
Z model of FreeRTOS

1 Z - Modelling Language
The Z notation is a formal specification language used for describing and mod-
elling computing systems. Z notation was proposed by Abrial et al in 1974. Tools
are available for simulation and validation of the model specified in Z. The Z no-
tation is based upon set theory and mathematical logic. The mathematical logic is
a first-order predicate calculus.

Mathematical objects and their properties can be collected together in schemas
- patterns of declarations and constraints [2]. The schema language can be used
to describe the state of a system, and the ways in which a state may change. The
state of the system can be modelled in Z on a component basis in a bottom up
fashion.

A schema specification modelling a component of the system state includes
two parts - declaration part which specifies the fields or variables of the compo-
nent (for example the declaration part of the schema Bag in Figure 1(a) specifies
elements as a set of natural numbers) and a constraint part which specifies the
invariants on the component (for example the constraint part of the schema Bag
in Figure 1 specifies that each member in the set elements is either 1 or 2).

A state change in the system is modelled with a schema called operation
schema. An operation schema specifies the state change w.r.t. the schema mod-
elling the system state. The state change is specified as a relation between the
pre-state and post-state of the schema modelling the system state. We call the

Bag

elements : PN

∀ coin : N •
coin ∈ elements =⇒ coin = 1 ∨ coin = 2

(a)

Bag Init

Bag ′

elements ′ = ∅

(b)

Figure 1: (a) Z schema modelling the object Bag and (b) schema to initialise Bag.

1

schema modelling the system state as the operand schema for the concerned op-
eration schema.

The structure of an operation schema is similar to an operand schema where
the declaration part declare the pre and post state of the operand schema and the
constraint part specify the state change w.r.t. the operation. The state change is
specified as a relation between pre and post states of the operand schema w.r.t. the
concerned operation. A predicate defining the relationship between the pre-state
and post state of a field is called a before-after predicate.

According to the convention, unprimed variables of the operand schema rep-
resent the pre state and the primed variables represent the post state w.r.t. the
operation. If S is the name of the operand schema, then S and S ′ in the declara-
tion part of an operation schema declare the pre and post state respectively.

A Z schema modelling a component in the system needs to have an initial-
ization. This is done by an operation schema. Initialization gives a valuation to
the fields of the operand schema in the initial state of the system. Initialization
schema do not require a pre state declaration as there is no state before initializing
the system. Figure 1(b) shows the initialization for the component schema Bag .
It specifies that in the initial state the set elements is empty.

insertToBag

∆Bag
coinIn? : N

coinIn? = 1 ∨ coinIn? = 2
elements ′ = elements ∪ {coinIn?}

(a)

deleteFromBag

∆Bag
coinOut! : N

coinOut! ∈ elements
elements ′ = elements \ {coinOut!}

(b)

Figure 2: (a) Z schema specifying insertion operation for Bag and (b) Z schema
specifying deletion operation for Bag.

The operation schema in Figure 2(a) specifies the insertion operation sup-
ported by Bag. There is a shortcut in Z to declare the pre and post state for an
operation schema in a single step. If S is the name of the operand schema, then
∆S declares both the pre-state and post-state for the operation.

operation schema includes (in general) a pre-condition in addition to the before-
after predicates in the constraint part. A pre-condition is a predicate on the pre-
state (unprimed variables) and input. In insertToBag the pre-condition demands
that the number to be inserted is either 1 or 2.

According to the convention, field declaration in which a field name ending in
?/! represents input/output to the operation schema.

The before-after predicate of the operation schema in Figure 2 (a) specifies

2

that in the post state of the system, the set elements will contain the new item
(coinIn?) in addition to the elements present in the pre-state.

The post state of an operation is guaranteed to satisfy the before-after predi-
cates if the operation is invoked within the precondition of the operation. The post
state is undefined if the operation is invoked outside its precondition.

2 Refined Z Model M2 for the portable layer of FreeR-
TOS.

The initial Z model M1 is a deterministic model capturing the requirements of
the scheduler related operations in the portable layer of FreeRTOS. Even though
the model M1 is very close to the existing implementation, we need to refine this
model into an Z model say M2 such that there is a one-to-one correspondence
between the Z model and the existing implementation in terms of the data struc-
tures and APIs. Such a correspondence is mandatory for applying our theory of
refinement.

The dissimilarities of the model M1 with the existing implementation is given
below.

1. The set of delayed tasks is modeled as a singe list in M1 while it is im-
plemented as two lists viz. pxDelayedTaskList and pxOverflowDelayed-
TaskList in the existing implementation.

2. The blocked tasks are modeled in M1 as a priority queue and the task are
maintained in the non-increasing order of priority values. On the other hand
blocked lists are maintained in the non-decreasing order of inverted priority
values. This is to share the same linked list operation for different priority
queues.

We develop an Z model M2 from M1 to handle the above mentioned dissimi-
larities. The basic changes/additions made to the model M1 to get the model M2

is given below.

1. The set of delayed task is modeled as two task lists in M2 viz. delayedZ2
and oDelayed. In fact the single list delayed in M1 is divided into two lists
in M2. The prefix of the list delayed in M1 with value of time to awake less
than or equal to maxNumVal is the list delayedZ2 in M2 and its suffix is the
list oDelayed in M2.

2. The value of time to awake is represented in the modulo (maxNumVal + 1)
system in oDelayed of M2 while the corresponding time to awake value is
(maxNumVal + 1) more in the suffix of the list delayed in M1.

3

3. The set of blocked tasks is modeled as a priority queue and the tasks are
maintained in the non-decreasing order of inverted priority values. Even
though the invariant for ensuring this order is equivalent to the correspond-
ing invariant in M1, writing it in the new form supports easy verification of
the refinement conditions in this regard.

The heart of the portable layer of FreeRTOS is the scheduler related data struc-
tures and associated operations. FreeRTOS employs priority based scheduling
policy and the user can configure the scheduler as preemptive or non-preemptive.
Task is the pivotal object in FreeRTOS. A task can be in one of the states shown
in Figure 3.

RunningPreempt

v
T

a
sk

S
u

sp
en

d
()

Suspended

v
T

a
sk

S
u

sp
en

d
()

v
T

a
sk

R
es

u
m

e(
)

Delayed

sh
ar

ed
 r

es
ou

rc
e

R
eq

u
es

ti
n
g

−

vT
as

k
D

el
ay

()

R
es

.
ev

en
t

o
r

d
el

a
y

O
v

er

R
es

.
ev

en
t

Ready but−

not running

Schedule

Ready

Blocked

Figure 3: Different states for tasks in FreeRTOS.

The maximum time to wait for a resource is always an argument to the API
for requesting the allocation of a shared resource. If the requested resource is not
available, the requesting task will be added to the waiting queue of the resource
as well as to the queue of delayed tasks. Such a blocked task will be moved back
to ready either when the resource becomes available (resource event) or when the
maximum time to wait expires (delayOver).

Following Z construct defines the type, TASK which is used to declare various
tasks in the model and a free type BOOL with two values/constants in the domain
- TRUE and FALSE.

[TASK]
BOOL ::= TRUE | FALSE

4

FreeRTOS uses a set of configurable macros which defines some system level
properties like the maximum priority, type of the scheduler (preemptive or not)
etc. The implementation of the FreeRTOS scheduler assumes that there is always
a ready task to schedule. To ensure this a special task called idle is created when
the scheduler is started. There are some useful operations which can be performed
by the idle task like freeing the resources allotted to the deleted tasks.

Following Z construct defines the global constants idle and null modelling the
idle task and special task which is assumed as the running task until the scheduler
is started.

idle : TASK
null : TASK

Parameter

maxPrio : N
maxNumValue : N
preemption : BOOL

maxPrio > 0
maxNumValue > 0

(a)

Init Parameter

Parameter ′

mp? : N
domMax? : N
preempt? : BOOL

mp? > 0
domMax? > 0
maxPrio′ = mp?
maxNumValue′ = domMax?
preemption ′ = preempt?

(b)

Figure 4: (a) Z schema,Parameter modelling configurable macros in FreeRTOS
and (b) Z schema to initialise Parameter .

We want to do a parameterized verification of FreeRTOS w.r.t. the constants
defined in the files “FreeRTOSConfig.h” and “portmacro.h”. Hence we model
these constants as global variables which can be initialised to any value in the
respective domain. Initial values for these variables are specified as arguments to
the operation schema to initialise the system.

The schema in Figure 4(a) models the configurable macros in FreeRTOS.
Where maxPrio, maxNumValue and preemption represent the maximum priority
value, the maximum numeric value in the domain for the objects like system clock
(tickCount) and the scheduling policy respectively in FreeRTOS. The value for
maxNumValue can be initialised to one of the values given in the constraint section
depending on the maximum value supported by the concerned type in the target
machine. The schema in Figure 4(b) specifies the initialization for Parameter. The
initial values are specified as parameters to this schema. No operation schema in

5

this model modifies any of these variables after initialisation and is assured by the
predicates in the operation schemas.

In the existing implementation of FreeRTOS, a task can have priority in the
closed interval [0,maxPrio − 1]. But for easy specification , a task is assumed to
have priority in the closed interval [1,maxPrio].

TaskData

tasks : PTASK
running task : TASK

idle ∈ tasks
null ∈ tasks
running task ∈ tasks

(a)

Init TaskData

TaskData ′

tasks ′ = {idle,null }
running task ′ = null

(b)

Figure 5: (a) Z schema,TaskData modelling the task set in the system and (b) Z
schema to initialise TaskData.

Schema in Figure 5(a) models the set of all tasks in the system. This schema is
corresponding to the Task Control Block in FreeRTOS. In the declaration section,
tasks represents the set of all tasks and running task represents the task in execu-
tion. Constraint section specify that idle, null and running task are valid tasks in
the system. The initialization schema for TaskData in Figure 5(b) specifies that
when the system is initialized, the set tasks is the set{idle,null} and running task
is null.

Figure 6 shows generic definition schemas which can be used to extract the
sequence of first elements and sequence of second elements respectively from a
given sequence of pairs (TASK × N). For example

seqFirst(〈(task1, 1), (task2, 2), (task3, 3)〉) =〈task1, task2, task3〉 and
seqSecond (〈(task1, 1), (task2, 2), (task3, 3) =〈1, 2, 3〉.

seqFirst : seq(TASK × N)→ seqTASK

∀ s : seq(TASK × N) • seqFirst s = (λ i : dom s • s(i).1)

(a)

seqSecond : seq(TASK × N)→ seqN

∀ s : seq(TASK × N) • seqSecond s = (λ i : dom s • s(i).2)

(b)

Figure 6: Generic definition schemas (a) to find a sequence of first elements from a
given sequence of pairs (TASK ×N) and (b) to find a sequence of second elements
from a given sequence of pairs (TASK × N).

6

FreeRTOS maintains various task lists to implement the different states for
tasks shown in Figure 3. The state ready is implemented as a set of FIFO task lists
indexed by priority. In FreeRTOS, running task is the last task in the highest index
nonempty ready queue. The state blocked is implemented as priority queue and the
order is determined by priority. The state delayedZ2 is implemented as priority
queue and the order is determined by the time to awake. The state suspended is
implemented as an unordered task list.

ListData

ready : seq (iseq TASK)
blocked : iseq TASK
delayedZ 2 : seq TASK × N
oDelayed : seq TASK × N
suspended : PTASK

(rana/(ran ready)) ∩ (ran blocked ∪ ran seqFirst(delayedZ 2) ∪ ran seqFirst(oDelayed) ∪ suspended) = ∅

∀ i , j : dom ready | i , j • (ran ready(i) ∩ ran ready(j)) = ∅

(suspended ∩ (ran seqFirst(delayedZ 2) ∪ ran seqFirst(oDelayed))) = ∅

(ran seqFirst(delayedZ 2) ∩ ran seqFirst(oDelayed)) = ∅

∀ i , j : dom delayedZ 2 | (i < j) • delayedZ 2(i).2 ≤ delayedZ 2(j).2
∀ i , j : dom oDelayed | (i < j) • oDelayed(i).2 ≤ oDelayed(j).2
∀ i , j : dom delayedZ 2 | (i , j) • delayedZ 2(i).1 , delayedZ 2(j).1
∀ i , j : dom oDelayed | (i , j) • oDelayed(i).1 , oDelayed(j).1
dom ready = 1 · ·maxPrio

Figure 7: Z schema,ListData modelling the task lists in the system.

