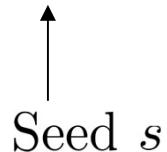
---

TFC

11/9/2017

# PseudoRandom Generators [BM82, Yao82]

$$\mathbf{G} : \{0, 1\}^n \rightarrow \{0, 1\}^m, \quad m > n$$



**Informally:** “stretches” random bits from  $n$  bits to  $\text{poly}(n)$  bits (which are “**unpredictable**”.)

# Next-bit Unpredictability

Experiment NBP:

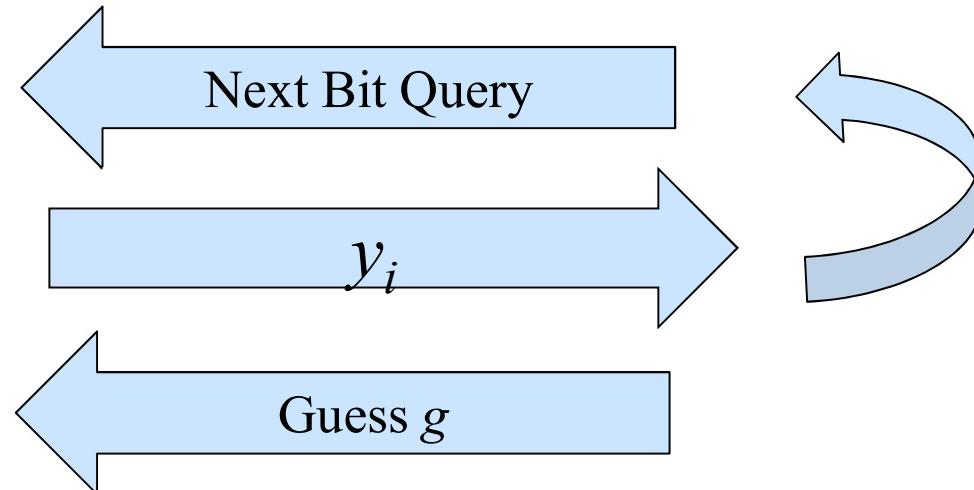


1. Pick  $s \in \{0, 1\}^n$ .
2. Let  $y = G(s)$  and  $i = 1$



- Send  $y_i$
- $i = i + 1$

Output **SUCCESS** if:



- $i \leq m$
- $y_i = g$

We say that  $G : \{0, 1\}^n \rightarrow \{0, 1\}^{\ell(n)}$  is a pseudo-random generator, if for every PPT bit-predictor  $A$ ,

$$\Pr[\text{Experiment} - \text{NBP}(n) \text{ SUCCEEDS}] \leq \frac{1}{2} + \text{negl}(n)$$

