
A Refinement-Based Methodology for Verifying
Abstract Data Type Implementations

A Thesis
Submitted For the Degree of

Doctor of Philosophy
in the Faculty of Engineering

by

Sumesh Divakaran

Computer Science and Automation
Indian Institute of Science
BANGALORE – 560 012

June 2015

c©Sumesh Divakaran
June 2015

All rights reserved

Acknowledgements
I sincerely thank Prof. Deepak D’Souza, for being an inspiring mentor and a
flexible supervisor with incredible patience. Being myself a teacher on deputa-
tion for pursuing PhD, I consider it a great opportunity to observe in him the
qualities of a good teacher and learn from them. I was really lucky to work
under his guidance.

I am also grateful to Prof. Deepak D’Souza for giving me opportunities to
collaborate with renowned researchers from both academia and research labs.
I express my gratitude to Prof. Jim Woodcock, Prof. Nigamanth Sridhar and
Dr. Prahladavaradan Sampath for their valuable suggestions. I would also
like to acknowledge the project funding agencies: UKIERI and Robert Bosh
Centre for Cyber Physical Systems, IISc for their financial support on various
occasions.

Education and research would not have been so enjoyable without good
infra-structural facilities and motivating faculty around. I would like to extend
my sincere thanks to Indian Institute of Science and the highly motivated
faculty and staff in the Department of Computer Science & Automation, for
providing me a wonderful environment with a nice academic ambiance. I have
greatly benefited being a part of the Programming Languages research group
discussions. My special thanks to the faculty members: Dr. K. V. Raghavan,
Dr. Aditya Kanade and Dr. Murali Kishna Ramanathan and also my fellow
student members of the group for all the helpful interactions and discussions.

I am grateful to Mr. Anirudh Kushwah, who helped me to complete a part
of a case-study in this thesis.

I extend my sincere gratitude to Government Engineering College, Idukki;
Department of Technical Education, Government of Kerala and All India
Council for Technical Education, Government of India for giving me this op-
portunity to pursue my PhD on QIP deputation with full salary.

I would like to thank all my friends who made my IISc life really enjoyable.
Discussions and debates with Rajmohan, Jasine, Deepak, Rogers, Dilip, Musa,
Sunil Sir, Pradeesha and many others were thrilling and memorable.

A special thanks to my daughter Lakshmi, son Arjun, wife Remya and my
parents for their loving support and for all their sacrifices on my behalf during
the busy schedule of my PhD work.

In the last thirteen years of my career as a teacher, I always found mo-
tivation from the encouraging responses and appreciation of my students. It
was the interactions with them that energized me to pursue higher education.
Last but not the least I extend my sincere thanks to all my students for their
support and care.

i

ii

Abstract

This thesis is about techniques for proving the functional correctness of Ab-
stract Data Type (ADT) implementations. We provide a framework for prov-
ing the functional correctness of imperative language implementations of ADTs,
using a theory of refinement. We develop a theory of refinement to reason about
both declarative and imperative language implementations of ADTs. Our the-
ory facilitates compositional reasoning about complex implementations that
may use several layers of sub-ADTs.

Based on our theory of refinement, we propose a methodology for proving
the functional correctness of an existing imperative language implementation
of an ADT. We propose a mechanizable translation from an abstract model in
the Z language to an abstract implementation in VCC’s ghost language. Then
we present a technique to carry out the refinement checks completely within
the VCC tool.

We apply our proposed methodology to prove the functional correctness
of the scheduling-related functionality of FreeRTOS, a popular open-source
real-time operating system. We focused on the scheduler-related functionality,
found major deviations from the intended behavior, and did a machine-checked
proof of the correctness of the fixed code.