Schema in Figure 7 models different high level tasks lists in the system. The
state running is modelled using the field running task in the schema TaskData.
The set of ready tasks in the system, ready is modelled as a sequence of injective
sequences. First injective sequence in ready is the sequence of tasks with priority
1, second sequence in ready is the sequence of tasks with priority 2 and so on.
Each sequence is maintained in FIFO order.

In Z, iseq represents a sequence in which no element appears more than once.
Now the ready list is modelled very similar to the array of lists in FreeRTOS
implementation.

Each resource is associated with one or two waiting queues of tasks. The state
of a task is said to be blocked when it is present in any of these waiting queues.
We use a single list named blocked to model the task state - blocked. The task list,
blocked is also modeled as an injective sequence of tasks. The sequence blocked
will be maintained in the non-decreasing order of inverted priority values.

The delayed task lists, delayedZ2 and oDelayed are modeled as sequences of
pairs where the first element of a pair is a task ti which is to be delayed and the
second element is the time to awake for ti . These sequences are maintained in the
non-decreasing order of time to awake.

7

The set of suspended tasks, suspended is modeled as a set of tasks.
In Z, a sequence of type T is a function from the sub set of natural numbers

to T . That is a sequence is a set of pairs of the form (i , x), where i ∈ N and
x ∈ T meaning that x is the i th element in the sequence. Therefore the range of
any sequence s of type T is a subset of elements of T present in s and its domain
is the set of first n natural numbers (1 · ·n), where n is the cardinality of s .

In Z, a/ is the operator for concatenating a finite set of sequences of the same
type. Let s be a sequence in Z, then head (s) represents the first element in s and
tail (s) represents the sequence s ′ such that s = head (s) · s ′. Let x be a tuple of
arity n in Z, then x .i , 1 ≤ i ≤ n represents the ith element of x .

The constraint part of the schema in Figure 7 represents some interesting prop-
erties in FreeRTOS. For instance, the first predicate specifies that if a task is in
ready state, it cannot be in any of the other states. Other constraints represent
similar properties.

In the Z terminology the operator • has different meaning depending on the
quantifier for bound variable [2].

∀ x : T | p • q ⇐⇒ for all x in T if x satisfies p then q

∃ x : T | p • q ⇐⇒ there exists an x in T such that x satisfies both p and q

Init ListData

ListData ′

reday ′(1) = 〈idle〉
∀ i : dom ready | (i , 1) • ready ′(i) = 〈〉

blocked ′ = 〈〉

delayedZ 2′ = 〈〉

oDelayed ′ = 〈〉

suspended ′ = ∅

Figure 8: Z schema to initialise ListData.

Schema in Figure 8 specifies initialisation for ListData.
Schema in Figure 9(a) models the priorities of tasks in the system. Each task

is having two priority values, the original priority and the inherited priority repre-
sented by the functions basePriority and priority respectively. Priority inheritance
is a scheme used to reduce the effect of priority inversion in FreeRTOS [1]. These
two functions are same if priority inheritance is not used. The value of a task un-
der this function is its priority. Schema in Figure 9(b) specifies initialisation for
PrioData.

The system clock is represented by an unsigned integer in FreeRTOS imple-
mentation. The value of this variable is initialised to 0 by the function to start

8

PrioData

priority : TASK 7→ N
basePriority : TASK 7→ N

(min(ran priority) ≥ 1) ∧ (max (ran priority) ≤ maxPrio)
(min(ran basePriority) ≥ 1) ∧ (max (ran basePriority) ≤ maxPrio)

(a)

Init PrioData

PrioData ′

priority ′ = {idle 7→ 1}
basePriority ′ = {idle 7→ 1}

(b)

Figure 9: (a) Z schema,PrioData modelling the priorities of tasks in the system
and (b) Z schema to initialise PrioData.

ClockData

tickCount : N

(a)

Init ClockData

ClockData ′

tickCount ′ = 0

(b)

Figure 10: (a) Z schema,ClockData modelling the system clock in FreeRTOS and
(b) Z schema to initialise ClockData.

the scheduler and is incremented in a function which is called from the ISR for
servicing the tick interrupt. Figure 10 shows the schema and its initialisation for
modelling the system clock in FreeRTOS.

Schema in Figure 11 combines the different component schemas to model the
aspects of tasks in the system. According to the convention, there exists a single
system level schema on which the operations are defined. The field topReadyPri-
ority represents the highest priority among ready tasks and the field scheduler-
Running represents the status of the scheduler (running or not).

In the constraint part, a number of interesting properties are specified. Exam-
ples include “running task is at the head of the highest priority nonempty ready
sequence”, “priority is defined for all valid tasks in the system”, “time to awake
for each delayed tasks is greater than the current value of clock” etc. Note that
the specification of these properties refer to fields of different sub schemas de-
fined above and hence can only be specified in a schema which combines such
sub schemas.

There is an API to get the current clock value. This API enables the user to
implement periodic tasks with the help of another API called vTaskDelayUntil.
The application program can support only bounded numbers. Hence the clock
value (tickCount) in the model is bounded by the variable maxNumVal which is
assumed as the maximum numeric value in the selected domain. Note that the

9

Task

Parameter
TaskData
ListData
PrioData
ClockData
topReadyPriority : N
schedulerRunning : BOOL

idle ∈ rana/(ran ready)
topReadyPriority ∈ dom ready
ready(topReadyPriority) , 〈〉
∀ i : dom ready | ready(i) , 〈〉 • i ≤ topReadyPriority
schedulerRunning =⇒ (running task = head ready(topReadyPriority))
(schedulerRunning = FALSE) =⇒ running task = null
tasks = (rana/(ran ready)) ∪ ran blocked ∪ ran seqFirst(delayedZ 2) ∪ ran seqFirst(oDelayed) ∪ suspended ∪ {null }
null < ((rana/(ran ready)) ∪ ran blocked ∪ ran seqFirst(delayedZ 2) ∪ ran seqFirst(oDelayed) ∪ suspended)
dom priority = tasks \ {null }
dom basePriority = tasks \ {null }
∀ tcn : ran delayedZ 2 • tcn .2 > tickCount
∀ tcn : ran oDelayed • tcn .2 ≤ tickCount
max (ran seqSecond(delayedZ 2)) ≤ maxNumValue
max (ran seqSecond(oDelayed)) ≤ maxNumValue
∀ t : tasks ,∀ i : dom ready | t ∈ ran ready(i) • priority(t) = i
∀ i , j : dom blocked | i < j • (maxPrio − priority(blocked(i))) ≤ (maxPrio − priority(blocked(j)))
tickCount ≤ maxNumValue
∀ i : dom ready | #ready(i) ≤ maxNumValue
#blocked ≤ maxNumValue
#delayedZ 2 ≤ maxNumValue
#oDelayed ≤ maxNumValue
#suspended ≤ maxNumValue

Figure 11: Z schema,Task which combines sub schemas modelling task related
data objects. When compared to the model M1 the invariant regarding the or-
dering in blocked list is rewritten in accordance with the existing implementation
FreeRTOS. But the new invariant is equivalent to the one in model M1.

user can set the value of maxNumVal by an argument to initialise the system. In
our Z model tickCount cycles in the interval [0,maxNumVal].

Even though the task lists are implemented as liked lists in FreeRTOS, there is
a field called uxNumberOfItems in the list header which represents the number of
nodes present in the list. Hence the maximum length of any task list is bounded
by the maximum numeric value in the domain for this variable in the header.
Therefore length of every task list in our model is bounded by maxNumVal.

Reference to a schema S1 included in another schema S2 will be expanded to
the definition of S1 similar to macro in programming languages like C.

The schema to initialise Task is given in Figure 12. The simulation tool for Z,
ProZ needs a single initialisation schema with name Init to initialise the system.
The Init in the model combines the initialisation schemas for sub schemas in the

10

Init

Task ′

running! : TASK

Init Parameter
Init TaskData
Init ListData
Init PrioData
Init ClockData
topReadyPriority ′ = 1
schedulerRunning ′ = FALSE
running! = null

Figure 12: Schema to initialise Task ..

model.

StartScheduler

∆Task
running! : TASK

schedulerRunning = FALSE
ready(topReadyPriority) , 〈〉
ΞParameter
tasks ′ = tasks
running task ′ = head ready(topReadyPriority)
ΞListData
ΞPrioData
tickCount ′ = 0
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = TRUE
running! = running task ′

Figure 13: Operation schema StartScheduler specifying vTaskStartScheduler
API in FreeRTOS.

FreeRTOS provides a function vTaskStartScheduler to activate the scheduler.
Its functionality includes creating the idle task, initialising global resources etc.
It schedules the longest waiting highest priority task. The convention is that the
application creates a number of tasks and then calls vTaskStartScheduler, each
task is assumed to be running in an infinite loop.

The APIs in FreeRTOS are specified as operation schemas in Z. The oper-
ation schemas agree on the type (input and output) with the corresponding API
operation in FreeRTOS. The running task is a global variable (pxCurrentTCB) in
the existing implementation of FreeRTOS. Thus every API operation returns the
currently running task by this global variable. Other global resources like task

11

lists are also implemented as global variables. Each of the operation schema in
our model includes an output field named running! which represents the currently
running task in the post state of the corresponding operation.

Schema in Figure 13 specifies the API operation vTaskStartScheduler in FreeR-
TOS. Because of the requirement of the simulation tool ProZ, the initialisation
of different data structures included in the definition of vTaskStartScheduler in
FreeRTOS is captured in the system initialisation schema Init. If S is a schema
in Z, then the expression ΞS in an operation schema is a short form for x ′ = x ,
where x is an arbitrary field declared in S .

An operation schema in Z should explicitly specify the relationship between
the pre and post states for each field in the operand schema. Therefore if a field
x do not changes its value under the operation, it must be specified as x ′ = x .
Otherwise, x is allowed to take any value from its domain in the post state w.r.t.
the operation.

CreateTaskAndAddToReadyQueue1

∆Task
taskIn? : TASK
prio? : N
running! : TASK

schedulerRunning = FALSE
prio? ∈ dom ready
taskIn? < tasks
#ready(prio?) < maxNumValue
ΞParameter
tasks ′ = tasks ∪ {taskIn?}
running task ′ = running task
ready ′ = ready ⊕ { (prio? 7→ ready(prio?) a 〈taskIn?〉) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = priority ⊕ {(taskIn? 7→ prio?)}
basePriority ′ = priority ⊕ {(taskIn? 7→ prio?)}
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 14: Operation schema CreateTaskAndAddToReadyQueue1 specifying
xTaskCreate API when the scheduler is not started. Here the running task is
null by an invariant in schema Task .

FreeRTOS provides a function, xTaskCreate to create a task. schemas of Fig-
ures 14, 15 and 16, specify the API operation - xTaskCreate. The functional-
ity of xTaskCreate in FreeRTOS is captured in three operation schemas in the

12

CreateTaskAndAddToReadyQueue2

∆Task
taskIn? : TASK
prio? : N
running! : TASK

schedulerRunning = TRUE
prio? ∈ dom ready
taskIn? < tasks
#ready(prio?) < maxNumValue
priority(running task) ≥ prio?
ΞParameter
tasks ′ = tasks ∪ {taskIn?}
running task ′ = running task
ready ′ = ready ⊕ { (prio? 7→ ready(prio?) a 〈taskIn?〉) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = priority ⊕ {(taskIn? 7→ prio?)}
basePriority ′ = priority ⊕ {(taskIn? 7→ prio?)}
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 15: Operation schema CreateTaskAndAddToReadyQueue2 specifying
xTaskCreate API when the task to be created has priority less than or equal to
the priority of running task.

model. This is because of the semantics of the Z language. Note that the opera-
tion schemas of Figures 14, 15 and 16 have different preconditions and different
post states depending on the respective precondition.