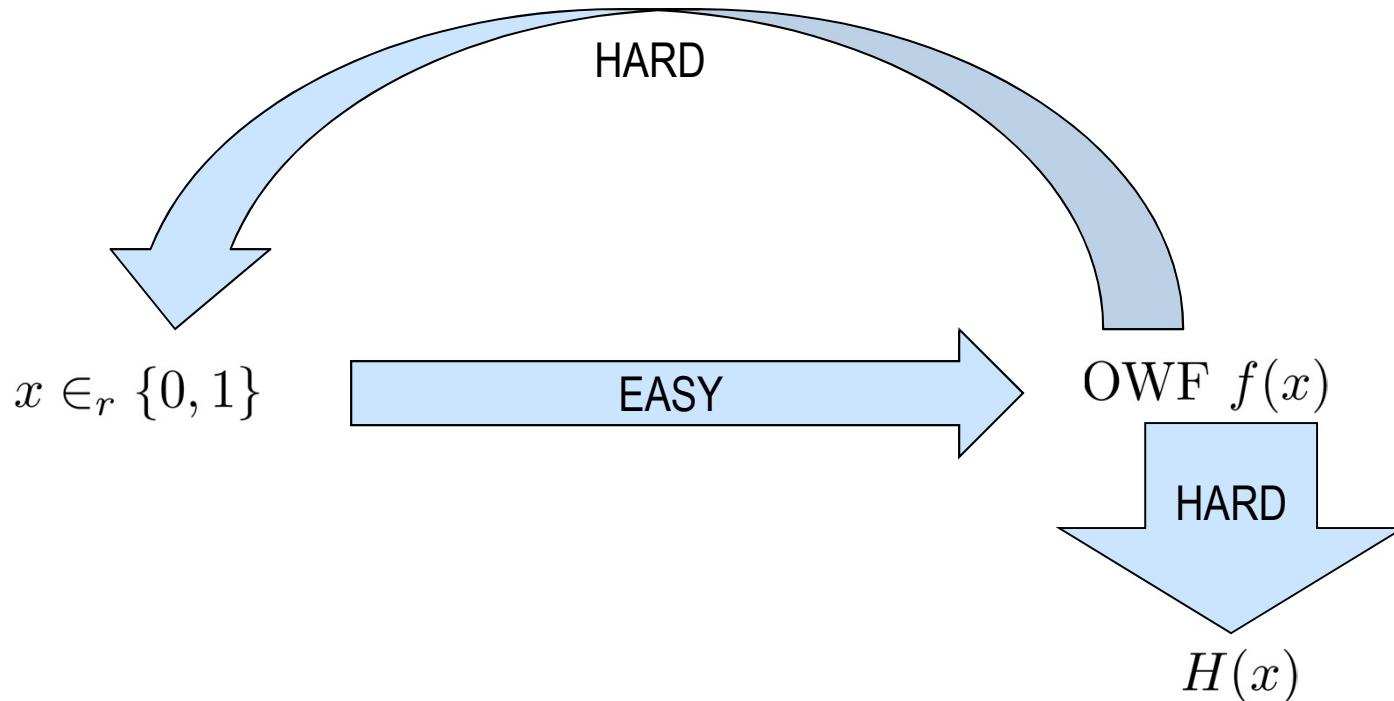
# Discrete Logarithm Assumption

- Let  $\mathbb{Z}_p$  is the field modulo  $p$  for a odd prime  $p$ . Let  $\mathbb{Z}_p^*$  be the multiplicative group.
- Let  $g$  be a generator of the group.

Recall the statement of the Discrete Logarithm Assumption:  
For any PPT  $A$ , there exists a negligible function  $\eta()$ , such that:

$$\Pr[p, g \leftarrow \text{Gen}_n; x \leftarrow \mathbb{Z}_p^* : A(p, g, g^x \bmod p) = x] \leq \eta(n)$$

# Hard-core Predicate



A predicate  $H()$  is hard-core for a function  $f$ , if for any PPT adversary  $A$ , there exists a negligible function  $\eta()$  such that:

$$\Pr[x \xleftarrow{\$} \{0, 1\}^n : A(1^n, f(x)) = H(x)] \leq \frac{1}{2} + \eta(n)$$

# Hard-core Predicate For DLog

Let  $H(x) = \{0, \text{ if } x < p/2 \text{ and } 1 \text{ otherwise}\}.$

**Lemma 1.**  $H()$  is hard-core for the OWP  $f()$  defined by  $f(x) = g^x$ . Informally, given  $g^x$  (chosen appropriately),  $H(x)$  is unpredictable.

Some facts about squares in  $\mathbb{Z}_p^*$ :

1.  $x$  is even iff  $a = g^x$  is a square.
2.  $a$  is a square iff  $a^{\frac{(p-1)}{2}} = 1$
3. If  $a$  is a square, it has two distinct square roots:  $r_1 = g^{x/2}; r_2 = g^{x/2 + \frac{(p-1)}{2}}$ .

Observe that  $H(x/2) = 0$  and  $H(x/2 + (p-1)/2) = 1$ .

# Hard-core Predicate For DLog

Let  $H(x) = \{0, \text{ if } x < p/2 \text{ and } 1 \text{ otherwise}\}$ .