We also present an efficient way to phrase the refinement conditions in
VCC, which considerably improves VCC’s performance. We evaluated this
technique on a simplified version of FreeRTOS which we constructed for this
verification exercise. Using our efficient approach, VCC always terminates and
leads to a reduction of over 90% in the total time taken by a naive check, when
evaluated on this case-study.

iii

iv

Publications from this thesis

1. Sumesh Divakaran, Deepak D’Souza and Nigamanth Sridhar.
Efficient Refinement Checking in VCC. Verified Software: Theories, Tools
and Experiments, 21-36 (VSTTE 2014). Springer -Verlag Lecture Notes
in Computer Science 2014, pp 21-36.

2. Sumesh Divakaran, Deepak D’Souza, Anirudh Kushwah,
Prahladavaradan Sampath,Nigamanth Sridhar and Jim Woodcock.
Refinement-Based Verification of the FreeRTOS scheduler in VCC (sub-
mitted to ICFEM 2015).

3. Sumesh Divakaran, Deepak D’Souza, Prahladavaradan Sampath,
Nigamanth Sridhar and Jim Woodcock. A theory of refinement for Ab-
stract Data Types with functional interfaces (preprint).

v

vi

Contents

Acknowledgements . i
Abstract . iii
Contributions to literature . v

1 Introduction 1
1.1 Background and motivation . 1
1.2 Techniques for proving functional correctness 4
1.3 Advantages of refinement-based approaches 6
1.4 Selecting a notion of refinement 7
1.5 The notion of refinement we use and its theory 9
1.6 Methodology for proving functional correctness 12
1.7 Verifying FreeRTOS: a case-study 14
1.8 Checking refinement conditions efficiently 15
1.9 Outline . 16

2 Abstract Data Types and Refinement 17
2.1 Preliminaries . 17
2.2 Abstract data types . 19
2.3 Client transition systems . 20
2.4 Refinement between ADTs . 22
2.5 Verification guarantee . 23
2.6 Equivalent refinement condition 28
2.7 Related work . 30

3 ADT Transition Systems 33
3.1 ADT transition system . 33
3.2 Refinement between ADT transition systems 36
3.3 Equivalent refinement condition 37
3.4 Client ADT transition systems 40
3.5 Compositionality of refinement 42
3.6 Related work . 44

4 ADTs in Different Modeling Languages 45
4.1 ADTs in the Z language . 45

4.1.1 About the Z language 45
4.1.2 Specifying ADTs in Z . 46
4.1.3 Viewing Z models as ADTs 49

4.2 ADTs in the ghost language of VCC 52

vii

viii CONTENTS

4.2.1 VCC’s ghost language 52
4.2.2 Modeling ADTs in the ghost language 53

4.3 Viewing C implementations as ADTs 55

5 Methodology for Proving Functional Correctness 57
5.1 Directed refinement methodology 57
5.2 Phrasing refinement conditions 59

5.2.1 Refinement between Z models 60
5.2.2 Refinement between Z and C models 61
5.2.3 Z-to-VCC translation . 63
5.2.4 Refinement between ghost models 66
5.2.5 Refinement between ghost and C models 68
5.2.6 Refinement between C models 68

5.3 Proving refinement conditions in VCC 70
5.3.1 Direct-import approach 71
5.3.2 Combined approach . 72

5.4 Proving termination in VCC . 74
5.5 Handling shared data . 75

6 Conformal ADTs and Refinement 77
6.1 Conformal ADTs . 77
6.2 Refinement between conformal ADTs 80
6.3 Clients with conformal ADTs 81
6.4 Verification guarantee . 82
6.5 Equivalent refinement condition 86
6.6 Phrasing and verifying refinement conditions 88

7 FreeRTOS Case-Study 93
7.1 About FreeRTOS . 93
7.2 How FreeRTOS works . 94
7.3 Data-structures maintained by FreeRTOS 97
7.4 Overview of FreeRTOS verification 100
7.5 Details of steps in FreeRTOS verification 104

7.5.1 Z models . 105
7.5.2 Checking refinement between Z models 110
7.5.3 Verifying that P1 refinesM1 112
7.5.4 Verifying that xList refines xListMap 115
7.5.5 Handling shared data and proving termination 117
7.5.6 Verification effort involved 117