Suppose there are more than one schema modelling an operation in FreeRTOS,
then these schemas will be distinguished by their preconditions. For example
in the schemas of Figures 15 and 16, the priority of the task to be created with
respect to the priority of running task distinguishes the schemas for modelling
xTaskCreate. The schema in Figure 14 specifies xTaskCreate when the scheduler
is not started.

The schema operator disjunction (∨) in Z can be used to combine such schemas
to get the operation schema specifying the corresponding function implementation
in FreeRTOS. For example, CreateTask = CreateTaskAndAddToReadyQueue1∨

CreateTaskAndAddToReadyQueue2 ∨ CreateTaskAndSchedule gives the oper-
ation schema corresponding to the operation xTaskCreate in FreeRTOS.

If the priority of task to be created is greater than priority of running task, then
it goes to a higher index sequence in ready, which is now empty as specified by
an invariant in the schema Task. In Z the operator ⊕ is used to override a relation

13

CreateTaskAndSchedule

∆Task
taskIn? : TASK
prio? : N
running! : TASK

schedulerRunning = TRUE
prio? ∈ dom ready
taskIn? < tasks
#ready(prio?) < maxNumValue
priority(running task) < prio?
ΞParameter
tasks ′ = tasks ∪ {taskIn?}
running task ′ = taskIn?
ready ′ = ready ⊕ { (prio? 7→ 〈taskIn?〉) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = priority ⊕ {(taskIn? 7→ prio?)}
basePriority ′ = priority ⊕ {(taskIn? 7→ prio?)}
ΞClockData
topReadyPriority ′ = prio?
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 16: Operation schema CreateTaskAndSchedule specifying xTaskCreate
API when the task to be created has priority greater than the priority of running
task.

and it updates the relation by changing the images of those elements as specified
in the second operand to this operator.

The task creation operation adds the new task to the set tasks as well as to
the ready queue and also adds the required information to the priority functions to
represent the new task. In one case the operation schedules the newly created task
and is determined by its precondition.

FreeRTOS provides an API, vTaskDelete to delete a task. The schemas of
Figures 17 and 18 specify the deletion operation for running task.

The preconditions of the schema in Figures 17 specify that the sequence of
ready task indexed by topReadyPriority contains at least one more task in addition
to the running task. Hence this schema schedules the longest waiting task among
the other tasks in this sequence.

The precondition of the schema in Figure 18 specifies that running task is the
only task in the sequence indexed by topReadyPriority and there exists at least
one nonempty sequence indexed by a number less than topReadyPriority. Hence
this schema schedules the head of the next highest index nonempty sequence and
updates topReadyPriority to this index.

14

DeleteRunningTask1

∆Task
running! : TASK

schedulerRunning = TRUE
running task , idle
tail ready(topReadyPriority) , 〈〉
ΞParameter
tasks ′ = tasks \ {running task }
running task ′ = head tail ready(topReadyPriority)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority)) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = {running task } −C priority
basePriority ′ = {running task } −C basePriority
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 17: Operation schema DeleteRunningTask1 specifying vTaskDelete API
when there exists at least one more ready task in the sequence corresponding to
the priority of running task.

Let x be the name of a filed in the declaration part of an operation schema
S such that x is not ending with ? (input) or ! (output). Then x represents a
constraint on the state and is given in the constraint part of the schema S . For
example runnerUpPrty in schema DeleteRunningTask2 represents the index of
the second highest nonempty sequence in ready.

In both of the above cases the running task is removed from the ready queue
and the set tasks & priority functions are updated to effect the deletion.

In Z, −C is the operator to remove those pairs from a binary relation with the first
element present in the first operand to this operator. Similarly −B is the operator to
remove those pairs from a binary relation with the image (second element) present
in the second operand to this operator. Removing one or more elements from a
sequence will destroy its structure. For example if we remove the i th element, then
i is not mapped to any element. Z provides the operator squash to restructure the
resulting set of pairs to form a valid sequence by maintaining the relative order
among the elements.

The operation schemas of Figure 19 specifies the operations to delete a task
ti when ti is present in ready list or in blocked list. In both of these schemas the
given task is removed from the respective task list and the set tasks & priority
functions are updated to effect the deletion.

15

DeleteRunningTask2

∆Task
runnerUpPrty : N
running! : TASK

schedulerRunning = TRUE
running task , idle
tail ready(topReadyPriority) = 〈〉

runnerUpPrty ∈ dom ready
runnerUpPrty < topReadyPriority
ready(runnerUpPrty) , 〈〉
∀ j :∈ dom ready | ((ready(j) , 〈〉) ∧ (j , topReadyPriority)) • j ≤ runnerUpPrty
ΞParameter
tasks ′ = tasks \ {running task }
running task ′ = head ready(runnerUpPrty)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority)) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = {running task } −C priority
basePriority ′ = {running task } −C basePriority
ΞClockData
topReadyPriority ′ = runnerUpPrty
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 18: Operation schema DeleteRunningTask2 specifying vTaskDelete API
when running task is the only task in the sequence corresponding to the priority
of running task.

The operation schemas of Figure 20 specify the operations to delete a task ti
when ti is present only in delayedZ2 list or in both delayedZ2 list and blocked
lists. The filter operator (�) in Z projects a given sequence into a new sequence
in which all elements satisfies the constraint given as the second operand to �. In
both of the schemas of Figure 20, the given task is removed from the respective
task lists and the set tasks & priority functions are updated to effect the deletion.

The operation schemas of Figure 21 specify the operations to delete a task ti
when ti is present only in oDelayed list or in both oDelayed list and blocked lists.
Both of the schemas of Figure 21 remove the given task from the respective task
lists and the set tasks & priority functions are updated to effect the deletion.

The operation schemas of Figure 22 specify the operations to delete a task ti
when ti is present only in suspended list or in both suspended list and blocked
lists. In both of the schemas of Figure 22, the given task is removed from the
respective task lists and the set tasks & priority functions are updated to effect the
deletion.

In FreeRTOS if a blocking API is called by a task ti with maximum value

16

DeleteReadyTask

∆Task
taskIn? : TASK
running! : TASK

schedulerRunning = TRUE
running task , taskIn?
taskIn? , idle
taskIn? ∈ rana/(ran ready)
ΞParameter
tasks ′ = tasks \ {taskIn?}
running task ′ = running task
ready ′ = ready ⊕ { (priority(taskIn?) 7→

squash(ready(priority(taskIn?)) −B {taskIn?})) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = {taskIn?} −C priority
basePriority ′ = {taskIn?} −C basePriority
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

(a)

DeleteBlockedTask

∆Task
taskIn? : TASK
running! : TASK

schedulerRunning = TRUE
taskIn? < ran seqFirst(delayedZ 2)
taskIn? < ran seqFirst(oDelayed)
taskIn? ∈ ran blocked
taskIn? < suspended
ΞParameter
tasks ′ = tasks \ {taskIn?}
running task ′ = running task
ready ′ = ready
blocked ′ = squash(blocked −B {taskIn?})
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = {taskIn?} −C priority
basePriority ′ = {taskIn?} −C basePriority
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

(b)

Figure 19: Operation schemas DeleteReadyTask and DeleteBlockedTask speci-
fying vTaskDelete API when the task to be deleted is in ready or in blocked list
respectively.

(maxNumValue) for time to wait, then ti is added to suspended list instead of
adding it to delayedZ2 list in addition to adding ti to the waiting list (blocked) for
the resource concerned. Thus a task can be in the blocked list and delayedZ2 or
suspended list at the same time. The relationship among the task lists is governed
by the invariants in the schema ListData which disallow a task to be in some of
these lists when it is present in some other list.

In FreeRTOS if a blocking API is called by a task ti with maximum value
(maxNumValue) for time to wait, then ti is added to suspended list instead of
adding it to delayedZ2 list in addition to adding ti to the waiting list (blocked) for
the resource concerned. Thus a task can be in the blocked list and delayedZ2 or
suspended list at the same time. The relationship among the task lists is governed
by the invariants in the schema ListData which disallow a task to be in some of
these lists when it is present in some other list.

FreeRTOS provides two APIs for delaying a task. The function vTaskDe-
layUntil delays a task for a given (as an argument) number of clock ticks w.r.t. the
previous wake up time which is given as another argument. On the other hand the
function vTaskDelay delays a task for a given (as the argument) number of clock

17

DeleteDelayedTask

∆Task
taskIn? : TASK
running! : TASK

schedulerRunning = TRUE
taskIn? ∈ ran seqFirst(delayedZ 2)
taskIn? < ran blocked
ΞParameter
tasks ′ = tasks \ {taskIn?}
running task ′ = running task
ready ′ = ready
blocked ′ = blocked
delayedZ 2′ = delayedZ 2�
{tcn : ran delayedZ 2 | tcn .1 , taskIn?}

oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = {taskIn?} −C priority
basePriority ′ = {taskIn?} −C basePriority
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

(a)

DeleteDelayedAndBlockedTask

∆Task
taskIn? : TASK
running! : TASK

schedulerRunning = TRUE
taskIn? ∈ ran seqFirst(delayedZ 2)
taskIn? ∈ ran blocked
ΞParameter
tasks ′ = tasks \ {taskIn?}
running task ′ = running task
ready ′ = ready
blocked ′ = squash(blocked −B {taskIn?})
delayedZ 2′ = delayedZ 2�
{tcn : ran delayedZ 2 | tcn .1 , taskIn?}

oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = {taskIn?} −C priority
basePriority ′ = {taskIn?} −C basePriority
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

(b)

Figure 20: Operation schemas DeleteDelayedTask and
DeleteDelayedAndBlockedTask specifying vTaskDelete API when the task
to be deleted is in only delayedZ2 list or in both delayedZ2 list and blocked list
respectively.

ticks w.r.t. the system clock. That is in the first case the delay time is relative to
the previous wake up time given as an argument and in the second case, the delay
is absolute.

he system clock is defined as an unsigned integer in the existing implemen-
tation. Hence the system clock is bounded by the maximum possible value for
unsigned integer. Therefore the clock value (tickCount) is bounded in the model
M1. The value is bounded by the a parameter called maxNumVal. The user can
supply the value for this variable as a parameter to initialise the system.

The operation to update the value of tickCount performs a modulo (maxNumVal+
1) increment so that its value cycles in the interval [0,maxNumVal]. That is the
value of tickCount is reset to zero when the current value is maxNumVal. This is
called clock overflow.

The function vTaskDelayUntil takes two arguments - delay period and previ-
ous wake time. The purpose is to delay the running task for delay period number
of clock ticks from previous wake time. The wake-up time for the task is the sum
of delay period and previous wake time. Depending on the arguments the function

18

DeleteODelayedTask

∆Task
taskIn? : TASK
running! : TASK

schedulerRunning = TRUE
taskIn? ∈ ran seqFirst(oDelayed)
taskIn? < ran blocked
ΞParameter
tasks ′ = tasks \ {taskIn?}
running task ′ = running task
ready ′ = ready
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed�
{tcn : ran oDelayed | tcn .1 , taskIn?}

suspended ′ = suspended
priority ′ = {taskIn?} −C priority
basePriority ′ = {taskIn?} −C basePriority
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

(a)

DeleteODelayedAndBlockedTask

∆Task
taskIn? : TASK
running! : TASK

schedulerRunning = TRUE
taskIn? ∈ ran seqFirst(delayedZ 2)
taskIn? ∈ ran blocked
ΞParameter
tasks ′ = tasks \ {taskIn?}
running task ′ = running task
ready ′ = ready
blocked ′ = squash(blocked −B {taskIn?})
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed�
{tcn : ran oDelayed | tcn .1 , taskIn?}

suspended ′ = suspended
priority ′ = {taskIn?} −C priority
basePriority ′ = {taskIn?} −C basePriority
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

(b)

Figure 21: Operation schemas DeleteODelayedTask and
DeleteODelayedAndBlockedTask specifying vTaskDelete API when the
task to be deleted is in only oDelayed list or in both oDelayed list and blocked
list respectively.

vTaskDelayUntil needs to consider the following two cases.