**Lemma 1.**  $H()$  is hard-core for the OWP  $f()$  defined by  $f(x) = g^x$ . Informally, given  $g^x$  (chosen appropriately),  $H(x)$  is unpredictable.

Suppose  $\exists$  a predictor  $D$  for the hard-core bit, then we will use it to break DLog.

1.  $D$  can be used to distinguish  $r_1$  from  $r_2$ .
2. Given  $y = g^x$ , find the last bit of  $x$ . (Simply raise it to  $\frac{(p-1)}{2}$  to check whether it is a square. If it is, then last bit is 0.) If last bit is 1, then divide by  $g$  to make the bit 0.
3. Now,  $y$  is a square. Take its' square root (easy to do) and get  $r_1$  using  $D$ .
4. This is the same as  $y$  except that the corresponding  $x$  value is right-shifted by one (the bit that came out).
5. Repeat to recover all the bits one-by-one.

# Blum Micali PRG

Let  $H(x) = \{0, \text{ if } x < p/2 \text{ and } 1 \text{ otherwise}\}.$

Let  $x_1 = x, x_2 = g^{x_1}, \dots, x_n = g^{x_{n-1}}.$

$G(x) = H(x_n), H(x_{n-1}), \dots, H(x_2), H(x_1).$

**Theorem 1.** *Under DLOG,  $G()$  is a PRG.*

*Proof.* Suppose there is a next-bit predictor A. Then we will use it to predict a hard-core bit. (Which one? Pick any at random.)  $\square$

