Bugs found in FreeRTOS verification

February 9, 2014

FreeRTOS employs prioritized pre-emptive (or non pre-emptive) scheduling policy.
The scheduler always schedules highest priority ready task. The user can configure
FreeRTOS scheduler as pre-emptive or non pre-emptive. In the pre-emptive mode a
task entering the ready state or having its priority altered will always pre-empt the
running task if the running task has a lower priority. Low numeric priority values
denote low-priority tasks, with priority O being the lowest priority possible [1].

1 Bug in Priority Inheritance scheme

A Mutex is used to control access to a resource that is shared between two or more
tasks. The mutex can be thought of as a token that is associated with the resource being
shared. For a task to access the resource legitimately, it must first successfully take
the token (be the token holder). When the token holder has finished with the resource,
it must give the token back. Only when the token has been returned can another task
successfully take the token and then safely access the same shared resource. A task is
not permitted to access the shared resource unless it holds the token [1].

1.1 Priority Inversion

A higher priority task may have to wait for a lower priority task to give up control of a
mutex. A higher priority task being delayed by a lower priority task in this manner is
called priority inversion.

1.2 Priority Inheritance

Priority inheritance is a scheme that minimizes the negative effects of priority inversion.
Priority inheritance works by temporarily raising the priority of the mutex holder to that
of the highest priority task that is attempting to obtain the same mutex. The low priority
task that holds the mutex inherits the priority of the task waiting for the mutex. The
priority of the mutex holder is reset automatically to its original value when it gives the
mutex back.

Hence priority inheritance temporarily increases the priority of a low priority task
(mutex holder) to minimize/bound the amount of time that the higher priority task has
to wait for getting a mutex.

According to page number 58 of [1], “when more than one task blocked on a queue
say Q to complete an operation, only one task will be unblocked when the operation is
enabled on Q. The task that is unblocked will always be the highest priority task that



is waiting for the operation. If there are more than one blocked task with the highest
priority, then the longest waiting task will be unblocked.”

The implementation of the priority inheritance scheme in FreeRTOS fails to meet
its goal when the task (whose priority is required to be inherited from a higher priority
task) is blocked.

An application program demonstrating this bug is given in the file “main-1.c”. The
output of “main-1.c” is in the file “trace-1.txt”.

The cause of the bug is that the function vTaskPriorityInherit directly modi-
fies the value of a node in the event queue using the macro 1istSET_LIST_ITEM_VALUE
(without changing its position in the list), thereby violating the ordering property of the
queue.

We have verified the implementation of vTaskPriorityInherit with the follow-
ing modification to fix the above bug. Replaced the call to 1istSET_LIST_ITEM_VALUE
by calls to vListRemove,1istSET_LIST_ITEM VALUE, and then vListInsert.

2 Bug found in the API - vTaskPrioritySet

The vTaskPrioritySet API function can be used to change the priority of any task
after the scheduler has been started.

In a similar way to the bug given in sec. 1, the vTaskPrioritySet API function
fails to work correctly when it is used to change the priority of a blocked task.

An application program demonstrating this bug is given in “main-2.c” and its output
trace is in “trace-2.txt”.

Again the cause of the bug is that the function vTaskPrioritySet directly modi-
fies the value of a node in the event queue using the macro 1istSET_LIST_ITEM_VALUE
(without changing its position in the list), thereby violating the ordering property of the
queue.

We have verified the implementation of vTaskPrioritySet with the following
modification to fix the above bug. Replaced the call to 1istSET_LIST_ITEM_VALUE by
calls to vListRemove,listSET_LIST_ITEM_VALUE, and then vListInsert.

3 Bug found in the API - xTaskGenericCreate

FreeRTOS violates the convention of scheduling the longest waiting highest priority
task when the scheduler is started.

An application program demonstrating this bug is shown in “main-3.c” and its out-
put trace is shown in the file “trace-3.txt”.

The reason is that the function xTaskGenericCreate checks if the pxcurrentTCB’s
(pointer to the task to be scheduled when the scheduler is initialised) priority is less-
than-or-equal-to the newly created task’s priority, in which case it makes the newly
created task the pxcurrentTCB. In either case the newly created task is inserted at the
end of its ready list. This is probably being done to maintain the invariant that the
pxcurrentTCB is always at the end of the corresponding ready list.

An application program demonstrating this bug is given in “main-3.c” and its output
trace is in “trace-3.txt”.

The cause of the bug is that the guard for updating the pointer pxcurrentTCB in the
function xTaskGenericCreate uses the comparison operator < instead of <.



We have verified the implementation of xTaskGenericCreate by replacing the
comparison operator < by < and doing a rotate of the ready queue corresponding to the
top ready priority so that the pxcurrentTCB is at the end of its ready queue. The latter
is changed in the port specific code.

4 Bug found in the APIs - vTaskSuspend and vTaskRe-
sume

The FreeRTOS functions vTaskSuspend and vTaskResume are used to suspend and
resume a task in the system. Any task with access to the task handle of task # can
suspend/resume z.

The implementation of suspend and resume in FreeRTOS just moves the suspended
task to a suspended queue, and resume moves the task from here to the ready queue.
Thus a suspended and resumed task loses its context (if, for example, it was suspended
while it was in the delayed queue or event queue, on resumption it goes straight to
ready).

An application program demonstrating this bug is given in “main-4.c” and its output
trace is in “trace-4.txt”.

We have verified the implementations of vTaskSuspend and vTaskResume by
adding a precondition to the function vTaskSuspend to restrict the user to suspend a
task only if its state is ready.

Permitting task suspend only when a task is ready is not a problem as suspending a
blocked/delayed task can be implemented virtually by maintaining a boolean flag in the
task control block. This flag can be set (or cleared) if user requests suspend (or resume)
operation while a task is in blocked/delayed list. The scheduler should suspend the task
if this flag is set when the delay/block period is over.

5 Other issues

The FreeRTOS function vT askDelay is used to delay the current task for a given pe-
riod. The time to delay is given by an argument to this function, which represents the
number of tick interrupts that the calling task should remain in the Blocked state before
being transitioned back into the Ready state (page number 29 of [1]). Thus a task is
guaranteed to be blocked/delayed for the given period.

FreeRTOS fails to satisfy the above guaranty if the delayed task is suspended and
resumed within the delay period. This is again caused by the bug given sec. 4.

The variable uxTopReadyPriority is meant to have the priority of the top ready
task. This invariant is not maintained by the code, particularly when a task is moved
out from ready. This does not lead to a problem as vTaskSwitchContext is usually
called soon after, and restores the invariant. The invariant that is effectively maintained
is that uxTopReadyPriority is an upper bound on the priority of the top ready task.
It seems like it would be slightly more efficient to maintain the earlier invariant for
uxTopReadyPriority (namely that it is always the priority of the top ready task).

References

[1] Richard Barry. Using the FreeRTOS”" Real Time Kernel- A Practical Guide.