1. No clock overflow happened after previous wake time. In this case both pre-
vious wake time and tickCount are in the same time window ([0,maxNumVal]).

2. Clock overflow happened after previous wake time. In this case previous
wake time and tickCount are in different time windows.

Figure 23 shows the possible values for time to awake when previous wake
time and tickCount are in the same time window. Figure 24 shows the possible
values for time to awake when previous wake time and tickCount are in different
time windows.

The operation schemas of Figures 25 specify the operation vTaskDelayUntil
when the previous wake time and requested wake time are in the same time win-
dow (prevWakeTime? ≤ tickCount) . According to a precondition the requested
wake time is already elapsed and hence no state change is required in this case.

19

DeleteSuspendedTask

∆Task
taskIn? : TASK
running! : TASK

schedulerRunning = TRUE
taskIn? ∈ suspended
taskIn? < ran blocked
ΞParameter
tasks ′ = tasks \ {taskIn?}
running task ′ = running task
ready ′ = ready
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended \ {taskIn?}
priority ′ = {taskIn?} −C priority
basePriority ′ = {taskIn?} −C basePriority
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

(a)

DeleteSuspendedAndBlockedTask

∆Task
taskIn? : TASK
running! : TASK

schedulerRunning = TRUE
taskIn? ∈ ran blocked
taskIn? ∈ suspended
ΞParameter
tasks ′ = tasks \ {taskIn?}
running task ′ = running task
ready ′ = ready
blocked ′ = squash(blocked −B {taskIn?})
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended \ {taskIn?}
priority ′ = {taskIn?} −C priority
basePriority ′ = {taskIn?} −C basePriority
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

(b)

Figure 22: Operation schemas DeleteSuspendedTask and
DeleteSuspendedAndBlockedTask specifying vTaskDelete API when the
task to be deleted is in only suspended list or in both suspended list and blocked
list respectively.

������
������
������
������

������
������
������
������

��������
��������
��������
��������

��������
��������
��������
��������

maxNumVal 2*maxNumVal

maxNumVal

tickCountprevWakeTime

0

Figure 23: Possible values for wake-up time when previous wake time and tick-
Count are in the same time window. The running task need to be delayed
iff the condition ((prevWakeTime ≤ tickCount) ∧ (tickCount <
(prevWakeTime + delayPeriod))) evaluates to true.

The operation schemas of Figures 26 specify the operation vTaskDelayUntil
when the previous wake time and requested wake time are in different time win-
dows (value of tickCount overflowed after the previous wake time). According to
a precondition the requested wake time was in the previous time window which is
already elapsed and hence no state change is required in this case.

The operation schemas of Figures 27 specify the operation vTaskDelayUntil

20

�����
�����
�����
�����

�����
�����
�����
�����

maxNumVal 2*maxNumVal0

tickCount

maxNumVal

prevWakeTime

tickCount+(maxNumVal+1)

Figure 24: Possible values for wake-up time when previous wake time and tick-
Count are in the different time windows.The running task need to be delayed iff the
condition ((prevWakeTime > tickCount) ∧ ((tickCount + (maxNumVal +

1)) < (prevWakeTime + delayPeriod))) evaluates to true.

TaskDelayUntil1
∆Task
prevWakeTime? : N
delay? : N
running! : TASK
prevWakeTime! : N

schedulerRunning = TRUE
delay? ≤ maxNumValue
prevWakeTime? ≤ maxNumValue
prevWakeTime? ≤ tickCount
(prevWakeTime? + delay?) ≤ tickCount
ΞParameter
ΞTaskData
ΞListData
ΞPrioData
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

prevWakeTime! = prevWakeTime? + delay?

Figure 25: Operation schema TaskDelayUntil1 specifying vTaskDelayUntil API
when the previous wake time and requested wake time are in the same time win-
dow. According to a precondition the requested wake time is already elapsed and
hence no state change is required.

when the previous wake time and requested wake time are in different time win-
dows (value of tickCount overflowed after the previous wake time). According
to a precondition the requested wake time in the current time window is already
elapsed and hence no state change is required. The value of previous wake time is
updated using modulo (maxNumValue + 1) addition so that the new value is in
the current window for the clock (tickCount).

The operation schemas of Figures 28 specify the operation vTaskDelayUntil

21

TaskDelayUntil2
∆Task
prevWakeTime? : N
delay? : N
running! : TASK
prevWakeTime! : N

schedulerRunning = TRUE
delay? ≤ maxNumValue
prevWakeTime? ≤ maxNumValue
prevWakeTime? > tickCount
(prevWakeTime? + delay?) ≤ maxNumValue
ΞParameter
ΞTaskData
ΞListData
ΞPrioData
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

prevWakeTime! = prevWakeTime? + delay?

Figure 26: Operation schema TaskDelayUntil2 specifying vTaskDelayUntil API
when the previous wake time and requested wake time are in different time win-
dows (value of tickCount overflowed). According to a precondition the requested
wake time was in the previous time window which is already elapsed and hence
no state change is required.

22

TaskDelayUntil3
∆Task
prevWakeTime? : N
delay? : N
running! : TASK
prevWakeTime! : N

schedulerRunning = TRUE
delay? ≤ maxNumValue
prevWakeTime? ≤ maxNumValue
prevWakeTime? > tickCount
(prevWakeTime? + delay?) > maxNumValue
(prevWakeTime? + delay?) ≤ (tickCount + (maxNumValue + 1))
ΞParameter
ΞTaskData
ΞListData
ΞPrioData
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

prevWakeTime! = prevWakeTime? + delay? − (maxNumValue + 1)

Figure 27: Operation schema TaskDelayUntil3 specifying vTaskDelayUntil API
when the previous wake time and requested wake time are in different time win-
dows (value of tickCount overflowed). According to a precondition the requested
wake time in the current time window is already elapsed and hence no state change
is required. The value of previous wake time is updated using modulo (maxNum-
Value + 1) addition so that the new value is in the current window for the clock
(tickCount).

23

TaskDelayUntil4
∆Task
prevWakeTime? : N
delay? : N
timeToAwake : N
delayedZ 2Prefix : seq TASK × N
delayedZ 2Suffix : seq TASK × N
running! : TASK
prevWakeTime! : N

schedulerRunning = TRUE
delay? ≤ maxNumValue
prevWakeTime? ≤ tickCount
tickCount < timeToAwake
timeToAwake ≤ maxNumValue
running task , idle
tail ready(topReadyPriority) , 〈〉
#delayedZ 2 < maxNumValue
timeToAwake = prevWakeTime? + delay?
delayedZ 2 = delayedZ 2Prefix a delayedZ 2Suffix
delayedZ 2Suffix , 〈〉 =⇒ (head delayedZ 2Suffix).2 > timeToAwake
∀ tcn : ran delayedZ 2Prefix | tcn .2 ≤ timeToAwake
ΞParameter
tasks ′ = tasks
running task ′ = head tail ready(topReadyPriority)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority)) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2Prefix a 〈(running task , timeToAwake)〉 a delayedZ 2Suffix
oDelayed ′ = oDelayed
suspended ′ = suspended
ΞPrioData
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

prevWakeTime! = timeToAwake

Figure 28: Operation schema TaskDelayUntil4 specifying vTaskDelayUntil API
when the previous wake time and requested wake time are in the same time win-
dow. According to precondition there exists at least one more ready task in the
sequence corresponding to the priority of running task and the new value of time
to awake is within the current time window and is greater than the value of tick-
Count.

when the previous wake time and requested wake time are in the same time win-
dow (prevWakeTime? ≤ tickCount) . According to precondition there exists at
least one more ready task in the sequence corresponding to the priority of running
task and the new value of time to awake is within the current time window and is
greater than the value of tickCount.

The field delayedZ2Prefix of the schema in Figure 28 represents the maximal
prefix of the sequence delayedZ2 where value of time to awake for each task is

24

less than or equal to the value of time to awake for the task to be delayed. The
field delayedZ2Suffix represents the remaining part of the sequence delayedZ2.

The list delayedZ2 is updated such that the modification restores its invariant
given in the schema ListData.

The operation schemas of Figures 29 specify the operation vTaskDelayUntil
when the previous wake time and requested wake time are in the same time win-
dow (prevWakeTime? ≤ tickCount) . According to precondition running task is
the only task in the sequence corresponding to the priority of running task and the
new value of time to awake is within the current time window and is greater than
the value of tickCount.

The operation schemas of Figures 30 specify the operation vTaskDelayUntil
when the previous wake time and requested wake time are in the same time win-
dow (prevWakeTime? ≤ tickCount) . According to precondition there exists at
least one more ready task in the sequence corresponding to the priority of running
task. The value of time to awake is updated using modulo (maxNumValue + 1
) addition. The value of (prevWakeTime? + delay?) is greater than maxNumVal
and hence the task need to be added to the list oDelayed.

The operation schemas of Figures 31 specify the operation vTaskDelayUntil
when the previous wake time and requested wake time are in the same time win-
dow (prevWakeTime? ≤ tickCount) . According to precondition running task is
the only task in the sequence corresponding to the priority of running task. The
value of time to awake is updated using modulo (maxNumValue + 1) addition.
The value of (prevWakeTime? + delay?) is greater than maxNumVal and hence
the task need to be added to the list oDelayed.

The operation schemas of Figures 32 specify the operation vTaskDelayUntil
when the previous wake time and requested wake time are in different time win-
dows (value of tickCount overflowed). According to a precondition there exists
at least one more ready task in is the sequence corresponding to the priority of
running task. The value of time to wake is updated using modulo (maxNumValue
+ 1) addition so that the new value is in the current time window for the clock
(tickCount).

The operation schemas of Figures 33 specify the operation vTaskDelayUntil
when the previous wake time and requested wake time are in different time win-
dows (value of tickCount overflowed). According to a precondition running task
is the only task in the sequence corresponding to the priority of running task. The
value of time to wake is updated using modulo (maxNumValue + 1) addition so
that the new value is in the current time window for the clock (tickCount).

The operation schemas of Figures 35 specify the operation vTaskDelay when
the value of (tickCount + delay?) is less than or equal to maxNumVal. Accord-
ing to a precondition there exists at least one more ready task in the sequence
corresponding to the priority of running task. The running task is added to the

25

TaskDelayUntil5
∆Task
prevWakeTime? : N
delay? : N
timeToAwake : N
runnerUpPrty : N
delayedZ 2Prefix : seq TASK × N
delayedZ 2Suffix : seq TASK × N
running! : TASK
prevWakeTime! : N

schedulerRunning = TRUE
delay? ≤ maxNumValue
prevWakeTime? ≤ tickCount
tickCount < timeToAwake
timeToAwake ≤ maxNumValue
running task , idle
tail ready(topReadyPriority) = 〈〉

#delayedZ 2 < maxNumValue
timeToAwake = prevWakeTime? + delay?
delayedZ 2 = delayedZ 2Prefix a delayedZ 2Suffix
delayedZ 2Suffix , 〈〉 =⇒ (head delayedZ 2Suffix).2 > timeToAwake
∀ tcn : ran delayedZ 2Prefix | tcn .2 ≤ timeToAwake
runnerUpPrty ∈ dom ready
runnerUpPrty < topReadyPriority
ready(runnerUpPrty) , 〈〉
∀ j :∈ dom ready | ((ready(j) , 〈〉) ∧ (j , topReadyPriority)) • j ≤ runnerUpPrty
ΞParameter
tasks ′ = tasks
running task ′ = head ready(runnerUpPrty)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority)) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2Prefix a 〈(running task , timeToAwake)〉 a delayedZ 2Suffix
oDelayed ′ = oDelayed
suspended ′ = suspended
ΞPrioData
ΞClockData
topReadyPriority ′ = runnerUpPrty
schedulerRunning ′ = schedulerRunning
running! = running task ′

prevWakeTime! = timeToAwake

Figure 29: Operation schema TaskDelayUntil5 specifying vTaskDelayUntil API
when the previous wake time and requested wake time are in the same time win-
dow. According to precondition running task is the only task in the sequence
corresponding to the priority of running task and the new value of time to awake
is within the current time window and is greater than the value of tickCount.