# Computational Indistinguishability

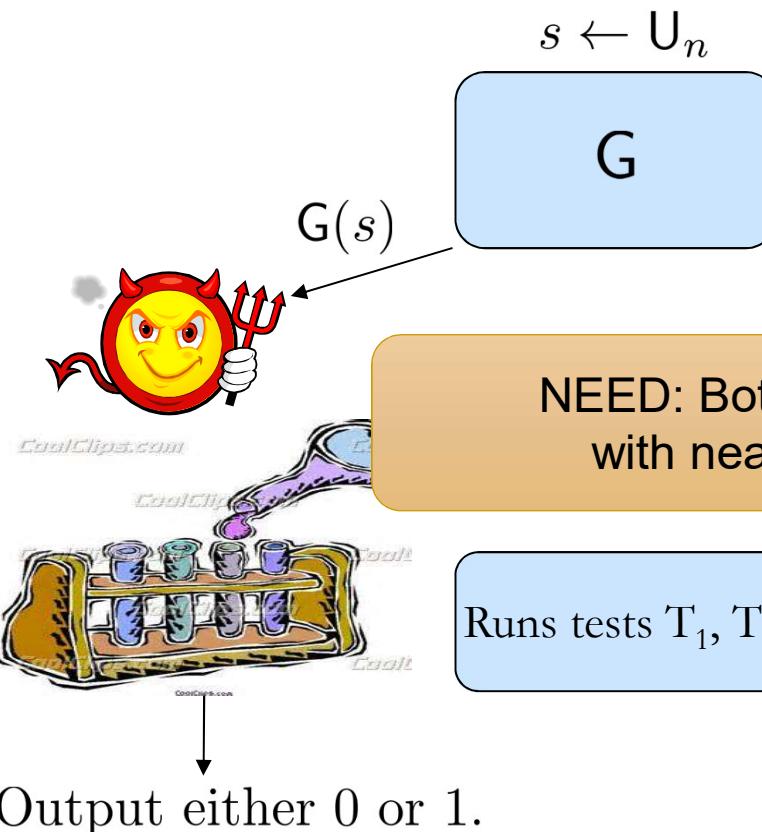
---

TFC

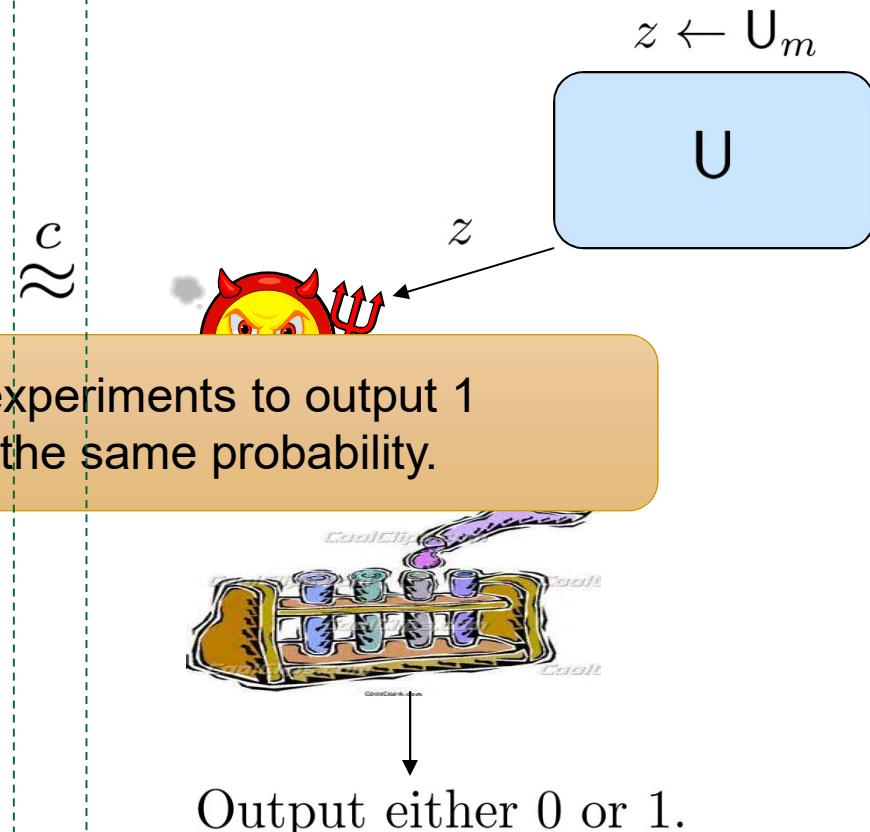
11/9/2017

# Formalizing via Statistical Tests

Experiment  $\text{EXP}_{\text{PR}}$ :



Experiment  $\text{EXP}_{\text{R}}$ :



# Main Theorem

- **Recall:** We say  $G$  is a pseudo-random generator if it satisfies the definition of next-bit unpredictability.
- **Today:**  $G$  is a PRG iff it fools all statistical tests.

Proof (Easy Part):

$G$  fools all Statistical Tests  $\Rightarrow$  NB Unpredictable

- Assume for the sake of contradiction, that  $G$  is not a PRG. In particular, it doesn't satisfy next bit unpredictability.
- Let NBP be a next bit predictor for  $G$ .
- We will use NBP to build a statistical test  $T$  which  $G$  will not fool.

# Proof: Indistinguishability implies PRG

Statistical Test T:

On input  $y$ , does as follows:

- Runs NBP feeding it bits of  $y$  in order.
- If NBP halts and outputs the correct “next bit”, then output 1. Else output 0.

$$\Pr[\text{Exp}_{\text{PR}} \rightarrow 1] = \frac{1}{2} + \mu(n)$$

$$\Pr[\text{Exp}_{\text{R}} \rightarrow 1] = \frac{1}{2}$$

$$\Pr[\text{Exp}_{\text{PR}} \rightarrow 1] - \Pr[\text{Exp}_{\text{R}} \rightarrow 1] = \mu(n)$$

# Proof: PRG implies Indistinguishability

- For the sake of contradiction, suppose that  $G$  is next-bit unpredictable.
- Also, suppose that there exists a statistical test  $T$  which  $G$  doesn't fool.
- Then we will use  $T$  to obtain a contradiction by building a next-bit predictor.