7.6 Bugs found . 118
7.7 Verifying FreeRTOS application 120
7.8 Related work . 121

8 Checking Refinement Conditions Efficiently 123
8.1 Motivation . 123
8.2 Proposed efficient approach . 125
8.3 Case-study: Simp-Sched . 128

CONTENTS ix

8.3.1 Proving the functional correctness of Simp-Sched 129
8.3.2 Code metrics and human effort involved 131
8.3.3 Performance comparison 131

9 Conclusion and Future Work 133
9.1 Future work . 133

Bibliography 137

A Non-deterministic ADTs and Refinement 141
A.1 Non-deterministic ADTs . 141
A.2 Refinement between NADTs . 142
A.3 Verification guarantee . 143
A.4 Sufficient refinement condition 144
A.5 Checking refinement condition 146

Index 149

x CONTENTS

Chapter 1

Introduction

This thesis presents techniques for proving the functional correctness of im-
perative language implementations of Abstract Data Types (ADTs). In the
motivation section we discuss the term verification with an emphasis on the
significance of verifying functional correctness. Next we describe different ap-
proaches to verifying functional correctness and highlight the advantages of
a refinement-based approach. We then give an overview of the contributions
made in this thesis.

1.1 Background and motivation
Program verification is the process of proving in a formal or mathematically
precise way that a model of a program or software system, satisfies a certain
property. There are a variety of properties considered in the literature, that
one could classify in a spectrum ranging from “lightweight” to “deep”.

We illustrate these properties via an example program which we will use
as a running example in this thesis. Consider the program of Fig. 1.1, which
gives an efficient implementation of a queue data-structure. It maintains the
contents of the queue in the array A starting from the position “beg” and
going up to “end-1”, wrapping around to the start of the array if necessary.
This C implementation satisfies the following properties: (i) the variables beg
and end can take any value in the set {0, 1, . . . , MAXLEN− 1}, (ii) the variable
len can take any value in the set {0, 1, . . . , MAXLEN}, (iii) the variables beg,
end and len are related by the formula “(beg + len) % MAXLEN = end” and
(iv) the sequence of elements stored in the array can be accessed by the ex-
pression “A[(beg+i) % MAXLEN]”, where 0 ≤ i < len. Fig. 1.2 shows two
instances of the queue data-structure in the program of Fig. 1.1, where the left
shows an instance after the sequence of operations: initialization followed by
three insertions, and the right shows an instance after a sequence of insertions
and deletions.

At one end of the spectrum of properties for program verification, we
have lightweight properties. For example, the following are some interest-
ing lightweight properties about the program c-queue of Fig. 1.1: “there is no
array-index out of bounds error in c-queue”, “c-queue satisfies the assertion

1

2 Chapter 1. Introduction

1: int A[MAXLEN]; 12: void enq(int t)
2: unsigned beg, end, len; 13: {
3: 14: if (len == MAXLEN)
4: void init() 15: assert(0); /* exception */
5: { 16: A[end] = t;
6: beg = 0; 17: if (end < MAXLEN-1)
7: end = 0; 18: end++;
8: len = 0; 19: else
9: } 20: end = 0;

10: 21: len++;
11: int deq() { ... } 22: }

Figure 1.1: A C implementation of a queue data-structure called c-queue.
The constant MAXLEN is a bound on the number of elements allowed in the
queue.

10 1020

0 1 32 0 1 2

100110

MAXLEN-1

beg end

MAXLEN-1

end beg

Figure 1.2: Two instances of the queue data-structure in the program of
Fig. 1.1.

at line 15”, or “c-queue satisfies the invariant that the number of elements in
the array A is less than or equal to the constant MAXLEN”.

A number of program verification techniques are available in the literature
for verifying lightweight properties like above.

Model checking is a well known verification technique. In model checking,
a transition system models the system to be verified and temporal logic is
usually used for property specification. Model checking performs an exhaustive
analysis of the model to prove the property of interest. Tools like Spin [28]
and Sal [19] can be used for model checking. Model checking could be used to
prove a property like, “a program satisfies an invariant”.