26

TaskDelayUntil6
∆Task
prevWakeTime? : N
delay? : N
timeToAwake : N
oDelayedPrefix : seq TASK × N
oDelayedSuffix : seq TASK × N
running! : TASK
prevWakeTime! : N

schedulerRunning = TRUE
delay? ≤ maxNumValue
prevWakeTime? ≤ tickCount
(prevWakeTime? + delay?) > maxNumValue
running task , idle
tail ready(topReadyPriority) , 〈〉
#oDelayed < maxNumValue
timeToAwake = prevWakeTime? + delay? − (maxNumValue + 1)
oDelayed = oDelayedPrefix a oDelayedSuffix
oDelayedSuffix , 〈〉 =⇒ (head oDelayedSuffix).2 > timeToAwake
∀ tcn : ran oDelayedPrefix | tcn .2 ≤ timeToAwake
ΞParameter
tasks ′ = tasks
running task ′ = head tail ready(topReadyPriority)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority)) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
delayedZ 2′ = oDelayedPrefix a 〈(running task , timeToAwake)〉 a oDelayedSuffix
suspended ′ = suspended
ΞPrioData
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

prevWakeTime! = timeToAwake

Figure 30: Operation schema TaskDelayUntil6 specifying vTaskDelayUntil API
when the previous wake time and requested wake time are in the same time win-
dow. According to precondition there exists at least one more ready task in the
sequence corresponding to the priority of running task. The value of time to awake
is updated using modulo (maxNumValue + 1) addition.

27

TaskDelayUntil7
∆Task
prevWakeTime? : N
delay? : N
timeToAwake : N
oDelayedPrefix : seq TASK × N
oDelayedSuffix : seq TASK × N
running! : TASK
prevWakeTime! : N

schedulerRunning = TRUE
delay? ≤ maxNumValue
prevWakeTime? ≤ tickCount
(prevWakeTime? + delay?) > maxNumValue
running task , idle
tail ready(topReadyPriority) = 〈〉

#oDelayed < maxNumValue
timeToAwake = prevWakeTime? + delay? − (maxNumValue + 1)
oDelayed = oDelayedPrefix a oDelayedSuffix
oDelayedSuffix , 〈〉 =⇒ (head oDelayedSuffix).2 > timeToAwake
∀ tcn : ran delayedZ 2Prefix | tcn .2 ≤ timeToAwake
runnerUpPrty ∈ dom ready
runnerUpPrty < topReadyPriority
ready(runnerUpPrty) , 〈〉
∀ j :∈ dom ready | ((ready(j) , 〈〉) ∧ (j , topReadyPriority)) • j ≤ runnerUpPrty
ΞParameter
tasks ′ = tasks
running task ′ = head ready(runnerUpPrty)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority)) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
delayedZ 2′ = oDelayedPrefix a 〈(running task , timeToAwake)〉 a oDelayedSuffix
suspended ′ = suspended
ΞPrioData
ΞClockData
topReadyPriority ′ = runnerUpPrty
schedulerRunning ′ = schedulerRunning
running! = running task ′

prevWakeTime! = timeToAwake

Figure 31: Operation schema TaskDelayUntil7 specifying vTaskDelayUntil API
when the previous wake time and requested wake time are in the same time win-
dow. According to precondition running task is the only task in the sequence cor-
responding to the priority of running task. The value of time to awake is updated
using modulo (maxNumValue + 1) addition.

28

TaskDelayUntil8
∆Task
prevWakeTime? : N
delay? : N
timeToAwake : N
delayedZ 2Prefix : seq TASK × N
delayedZ 2Suffix : seq TASK × N
running! : TASK
prevWakeTime! : N

schedulerRunning = TRUE
delay? ≤ maxNumValue
prevWakeTime? ≤ maxNumValue
prevWakeTime? > tickCount
(tickCount + (maxNumValue + 1)) < timeToAwake
running task , idle
tail ready(topReadyPriority) , 〈〉
#delayedZ 2 < maxNumValue
timeToAwake = prevWakeTime? + delay?
delayedZ 2 = delayedZ 2Prefix a delayedZ 2Suffix
delayedZ 2Suffix , 〈〉 =⇒ (head delayedZ 2Suffix).2 > (timeToAwake − (maxNumValue + 1))
∀ tcn : ran delayedZ 2Prefix | tcn .2 ≤ (timeToAwake − (maxNumValue + 1))
ΞParameter
tasks ′ = tasks
running task ′ = head tail ready(topReadyPriority)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority)) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2Prefix a 〈(running task , timeToAwake − (maxNumValue + 1))〉 a delayedZ 2Suffix
oDelayed ′ = oDelayed
suspended ′ = suspended
ΞPrioData
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

prevWakeTime! = timeToAwake − (maxNumValue + 1)

Figure 32: Operation schema TaskDelayUntil8 specifying vTaskDelayUntil API
when the previous wake time and requested wake time are in different time win-
dows (value of tickCount overflowed). According to a precondition there exists
at least one more ready task in is the sequence corresponding to the priority of
running task. The value of time to wake is updated using modulo (maxNumValue
+ 1) addition so that the new value is in the current time window for the clock
(tickCount).

29

TaskDelayUntil9
∆Task
prevWakeTime? : N
delay? : N
timeToAwake : N
delayedZ 2Prefix : seq TASK × N
delayedZ 2Suffix : seq TASK × N
running! : TASK
prevWakeTime! : N

schedulerRunning = TRUE
delay? ≤ maxNumValue
prevWakeTime? ≤ maxNumValue
prevWakeTime? > tickCount
(tickCount + (maxNumValue + 1)) < timeToAwake
running task , idle
tail ready(topReadyPriority) = 〈〉

#delayedZ 2 < maxNumValue
timeToAwake = prevWakeTime? + delay?
delayedZ 2 = delayedZ 2Prefix a delayedZ 2Suffix
delayedZ 2Suffix , 〈〉 =⇒ (head delayedZ 2Suffix).2 > (timeToAwake − (maxNumValue + 1))
∀ tcn : ran delayedZ 2Prefix | tcn .2 ≤ (timeToAwake − (maxNumValue + 1))
runnerUpPrty ∈ dom ready
runnerUpPrty < topReadyPriority
ready(runnerUpPrty) , 〈〉
∀ j :∈ dom ready | ((ready(j) , 〈〉) ∧ (j , topReadyPriority)) • j ≤ runnerUpPrty
ΞParameter
tasks ′ = tasks
running task ′ = head ready(runnerUpPrty)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority)) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2Prefix a 〈(running task , timeToAwake − (maxNumValue + 1))〉 a delayedZ 2Suffix
oDelayed ′ = oDelayed
suspended ′ = suspended
ΞPrioData
ΞClockData
topReadyPriority ′ = runnerUpPrty
schedulerRunning ′ = schedulerRunning
running! = running task ′

prevWakeTime! = timeToAwake − (maxNumValue + 1)

Figure 33: Operation schema TaskDelayUntil8 specifying vTaskDelayUntil API
when the previous wake time and requested wake time are in different time win-
dows (value of tickCount overflowed). According to a precondition running task
is the only task in the sequence corresponding to the priority of running task. The
value of time to wake is updated using modulo (maxNumValue + 1) addition so
that the new value is in the current time window for the clock (tickCount).

30

TaskDelay1

∆Task
delay? : N
running! : TASK

schedulerRunning = TRUE
delay? = 0
ΞParameter
ΞTaskData
ΞListData
ΞPrioData
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 34: Operation schema TaskDelay1 specifying vTaskDelay API when the
delay period is 0. Hence no state change is required.

list delayedZ2 such that the post state of the operation respects the invariants on
delayedZ2.

The operation schemas of Figures 36 specify the operation vTaskDelay when
the value of (tickCount +delay?) is greater than maxNumVal. According to a pre-
condition there exists at least one more ready task in the sequence corresponding
to the priority of running task. The running task is added to the list oDelayed such
that the post state of the operation respects the invariants on oDelayed. The value
of time to awake is computed using modulo (maxNumVal + 1) addition.

The operation schemas of Figures 35 specify the operation vTaskDelay when
the value of (tickCount + delay?) is less than or equal to maxNumVal. According
to a precondition running task is the only task in the sequence corresponding to
the priority of running task. The running task is added to the list delayedZ2 such
that the post state of the operation respects the invariants on delayedZ2.

The operation schemas of Figures 38 specify the operation vTaskDelay when
the value of (tickCount + delay?) is greater than maxNumVal. According to a
precondition running task is the only task in the sequence corresponding to the
priority of running task. The running task is added to the list oDelayed such that
the post state of the operation respects the invariants on oDelayed. The value of
time to awake is computed using modulo (maxNumVal + 1) addition.

In FreeRTOS, there is a function called vTaskIncrementTick to increment the
system clock. This function is automatically invoked when a tick interrupt occurs.
This function increments the system clock by one and moves all delayed tasks
with wake up time same as the new clock value to ready queue. It also performs
a context switch if it moves a task of priority higher than the priority of running

31

TaskDelay2A

∆Task
delay? : N
timeToAwake : N
delayedZ 2Prefix : seq TASK × N
delayedZ 2Suffix : seq TASK × N
running! : TASK

schedulerRunning = TRUE
delay? > 0
delay? ≤ maxNumValue
running task , idle
tail ready(topReadyPriority) , 〈〉
#delayedZ 2 < maxNumValue
(tickCount + delay?) ≤ maxNumValue
timeToAwake = tickCount + delay?
delayedZ 2 = delayedZ 2Prefix a delayedZ 2Suffix
delayedZ 2Suffix , 〈〉 =⇒ (head delayedZ 2Suffix).2 > timeToAwake
∀ tcn : ran delayedZ 2Prefix | tcn .2 ≤ timeToAwake
ΞParameter
tasks ′ = tasks
running task ′ = head tail ready(topReadyPriority)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority)) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2Prefix a 〈(running task , timeToAwake)〉 a delayedZ 2Suffix
oDelayed ′ = oDelayed
suspended ′ = suspended
ΞPrioData
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 35: Operation schema TaskDelay2A specifying vTaskDelay API when the
value of (tickCount +delay?) is less than or equal to maxNumVal. According to a
precondition there exists at least one more ready task in the sequence correspond-
ing to the priority of running task.

32

TaskDelay2B

∆Task
delay? : N
timeToAwake : N
oDelayedPrefix : seq TASK × N
oDelayedSuffix : seq TASK × N
running! : TASK

schedulerRunning = TRUE
delay? > 0
delay? ≤ maxNumValue
running task , idle
tail ready(topReadyPriority) , 〈〉
#oDelayed < maxNumValue
(tickCount + delay?) > maxNumValue
timeToAwake = tickCount + delay? − (maxNumValue + 1)
oDelayed = oDelayedPrefix a oDelayedSuffix
oDelayedSuffix , 〈〉 =⇒ (head oDelayedSuffix).2 > timeToAwake
∀ tcn : ran oDelayedPrefix | tcn .2 ≤ timeToAwake
ΞParameter
tasks ′ = tasks
running task ′ = head tail ready(topReadyPriority)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority)) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayedPrefix a 〈(running task , timeToAwake)〉 a oDelayedSuffix
suspended ′ = suspended
ΞPrioData
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 36: Operation schema TaskDelay2B specifying vTaskDelay API when the
value of (tickCount +delay?) is greater than maxNumVal. According to a precon-
dition there exists at least one more ready task in the sequence corresponding to
the priority of running task.