$\text{Exp}_{\text{PR}} : y_1, \dots, y_{i-1}, y_i, y_{i+1} \dots y_m$

~~|||~~ (Via  $T$ )

$\text{Exp}_{\text{R}} : r_1, \dots, r_{i-1}, r_i, r_{i+1}, \dots, r_m$

# Proof: PRG implies Indistinguishability

A Hybrid Argument:

$(\text{Exp}_R) \text{ Exp}_0 : r_1, r_2, \dots, r_{i-1}, r_i, r_{i+1}, \dots, r_m$

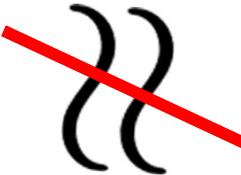
$\text{Exp}_1 : y_1, r_2, \dots, r_{i-1}, r_i, r_{i+1}, \dots, r_m$

○

○

○

$\text{Exp}_i : y_1, \dots, y_{i-1}, y_i, r_{i+1}, r_{i+2}, \dots, r_m$



(Via T)

$\text{Exp}_{i+1} : y_1, \dots, y_{i-1}, y_i, y_{i+1}, r_{i+2}, \dots, r_m$

○

○

○

$(\text{Exp}_{PR}) \text{ Exp}_m : y_1, \dots, y_{i-1}, y_i, y_{i+1}, y_{i+2}, \dots, y_m$

# Proof: PRG implies Indistinguishability

$\text{Exp}_i : y_1, \dots, y_{i-1}, y_i, r_{i+1}, r_{i+2}, \dots, r_m$

$\text{Exp}_{i+1} : y_1, \dots, y_{i-1}, y_i, y_{i+1}, r_{i+2}, \dots, r_m$

~~≈~~

(Via T)

Hope: Use T to build predictor for  $y_{i+1}$ .

NBP :

1. Select a random  $g \leftarrow \{0, 1\}$ .
2. Select a random  $r \leftarrow \{0, 1\}^m$ .
3. Set  $z = [y]_1^i g [r]_{i+2}^m$   
(where it gets  $[y]_1^i$  by requesting the first  $i$  bits of PRG output.)
4. Run  $T(z)$ . If  $T(z) = 1$ , then output  $b = g$ , else output  $b = 1 - g$ .

# Proof: Indistinguishability implies PRG

$$\Pr[b = y_{i+1}] = \Pr[T(z) = 1 \wedge y_{i+1} = g] + \Pr[T(z) = 0 \wedge y_{i+1} = 1 - g].$$

Let  $z_1$  be  $[y]_1^i \ y_{i+1} \ [r]_{i+2}^m$ .

Let  $z_2$  be  $[y]_1^i \ \overline{y_{i+1}} \ [r]_{i+2}^m$ .

$$\begin{aligned}\Pr[b = y_{i+1}] &= \Pr[T(z_1) = 1 \wedge g = y_{i+1}] + \Pr[T(z_2) = 0 \wedge g = 1 - y_{i+1}] \\ &= \frac{1}{2} \left( \Pr[T(z_1) = 1] + \Pr[T(z_2) = 0] \right) \\ &= \frac{1}{2} + \frac{1}{2} \left( \Pr[T(z_1) = 1] - \Pr[T(z_2) = 1] \right)\end{aligned}$$

# Proof: Indistinguishability implies PRG

$$\Pr[\text{Exp}_i \rightarrow 1] = \frac{1}{2} \left( \Pr[T(z_1) = 1] + \Pr[T(z_2) = 1] \right)$$