Program analysis is another verification technique, which could be used
to verify lightweight properties of a program. Abstract interpretation is a
commonly used program analysis technique in which a data flow analysis is
performed on an abstract model of the program, over-approximating its set
of all behaviors. For example, an abstract interpretation framework could be
used to prove the properties mentioned about the program c-queue.

At the other end of the spectrum of properties, we have deeper properties
like functional correctness. Functional correctness is a property of a system,
which ensures that the system satisfies its intended purpose (or functionality).
For example, consider a program to sort an array of integers. The intended

1.1. Background and motivation 3

content: seq Z

init():
content′ = 〈〉

enq(x: Z):
#content < k
content′ = content a〈x〉

deq():
result: Z
content 6= 〈〉
result = head(content)
content′ = tail(content)

Figure 1.3: An abstract specification z-queuek of the queue ADT, parameter-
ized by a constant k denoting the capacity of the queue.

purpose of this program is to return an output array which represents a sorted
permutation of the elements present in the input array.

Functional correctness is an important property about a program, since
it provides guarantees about the functionality of the program. For example,
consider the case of a Real-Time Operating System (RTOS), which provides
an operation to delay a task for a given period with respect to its previous
wake time. Guarantees about the functionality of this operation could be used
to prove that an RTOS application correctly implements a periodic task like
releasing a unit of oxygen at a fixed time interval. Thus here we want guaran-
tees about the functionality of the RTOS, which is deeper than the lightweight
properties discussed above. Moreover verification guarantees about the func-
tionality of an RTOS is vital for reasoning about applications developed over
an RTOS, which are used in safety-critical systems in fields like: avionics,
health-care and automotive.

The verification techniques discussed above are useful for proving lightweight
properties about a program and these techniques scale to large program mod-
els. However these techniques cannot prove deeper properties about a program
like functional correctness.

An Abstract Data Type (ADT) can be used to represent the functionality of
a program, which provides an interface of operations for the client programs to
interact with it. An ADT basically provides a set of interface operations in its
Application Programmer Interface (API). For example, the program c-queue
of Fig. 1.1, can be thought of as an implementation of a queue ADT with the
set of interface operations: {init, enq, deq}.

An ADT can be modeled in a mathematical specification language like Z
[46]. For example, Fig. 1.3 shows an abstract specification of a queue ADT in
a Z-like language. The specification, which we call z-queuek is parameterized
by a constant k representing the maximum length of the queue. The “type”
of the queue ADT is the set of operations: {init, enq, deq} in its API, and the
associated input/output type for each operation. For example, the operation
enq takes an integer argument and returns nothing (which we represent by a
dummy return value “ok”). The ADT has a state, in this case the value of the
variable content which is a finite sequence of integers denoting the contents
of the queue. The body of each operation (like enq) represents a Before-
After Predicate (BAP) on the input and the ADT states before and after the

4 Chapter 1. Introduction

operation. By convention, the primed variables like content′ denote the state
component in the after-state.

Each operation on the ADT works as follows: when called on a state of
the ADT with a given argument, it updates the state of the ADT and returns
a value in its output type to the caller. Thus, the enq operation when called
on a state s whose length is less than k, with an argument x , updates the
state to append x to s and returns ok. When an operation is called on a state
that lies outside its precondition (in the case of enq this happens when the
length of the queue is k or more), the operation is assumed to return a special
“exceptional” value “e” and update the state to a special “exceptional” state
E . Once in an exceptional state, all operations on the ADT must maintain the
exceptional state and return the exceptional value e. The exceptional state and
the exceptional value represent situations like “division by zero error”, “null-
pointer dereference” and “infinite loop” which are possible in an imperative
language implementation of an ADT.