33

TaskDelay3A

∆Task
delay? : N
timeToAwake : N
runnerUpPrty : N
delayedZ 2Prefix : seq TASK × N
delayedZ 2Suffix : seq TASK × N
running! : TASK

schedulerRunning = TRUE
delay? > 0
delay? ≤ maxNumValue
running task , idle
tail ready(topReadyPriority) = 〈〉

#delayedZ 2 < maxNumValue
(tickCount? + delay?) ≤ maxNumValue
timeToAwake = tickCount? + delay?
delayedZ 2 = delayedZ 2Prefix a delayedZ 2Suffix
delayedZ 2Suffix , 〈〉 =⇒ (head delayedZ 2Suffix).2 > timeToAwake
∀ tcn : ran delayedZ 2Prefix | tcn .2 ≤ timeToAwake
runnerUpPrty ∈ dom ready
runnerUpPrty < topReadyPriority
ready(runnerUpPrty) , 〈〉
∀ j :∈ dom ready | ((ready(j) , 〈〉) ∧ (j , topReadyPriority)) • j ≤ runnerUpPrty
ΞParameter
tasks ′ = tasks
running task ′ = head ready(runnerUpPrty)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority)) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2Prefix a 〈(running task , timeToAwake)〉 a delayedZ 2Suffix
suspended ′ = suspended
ΞPrioData
ΞClockData
topReadyPriority ′ = runnerUpPrty
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 37: Operation schema TaskDelay3A specifying vTaskDelay API when the
value of (tickCount + delay?) is less than or equal to maxNumVal. According to
a precondition running task is the only task in the sequence corresponding to the
priority of running task.

34

TaskDelay3B

∆Task
delay? : N
timeToAwake : N
runnerUpPrty : N
oDelayedPrefix : seq TASK × N
oDelayedSuffix : seq TASK × N
running! : TASK

schedulerRunning = TRUE
delay? > 0
delay? ≤ maxNumValue
running task , idle
tail ready(topReadyPriority) = 〈〉

#oDelayed < maxNumValue
(tickCount? + delay?) > maxNumValue
timeToAwake = tickCount? + delay?
oDelayed = oDelayedPrefix a oDelayedSuffix
oDelayedSuffix , 〈〉 =⇒ (head oDelayedSuffix).2 > timeToAwake
∀ tcn : ran oDelayedPrefix | tcn .2 ≤ timeToAwake
runnerUpPrty ∈ dom ready
runnerUpPrty < topReadyPriority
ready(runnerUpPrty) , 〈〉
∀ j :∈ dom ready | ((ready(j) , 〈〉) ∧ (j , topReadyPriority)) • j ≤ runnerUpPrty
ΞParameter
tasks ′ = tasks
running task ′ = head ready(runnerUpPrty)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority)) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayedPrefix a 〈(running task , timeToAwake)〉 a oDelayedSuffix
suspended ′ = suspended
ΞPrioData
ΞClockData
topReadyPriority ′ = runnerUpPrty
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 38: Operation schema TaskDelay3B specifying vTaskDelay API when
the value of (tickCount + delay?) is greater than maxNumVal. According to a
precondition running task is the only task in the sequence corresponding to the
priority of running task.

35

IncrementTickWithoutReschedule1

∆Task
delayOver : seq TASK
mxPrioFrmDlyOvr : N
running! : TASK

schedulerRunning = TRUE
preemption = FALSE
tickCount < maxNumValue
delayOver , 〈〉
topReadyPriority ≥ mxPrioFrmDlyOvr
delayOver = seqFirst(delayedZ 2 � {tcn : ran delayedZ 2 | tcn .2 = tickCount + 1})
mxPrioFrmDlyOvr = max (ran ((ran delayOver) C priority))
ΞParameter
ΞTaskData
∀ i : dom ready | ready ′(i) = ready(i) a delayOver � {t : ran delayOver | priority(t) = i}
blocked ′ = blocked
delayedZ 2′ = delayedZ 2 � {tcn : ran delayedZ 2 | tcn .2 > tickCount + 1}
oDelayed ′ = oDelayed
suspended ′ = suspended
ΞPrioData
tickCount ′ = tickCount + 1
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 39: Operation schema IncrementTickWithoutReschedule1 specifying
vTaskIncrementTick API when (1) the scheduler is running in the non preemp-
tive mode, (2) each task moving from state delayed to state ready has priority
less than priority of running task and (3) current value of the clock is less than
maxNumValue.

task from the state delayedZ2 to ready.
In the initial Z schema M1 the clock was not bounded. But the clock is

bounded by a constant (configurable macro) in the existing implementation of
FreeRTOS. The refined Z model captures this (bounding the clock) by using an
extra delayed list called oDelayed. Hence the clock increment is modular in
M2 w.r.t. the maximum clock value (same as maxNumValue). The operations
schemas modelling clock increment will update the list delayedZ2 or oDelayed
depending on the current value of clock.

The schemas of Figures 39 and 40 specify vTaskIncrementTick for the situa-
tion which do not require to do a context switch. Both of these schemas assert
that the new value of the clock is within the permissible limit and hence need to
process the list delayedZ2. These schemas assume that the system is running in
the non preemptive mode and is asserted as a precondition. Then context switch
is required only if the clock update moves one or more task of priority higher than
running task’s priority from delayedZ2 to ready.

36

IncrementTickWithoutReschedule2

∆Task
delayOver : seq TASK
running! : TASK

schedulerRunning = TRUE
preemption = FALSE
tickCount < maxNumValue
delayOver = 〈〉

delayOver = seqFirst(delayedZ 2 � {tcn : ran delayedZ 2 | tcn .2 = tickCount + 1})
ΞParameter
ΞTaskData
ΞListData
ΞPrioData
tickCount ′ = tickCount + 1
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 40: Operation schema IncrementTickWithoutReschedule2 specifying
vTaskIncrementTick API when (1) the scheduler is running in the non preemp-
tive mode, (2) no task needs to be moved from state delayed to state ready and (3)
current value of the clock is less than maxNumValue.

The field mxPrioFrmDlyOvr of the schema in Figure 39 represents the priority
of the highest priority task moving from state delayedZ2 to the state ready.

The precondition of the schema in Figure 39 asserts that there are some tasks
which need to be moved from delayedZ2 to ready. The precondition also asserts
that none of these task has priority higher than the priority of running task. This
schema increments the clock value by one.

The precondition of the schema in Figure 40 asserts that no task needs to be
moved from delayedZ2 to ready. This schema just increments the clock value by
one.

The schemas of Figures 41 and 42 specify vTaskIncrementTick for the situation
which do not require to do a context switch. Both of these schemas assert that
the current value of the clock is the maximum possible value and hence need to
reset the clock to 0. This also demand interchanging the delayed lists. The state
change of tasks from delayed to ready is decided by the state of the list oDelayed.
These schemas assume that the system is running in the non preemptive mode and
is asserted as a precondition. Then context switch is required only if the clock
update moves one or more task of priority higher than running task’s priority from
oDelayed to ready.

The precondition of the schema in Figure 41 asserts that there are some tasks
which need to be moved from oDelayed to ready. The precondition also asserts
that none of these task has priority higher than the priority of running task. This

37

IncrementTickWithoutReschedule3

∆Task
delayOver : seq TASK
mxPrioFrmDlyOvr : N
running! : TASK

schedulerRunning = TRUE
preemption = FALSE
tickCount = maxNumValue
delayOver , 〈〉
topReadyPriority ≥ mxPrioFrmDlyOvr
delayOver = seqFirst(oDelayed � {tcn : ran oDelayed | tcn .2 = 0})
mxPrioFrmDlyOvr = max (ran ((ran delayOver) C priority))
ΞParameter
ΞTaskData
∀ i : dom ready | ready ′(i) = ready(i) a delayOver � {t : ran delayOver | priority(t) = i}
blocked ′ = blocked
delayedZ 2 = oDelayed � {tcn : ran oDelayed | tcn .2 > 0}
oDelayed ′ = delayedZ 2
suspended ′ = suspended
ΞPrioData
tickCount ′ = 0
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 41: Operation schema IncrementTickWithoutReschedule3 specifying
vTaskIncrementTick API when (1) the scheduler is running in the non preemp-
tive mode, (2) each task moving from state delayed to state ready has priority
less than priority of running task and (3) current value of the clock is equal to
maxNumValue.

38

IncrementTickWithoutReschedule4

∆Task
delayOver : seq TASK
running! : TASK

schedulerRunning = TRUE
preemption = FALSE
tickCount = maxNumValue
delayOver = 〈〉

delayOver = seqFirst(oDelayed � {tcn : ran oDelayed | tcn .2 = 0})
ΞParameter
ΞTaskData
ΞListData
ΞPrioData
tickCount ′ = 0
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 42: Operation schema IncrementTickWithoutReschedule2 specifying
vTaskIncrementTick API when (1) the scheduler is running in the non preemp-
tive mode, (2) no task needs to be moved from state delayed to state ready and (3)
current value of the clock is equal to maxNumValue.

schema increments the clock value by one.
The precondition of the schema in Figure 42 asserts that no task needs to be

moved from oDelayed to ready. This schema just increments the clock value by
one.

The operator C in Z is the domain restriction operator. This operator removes
those pairs from the binary relation (given as the second argument to C) with first
element not present in the first argument to C.

The schemas of Figures 43 and 44 specify vTaskIncrementTick for a situation
which demands a context switch. These schemas require to do a context switch
because of preemptive mode of operation as asserted by a precondition. Both of
these schemas assert that the new value of the clock is within the permissible limit
and hence need to process the list delayedZ2.

The precondition of the schema in Figure 43 asserts that there are some tasks
which need to be moved from delayedZ2 to ready. The precondition also asserts
that none of these task has priority higher than the priority of running task. This
schema updates the state of the task lists ready and delayedZ2 w.r.t. the required
movement of tasks from delayedZ2 to ready.

The precondition of the schema in Figure 44 asserts that no task needs to be
moved from delayedZ2 to ready.

The schemas of Figures 43 and 44 increment the clock value by one and ro-

39

IncrementTickAndReschedule1

∆Task
delayOver : seq TASK
mxPrioFrmDlyOvr : N
running! : TASK

schedulerRunning = TRUE
preemption = TRUE
tickCount < maxNumValue
delayOver , 〈〉
topReadyPriority ≥ mxPrioFrmDlyOvr
delayOver = seqFirst(delayedZ 2 � {tcn : ran delayedZ 2 | tcn .2 = tickCount + 1})
mxPrioFrmDlyOvr = max (ran ((ran delayOver) C priority))
tail ready(topReadyPriority) , 〈〉
ΞParameter
tasks ′ = tasks
running task ′ = head tail ready(topReadyPriority)
∀ i : dom ready | i , topReadyPriority •

ready ′(i) = ready(i) a delayOver � {t : ran delayOver | priority(t) = i}
ready ′(topReadyPriority) = tail ready(topReadyPriority)a

delayOver � {t : ran delayOver | priority(t) = topReadyPriority} a 〈running task〉
blocked ′ = blocked
delayedZ 2′ = delayedZ 2 � {tcn : ran delayedZ 2 | tcn .2 > tickCount + 1}
oDelayed ′ = oDelayed
suspended ′ = suspended
ΞPrioData
tickCount ′ = tickCount + 1
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 43: Operation schema IncrementTickAndReschedule1 specifying
vTaskIncrementTick API when (1) the scheduler is running in the preemptive
mode, (2) each task moving from state delayed to state ready has priority less
than or equal to priority of running task, (3) there exists at least one more ready
task in the sequence corresponding to the priority of running task and (4) current
value of the clock is less than maxNumValue.