$$\Pr[\text{Exp}_{i+1} \rightarrow 1] = \Pr[T(z_1) = 1]$$

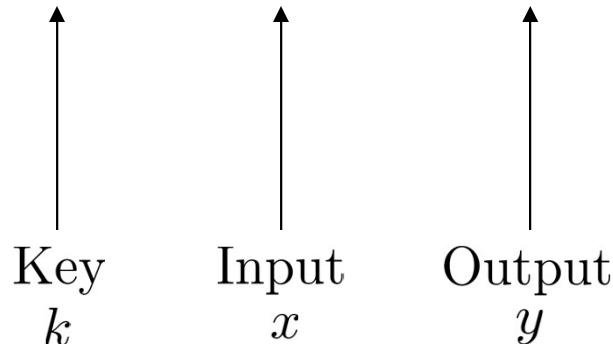
Subtracting,

$$\begin{aligned} \frac{1}{2} \left( \Pr[T(z_1) = 1] - \Pr[T(z_2) = 1] \right) &= \Pr[\text{Exp}_{i+1} \rightarrow 1] - \Pr[\text{Exp}_i \rightarrow 1] \\ &= \frac{\mu(n)}{m} \quad \text{(Non-negligible, by assumption} \\ &\quad \text{+ poly stretch)} \end{aligned}$$

$$\begin{aligned} \Pr[b = y_{i+1}] &= \frac{1}{2} + \frac{1}{2} \left( \Pr[T(z_1) = 1] - \Pr[T(z_2) = 1] \right) \quad \text{(From previous slide)} \\ &= \frac{1}{2} + \frac{\mu(n)}{m} \end{aligned}$$

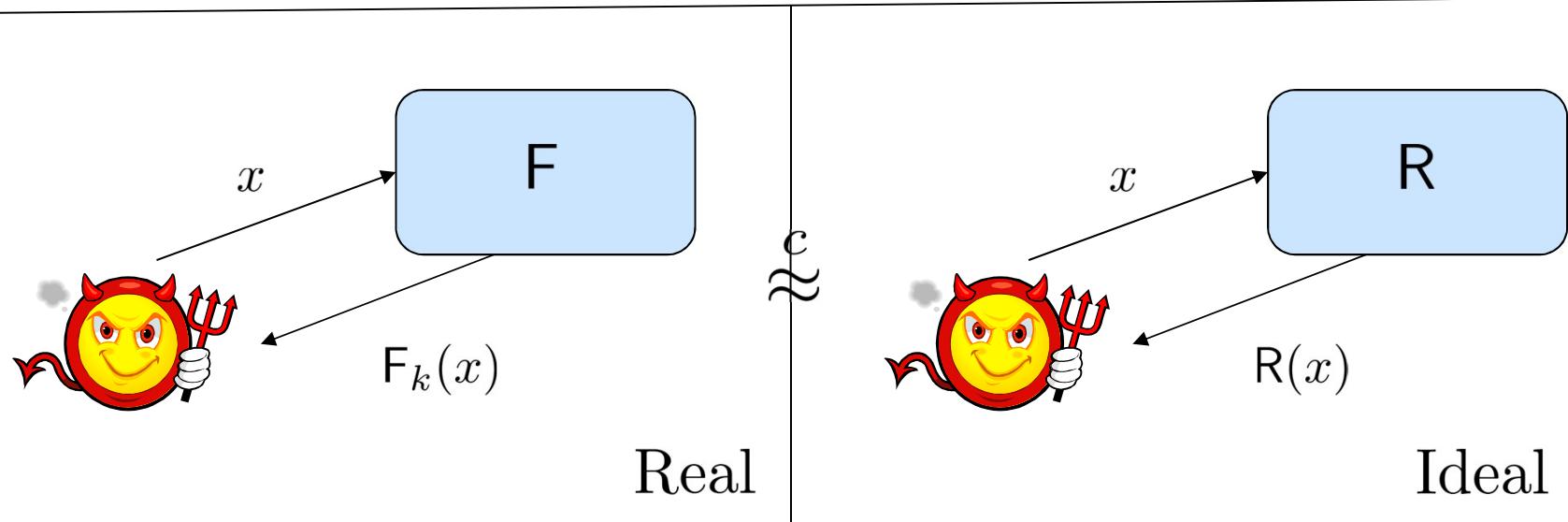
# PseudoRandom Functions [GGM86]