40

IncrementTickAndReschedule2

∆Task
delayOver : seq TASK
running! : TASK

schedulerRunning = TRUE
preemption = TRUE
tickCount < maxNumValue
delayOver = 〈〉

delayOver = seqFirst(delayedZ 2 � {tcn : ran delayedZ 2 | tcn .2 = tickCount + 1})
tail ready(topReadyPriority) , 〈〉
ΞParameter
tasks ′ = tasks
running task ′ = head tail ready(topReadyPriority)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority) a 〈running task〉) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended
ΞPrioData
tickCount ′ = tickCount + 1
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 44: Operation schema IncrementTickAndReschedule2 specifying
vTaskIncrementTick API when (1) the scheduler is running in the preemptive
mode, (2) no task needs to be moved from state delayed to state ready, (3) there
exists at least one more ready task in the sequence corresponding to the priority
of running task and (4) current value of the clock is less than maxNumValue.

41

tate the ready list at index topReadyPriority to effect the preemption. Note that
topReadyPriority is the priority of the running task as defined by an invariant in
the schema Task.

The schemas of Figures 45 and 46 specify vTaskIncrementTick for a situation
which demands a context switch. These schemas requires to do a context switch
because of preemptive mode of operation as asserted by a precondition. Both
of these schemas assert that the value of the clock overflows and hence need to
process the list oDelayed.

The precondition of the schema in Figure 45 asserts that there are some tasks
which need to be moved from oDelayed to ready. The precondition also asserts
that none of these task has priority higher than the priority of running task. This
schema updates the state of the task lists ready, delayedZ2 and oDelayed w.r.t. the
required movement of tasks from oDelayed to ready.

The precondition of the schema in Figure 46 asserts that no task needs to be
moved from oDelayed to ready.

The schemas of Figures 45 and 46 reset the clock value to 0 and rotate the
ready list at index topReadyPriority to effect the preemption. Note that topReadyPri-
ority is the priority of the running task as defined by an invariant in the schema
Task.

The schemas of Figures 47 and 48 specify vTaskIncrementTick for a situation
which demands a context switch because it needs to move one or more task of
priority higher than running task’s priority from delayedZ2 to ready.

The precondition of the schema in Figure 47 asserts that the new value of the
clock is within the permissible limit and hence need to process the list delayedZ2.
This increments the clock value by one and updates the state of the task lists ready
and delayedZ2 w.r.t. the required movement of tasks from delayedZ2 to ready. It
also updates topReadyPriority to the priority of the newly scheduled task.

The precondition of the schema in Figure 48 asserts that the new value of the
clock overflows and hence need to process the list oDelayed. This resets the clock
value to 0 and updates the state of the task lists ready, delayedZ2 and oDelayed
w.r.t. the required movement of tasks from oDelayed to ready.

The schemas of Figures 47 and 48 schedules the longest waiting highest pri-
ority tasked moved from the delayedZ2 state to ready state. These schemas also
update topReadyPriority to the priority of the newly scheduled task.

FreeRTOS provides an API vTaskPrioritySet to change the priority of an ex-
isting task in the system. A task can change the priority of itself or it can change
the priority of other task. Changing priority may demand a context switch.

The schema in Figure 49 specifies the function vTaskPrioritySet in FreeRTOS
when the given task holds an inherited priority (different priority values for the
functions priority and basePriority). In this case only the function basePriority is
changed to update the priority of the given task.

42

IncrementTickAndReschedule3

∆Task
oDelayOver : seq TASK
mxPrioFrmDlyOvr : N
running! : TASK

schedulerRunning = TRUE
preemption = TRUE
tickCount = maxNumValue
oDelayOver , 〈〉
topReadyPriority ≥ mxPrioFrmDlyOvr
oDelayOver = seqFirst(oDelayed � {tcn : ran oDelayed | tcn .2 = 0})
mxPrioFrmDlyOvr = max (ran ((ran oDelayOver) C priority))
tail ready(topReadyPriority) , 〈〉
ΞParameter
tasks ′ = tasks
running task ′ = head tail ready(topReadyPriority)
∀ i : dom ready | i , topReadyPriority •

ready ′(i) = ready(i) a oDelayOver � {tcn : ran oDelayOver | priority(tcn .1) = i}
ready ′(topReadyPriority) = tail ready(topReadyPriority)a

oDelayOver � {t : ran oDelayOver | priority(t) = topReadyPriority} a 〈running task〉
blocked ′ = blocked
delayedZ 2′ = oDelayed � {tcn : ran oDelayed | tcn .2 > 0}
oDelayed ′ = delayedZ 2
suspended ′ = suspended
ΞPrioData
tickCount ′ = 0
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 45: Operation schema IncrementTickAndReschedule3 specifying
vTaskIncrementTick API when (1) the scheduler is running in the preemptive
mode, (2) each task moving from state delayed to state ready has priority less
than or equal to priority of running task, (3) there exists at least one more ready
task in the sequence corresponding to the priority of running task and (4) current
value of the clock is equal to maxNumValue.

43

IncrementTickAndReschedule4

∆Task
oDelayOver : seq TASK
running! : TASK

schedulerRunning = TRUE
preemption = TRUE
tickCount = maxNumValue
oDelayOver = 〈〉

tail ready(topReadyPriority) , 〈〉
oDelayOver = seqFirst(oDelayed � {tcn : ran oDelayed | tcn .2 = 0})
ΞParameter
tasks ′ = tasks
running task ′ = head tail ready(topReadyPriority)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority) a 〈running task〉) }
blocked ′ = blocked
delayedZ 2′ = oDelayed
oDelayed ′ = delayedZ 2
suspended ′ = suspended
ΞPrioData
tickCount ′ = 0
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 46: Operation schema IncrementTickAndReschedule4 specifying
vTaskIncrementTick API when (1) the scheduler is running in the preemptive
mode, (2) no task needs to be moved from state delayed to state ready, (3) there
exists at least one more ready task in the sequence corresponding to the priority
of running task and (4) current value of the clock is equal to maxNumValue.

44

IncrementTickAndReschedule5
∆Task
delayOver : seq TASK
mxPrioFrmDlyOvr : N
running! : TASK

schedulerRunning = TRUE
tickCount < maxNumValue
delayOver , 〈〉
topReadyPriority < mxPrioFrmDlyOvr
delayOver = seqFirst(delayedZ 2 � {tcn : ran delayedZ 2 | tcn .2 = tickCount + 1})
mxPrioFrmDlyOvr = max (ran ((ran delayOver) C priority))
ΞParameter
tasks ′ = tasks
running task ′ = head delayOver � {t : ran delayOver | priority(t) = mxPrioFrmDlyOvr }
∀ i : dom ready | ready ′(i) = ready(i) a delayOver � {t : ran delayOver | priority(t) = i})
blocked ′ = blocked
delayedZ 2′ = delayedZ 2 � {tcn : ran delayedZ 2 | tcn .2 > tickCount + 1}
oDelayed ′ = oDelayed
suspended ′ = suspended
ΞPrioData
tickCount ′ = tickCount + 1
topReadyPriority ′ = mxPrioFrmDlyOvr
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 47: Operation schema IncrementTickAndReschedule5 specifying
vTaskIncrementTick API when (1) the scheduler is running in the preemptive
mode, (2) some of the tasks moving from state delayed to state ready has priority
higher than the priority of running task and (3) current value of the clock is less
than maxNumValue.

45

IncrementTickAndReschedule6
∆Task
oDelayOver : seq TASK
mxPrioFrmDlyOvr : N
running! : TASK

schedulerRunning = TRUE
tickCount = maxNumValue ∧ oDelayOver , 〈〉
topReadyPriority < mxPrioFrmDlyOvr
oDelayOver = seqFirst(oDelayed � {tcn : ran oDelayed | tcn .2 = 0})
mxPrioFrmDlyOvr = max (ran ((ran oDelayOver) C priority))
ΞParameter
tasks ′ = tasks
running task ′ = head delayOver � {t : ran oDelayOver | priority(t) = mxPrioFrmDlyOvr }
∀ i : N | i ∈ dom ready • ready ′(i) = ready(i) a oDelayOver � {t : ran oDelayOver | priority(t) = i}
blocked ′ = blocked
delayedZ 2′ = oDelayed � {tcn : ran oDelayed | tcn .2 > 0}
oDelayed = delayedZ 2
suspended ′ = suspended
ΞPrioData
tickCount ′ = tickCount + 1
topReadyPriority ′ = mxPrioFrmDlyOvr
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 48: Operation schema IncrementTickAndReschedule6 specifying
vTaskIncrementTick API when (1) the scheduler is running in the preemptive
mode, (2) some of the tasks moving from state delayed to state ready have pri-
ority higher than the priority of running task and (3) current value of the clock is
equal to maxNumValue.

46

SetPriorityWhenInherited

∆Task
taskIn? : TASK
newPriority? : N
running! : TASK

newPriority? ∈ dom ready
schedulerRunning = TRUE
taskIn? ∈ tasks
basePriority(taskIn?) , newPriority?
priority(taskIn?) , basePriority(taskIn?)
ΞParameter
ΞTaskData
ΞListData
priority ′ = priority
basePriority ′ = basePriority ⊕ {(taskIn? 7→ newPriority?)}
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 49: Operation schema SetPriorityWhenInherited specifying
vTaskPrioritySet when the tasks holds inherited priority.

SetPriority1

∆Task
taskIn? : TASK
newPriority? : N
running! : TASK

newPriority? ∈ dom ready
schedulerRunning = TRUE
priority(taskIn?) = basePriority(taskIn?)
taskIn? = running task
newPriority? > topReadyPriority
ΞParameter
ΞTaskData
ready ′ = ready ⊕ { (priority(taskIn?) 7→ tail ready(priority(taskIn?))), (newPriority? 7→ 〈taskIn?〉) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = priority ⊕ {(taskIn? 7→ newPriority?)}
basePriority ′ = basePriority ⊕ {(taskIn? 7→ newPriority?)}
ΞClockData
topReadyPriority ′ = newPriority?
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 50: Operation schema SetPriority1 specifying vTaskPrioritySet for in-
creasing the priority of running task.

47

SetPriority2

∆Task
taskIn? : TASK
newPriority? : N
running! : TASK

newPriority? ∈ dom ready
schedulerRunning = TRUE
taskIn? ∈ rana/(ran ready)
basePriority(taskIn?) , newPriority?
priority(taskIn?) = basePriority(taskIn?)
taskIn? , running task
newPriority? ≤ topReadyPriority
ΞParameter
ΞTaskData
ready ′ = ready ⊕ { (priority(taskIn?) 7→

squash(ready(priority(taskIn?)) −B {taskIn?}), (newPriority? 7→ ready(newPriority?) a 〈taskIn?〉) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = priority ⊕ {(taskIn? 7→ newPriority?)}
basePriority ′ = basePriority ⊕ {(taskIn? 7→ newPriority?)}
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 51: Operation schema SetPriority2 specifying vTaskPrioritySet for
changing the priority of ready task to a value less than or equal to the priority
of running task.

The schema in Figure 50 specifies the priority increase for running task. It
updates the ready list at index equals to the priority of the given task (running task
in this case) and the priority functions w.r.t. the required priority change.

The schema in Figure 51 specifies the function vTaskPrioritySet in FreeRTOS
to change the priority of a ready task which is not running. One of the precondition
specifies that the new priority is less than or equal to the priority of running task
and hence no context switch is required. It updates the ready list at index equals to
the priority of the given task and the priority functions w.r.t. the required priority
change.

The schema in Figure 52 specifies the priority change for task whose state
is not ready. The priority functions are updated in accordance with the required
priority change.

The schema in Figure 53 specifies the function vTaskPrioritySet in FreeRTOS
to decrease the priority of running task. The preconditions specify that running
task is the only task in the ready list at the index topReadyPriority and the new

48

SetPriority3

∆Task
taskIn? : TASK
newPriority? : N
running! : TASK

newPriority? ∈ dom ready
schedulerRunning = TRUE
taskIn? < rana/(ran ready)
basePriority(taskIn?) , newPriority?
priority(taskIn?) = basePriority(taskIn?)
ΞParameter
ΞTaskData
ΞListData
priority ′ = priority ⊕ {(taskIn? 7→ newPriority?)}
basePriority ′ = basePriority ⊕ {(taskIn? 7→ newPriority?)}
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 52: Operation schema SetPriority3 specifying vTaskPrioritySet for
changing the priority of task which is not ready.

priority for running task is higher than the priorities of any other ready task. Hence
no context switch is required. It updates the ready list at index equals to the
priority of the given task and the priority functions w.r.t. the required priority
change.

The schema in Figure 54 specifies the priority decrease for running task. One
of the precondition specifies that the ready sequence at index topReadyPriority
contains at least one more task in addition to the running task and hence it needs
to do a context switch. This schema schedules the longest waiting task among the
other tasks in this sequence. The ready lists and priority functions are updated in
accordance with the required priority change.

The schema in Figure 55 specifies the function vTaskPrioritySet in FreeRTOS
to increase the priority of ready task which is not running. One of the precondition
specifies that the new priority for the given ready task is higher than that of run-
ning task and hence the given task needs to be scheduled. The ready list and the
priority functions are updated w.r.t. the required priority change and also updates
topReadyPriority to the priority of the newly scheduled task.

The schema in Figure 56 specifies the priority decrease for running task. Pre-
condition in this case specifies that there is no other task in the ready list of running
task. Hence this schema schedules the head of the next highest nonempty ready
list. Such a nonempty list is assumed in the precondition. The ready list and the
priority functions are updated w.r.t. the required priority change and also updates

49

SetPriority4

∆Task
taskIn? : TASK
newPriority? : N
running! : TASK

newPriority? ∈ dom ready
schedulerRunning = TRUE
taskIn? = running task
newPriority? < topReadyPriority
priority(taskIn?) = basePriority(taskIn?)
tail ready(topReadyPriority) = 〈〉

∀ i : dom ready | ((i < topReadyPriority) ∧ (ready(i) , 〈〉)) • (i < newPriority?)
ΞParameter
ΞTaskData
ready ′ = ready ⊕ { (priority(taskIn?) 7→ tail ready(priority(taskIn?))), (newPriority? 7→ 〈taskIn?〉) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = priority ⊕ {(taskIn? 7→ newPriority?)}
basePriority ′ = basePriority ⊕ {(taskIn? 7→ newPriority?)}
ΞClockData
topReadyPriority ′ = newPriority?
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 53: Operation schema SetPriority4 specifying vTaskPrioritySet for
changing the priority of running task when (1) running task is the only task in
the sequence corresponding to the priority of running task and (2) the new priority
is higher than the priority of any other ready task.

50

SetPriorityAndReschedule1

∆Task
taskIn? : TASK
newPriority? : N
running! : TASK

newPriority? ∈ dom ready
schedulerRunning = TRUE
taskIn? = running task
priority(taskIn?) = basePriority(taskIn?)
priority(taskIn?) > newPriority?
tail ready(topReadyPriority) , 〈〉
ΞParameter
tasks ′ = tasks
running task ′ = head tail ready(topReadyPriority)
ready ′ = ready ⊕ { (priority(taskIn?) 7→ tail ready(topReadyPriority)),

(newPriority? 7→ ready(newPriority?) a 〈taskIn?〉) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = priority ⊕ {(taskIn? 7→ newPriority?)}
basePriority ′ = basePriority ⊕ {(taskIn? 7→ newPriority?)}
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 54: Operation schema SetPriorityAndReschedule1 specifying
vTaskPrioritySet for decreasing the priority of running task when there
exists at least one more task in the sequence corresponding to the priority of
running task.

51

SetPriorityAndReschedule2

∆Task
taskIn? : TASK
newPriority? : N
running! : TASK

newPriority? ∈ dom ready
schedulerRunning = TRUE
taskIn? ∈ rana/(ran ready)
priority(taskIn?) = basePriority(taskIn?)
taskIn? , running task
newPriority? > topReadyPriority
ΞParameter
tasks ′ = tasks
running task ′ = taskIn?
ready ′ = ready ⊕ { (priority(taskIn?) 7→ squash(ready(priority(taskIn?)) −B {taskIn?}),

newPriority? 7→ 〈taskIn?〉) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = priority ⊕ {(taskIn? 7→ newPriority?)}
basePriority ′ = basePriority ⊕ {(taskIn? 7→ newPriority?)}
ΞClockData
topReadyPriority ′ = newPriority?
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 55: Operation schema SetPriorityAndReschedule2 specifying
vTaskPrioritySet for increasing the priority of a ready task to a value higher than
the priority of running task.

52

SetPriorityAndReschedule3

∆Task
taskIn? : TASK
newPriority? : N
runnerUpPrty : N

newPriority? ∈ dom ready
schedulerRunning = TRUE
taskIn? = running task
newPriority? < topReadyPriority
newPriority? < runnerUpPrty
priority(taskIn?) = basePriority(taskIn?)
tail ready(topReadyPriority) = 〈〉

runnerUpPrty ∈ dom ready
runnerUpPrty < topReadyPriority
ready(runnerUpPrty) , 〈〉
∀ j :∈ dom ready | ((ready(j) , 〈〉) ∧ (j , topReadyPriority)) • j ≤ runnerUpPrty
newPriority? ≤ runnerUpPrty
ΞParameter
tasks ′ = tasks
running task ′ = head ready(runnerUpPrty)
ready ′ = ready ⊕ { (priority(taskIn?) 7→ tail ready(priority(taskIn?))),

(newPriority? 7→ ready(newPriority?) a 〈taskIn?〉) }
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended
priority ′ = priority ⊕ {(taskIn? 7→ newPriority?)}
basePriority ′ = basePriority ⊕ {(taskIn? 7→ newPriority?)}
ΞClockData
topReadyPriority ′ = runnerUpPrty
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 56: Operation schema SetPriorityAndReschedule3 specifying
vTaskPrioritySet for decreasing the priority of running task when running
task is the only task in the sequence corresponding to the priority of running task.

53

SuspendRunningTask1

∆Task
running! : TASK

schedulerRunning = TRUE
running task , idle
tail ready(topReadyPriority) , 〈〉
ΞParameter
tasks ′ = tasks
running task ′ = head tail ready(topReadyPriority)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority))}
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended ∪ {running task }
ΞPrioData
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 57: Operation schema SuspendRunningTask1 specifying vTaskSuspend
API when there exists at least one more task in the sequence corresponding to the
priority of running task.

topReadyPriority to the priority of the newly scheduled task.
FreeRTOS provides an API vTaskSuspend to suspend a task. The task to be

suspended will be moved from the present list to the suspended list. FreeRTOS
also provides an API vTaskResume to resume a suspended task, which changes the
state of suspended task to ready. Our Z model allows a state change to suspended
only if the task to be suspended is either running or ready to run. In the other cases
the task to be suspended will be either delayed or blocked. Suspend and resume
operations on the delayed/blocked task can be virtually performed by setting and
clearing a boolean flag in the task data structure while it is delayed/blocked.

The operation schemas of Figures 57,58 and 59 specify the function for sus-
pending a ready task.

Precondition of the schema in Figure 57 specifies that there is one or more
tasks in the ready list of running task and it schedules the oldest task among such
tasks. The task lists suspended and ready are updated as required.

Precondition of the schema in Figure 58 specifies that there is no other task
in the ready list of running task. Therefore this schema schedules the head of the
next highest nonempty ready list and updates topReadyPriority to the priority of
newly scheduled task. Such a nonempty list is assumed in the precondition. The
task lists suspended and ready are updated as required.

The operation schema in Figure 59 specifies the function for suspending ready

54

SuspendRunningTask2

∆Task
runnerUpPrty : N
running! : TASK

schedulerRunning = TRUE
running task , idle
tail ready(topReadyPriority) = 〈〉

runnerUpPrty ∈ dom ready
runnerUpPrty < topReadyPriority
ready(runnerUpPrty) , 〈〉
∀ j :∈ dom ready | ((ready(j) , 〈〉) ∧ (j , topReadyPriority)) • j ≤ runnerUpPrty
ΞParameter
tasks ′ = tasks
running task ′ = head ready(runnerUpPrty)
ready ′ = ready ⊕ { (topReadyPriority 7→ tail ready(topReadyPriority))}
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended ∪ {running task }
ΞPrioData
ΞClockData
topReadyPriority ′ = runnerUpPrty
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 58: Operation schema SuspendRunningTask2 specifying vTaskSuspend
API when running task is the only task in the sequence corresponding to the pri-
ority of running task.

55

SuspendReadyTask

∆Task
taskIn? : TASK
running! : TASK

schedulerRunning = TRUE
taskIn? , idle
taskIn? ∈ rana/(ran ready)
taskIn? , running task
ΞParameter
ΞTaskData
ready ′ = ready ⊕ { (priority(taskIn?) 7→ squash(ready(taskIn?) −B {taskIn?})
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended ∪ {taskIn?}
ΞPrioData
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 59: Operation schema SuspendReadyTask specifying vTaskSuspend API
when task to be suspended in ready list but not the running task.

task which is not running. This schema updates the suspended and ready lists as
required.

The operation schema in Figure 60 specifies the function vTaskResume in
FreeRTOS. According to a precondition the priority of the task to be resumed
is less than or equal to the priority of running task and hence context switch is not
required. These schemas updates the suspended and ready lists as required.

The operation schema in Figure 61 specifies the function vTaskResume in
FreeRTOS. In this case, a precondition specifies that the priority of the task to
be resumed is greater than the priority of running task and hence context switch
is required. This schema updates the suspended and ready lists as required and
schedules the resumed task.

The operation schema in Figure 62 specifies the function xTaskGetTickCount
in FreeRTOS.

References
[1] Richard Barry. Using the FreeRTOS Real Time Kernel – A Practical Guide.

2010.

56

ResumeTask

∆Task
taskIn? : TASK
running! : TASK

schedulerRunning = TRUE
taskIn? ∈ suspended
priority(taskIn?) ≤ priority(running task)
ΞParameter
ΞTaskData
ready ′ = ready ⊕ { (priority(taskIn?) 7→ ready(priority(taskIn?)) a 〈taskIn?〉)}
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended \ {taskIn?}
ΞPrioData
ΞClockData
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 60: Operation schema ResumeTask specifying vTaskResume API when
task to be resumed has priority less than or equal to the priority of running task.

ResumeTaskAndSchedule

∆Task
taskIn? : TASK
running! : TASK

schedulerRunning = TRUE
taskIn? ∈ suspended
priority(taskIn?) > priority(running task)
ΞParameter
tasks ′ = tasks
running task ′ = taskIn?
ready ′ = ready ⊕ { (priority(taskIn?) 7→ 〈taskIn?〉)}
blocked ′ = blocked
delayedZ 2′ = delayedZ 2
oDelayed ′ = oDelayed
suspended ′ = suspended \ {taskIn?}
ΞPrioData
ΞClockData
topReadyPriority ′ = priority(taskIn?)
schedulerRunning ′ = schedulerRunning
running! = running task ′

Figure 61: Operation schema ResumeTaskAndSchedule specifying
vTaskResume API when task to be resumed has priority greater than the
priority of running task.

57

GetTickCount

∆Task
currentClock ! : N
running! : TASK

schedulerRunning = TRUE
ΞParameter
ΞTaskData
ΞListData
ΞPrioData
ΞClockData
currentTickCount! = tickCount
topReadyPriority ′ = topReadyPriority
schedulerRunning ′ = schedulerRunning
running! = running task

Figure 62: Operation schema GetTickCount specifying xTaskGetTickCount
API.

[2] Jim Woodcock and Jim Davies. Using Z: specification, refinement, and proof.
Prentice-Hall, 1996.

58