$$F : \{0, 1\}^n \times \{0, 1\}^u \rightarrow \{0, 1\}^n$$



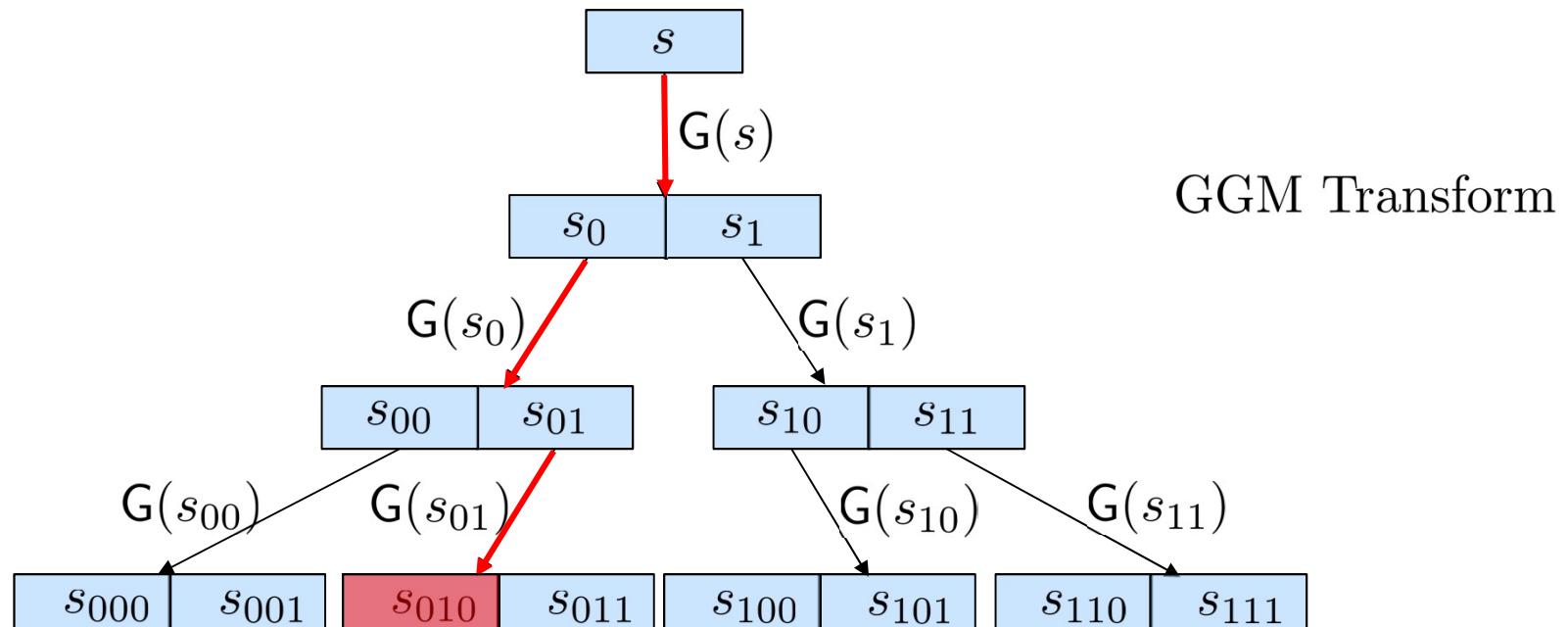
$$\begin{aligned} |k| &= n \\ |x| &= u \\ |y| &= n \end{aligned}$$

Informally: “stretches” random bits from  $n$  bits to  $\exp(n)$  bits



# PRFs from PRGs [GGM86]

$\mathsf{F} : \{0, 1\}^n \times \{0, 1\}^u \rightarrow \{0, 1\}^n$  from  $\mathsf{G} : \{0, 1\}^n \rightarrow \{0, 1\}^{2n}$



$$\mathsf{F}(x = x_1 x_2 \dots x_u) = s_{x_1 x_2 \dots x_u}$$

E.g. :  $\mathsf{F}(010) = s_{010}$