Given a mathematical model and an implementation of an ADT, the imple-
mentation is said to be functionally correct with respect to the mathematical
model, if the implementation “conforms” to the model. The exact meaning of
what it means to conform to the model would vary according to the objective
of the verification process, but it could mean for instance that every execution
of the concrete implementation can be “matched” or “simulated” by an exe-
cution of the abstract model. For instance, the functional correctness of the
implementation c-queue of Fig. 1.1, which implements a queue ADT could be
proved with respect to the Z-like specification z-queuek of Fig. 1.3, whenever
the constant MAXLEN in c-queue is less than or equal to the parameter k of the
model.

1.2 Techniques for proving functional correct-
ness

There are essentially two approaches in the literature for proving the functional
correctness of an implementation of an ADT-like system.

The first approach uses function contracts for proving functional correct-
ness. A function contract is a requirement on a method, which is typically
specified using the requires and ensures annotations provided by a code
verification tool like VCC [15]. The requires annotation is a condition on
the before-state and input of a method and the ensures annotation is a pred-
icate relating the after-state and output of a method to its before-state and
input. For instance, Fig. 1.4 shows an example function contract required in
VCC to prove the functionality of the method init in the program c-queue
of Fig. 1.1. Tools like VCC support verification based on function contracts,
which basically perform a weakest precondition analysis on an annotated pro-
gram. Many recent verification efforts for functional correctness in the com-
munity [34, 7, 12, 42] have favored the use of function contracts.

The second technique in the literature for proving functional correctness is

1.3. Advantages of refinement-based approaches 5

void init()
_(requires \true)
_(ensures beg = 0)
_(ensures end = 0)
_(ensures len = 0)

{
//body of the method

}

Figure 1.4: Illustrating function contract for verifying the init method in the
program c-queue of Fig. 1.1.

1: tasks t;
2: init();
3: enq(0);
4: enq(1);
5: t = deq();
6: while (true)
8: {
9: if (*) // tick occured?

10: {
11: enq(t);
12: t = deq();
13: }
14: }

Figure 1.5: A client program interp that interprets two tasks of equal priority.
The data-type tasks is assumed to be integer.

based on a notion of refinement. The idea of program refinement was proposed
in the late 1970’s as a methodology for developing correct-by-construction soft-
ware systems. Here one begins with an abstract specification of the system’s
functionality in a concise and mathematically precise modeling language, and
successively refines it by adding implementation details to finally obtain an im-
plementation of the system which is guaranteed to “conform” to the high-level
specification. For example, one could use refinement to obtain the implemen-
tation c-queue of Fig. 1.1, from the abstract mathematical model z-queuek
of Fig. 1.3.

6 Chapter 1. Introduction

_(ghost int content[\natural]) int deq() { ... }
_(ghost \natural beg, end, len)

void enq(int a)
void init(void) _(requires len < k)
{ {

_(ghost beg = 0) _(ghost content[end] = a)
_(ghost end = 0) _(ghost len = len + 1)
_(ghost len = 0) _(ghost end = end + 1)

} }

Figure 1.6: A ghost version of z-queuek in VCC.

1.3 Advantages of refinement-based approaches
In our opinion, refinement-based approaches have several advantages over the
approach based on function contracts.

The first advantage is that a refinement-based approach provides a stand-
alone abstract specification (say A) of the implementation (say C), with the
guarantee that certain properties proved about a client program P that uses
A as an ADT (which we refer to as “P with A” and denote by “P[A]”) also
carry over for P with C (i.e. P[C]). Thus, to verify that P[C] satisfies a certain
property, it may be sufficient to check that P[A] satisfies the property. The
latter check is in terms of a simpler component (namely A) and can reduce
the work of a prover by an order of magnitude [32].

To illustrate this, consider a client program of the c-queue ADT, shown in
Fig. 1.5, which we call interp. With some imagination, one could view it as
“interpreting” or executing two tasks of equal priority running on an operating
system. Suppose we want to verify that the program interp, which uses the
c-queue ADT (that is interp[c-queue]) does not encounter an exception while
calling one of the queue operations, or that it satisfies an assertion on its local
state (like the assertion: (t == 0 || t == 1) at line 6). One could first prove
that the program with the abstract z-queuek ADT (that is interp[z-queuek])
verifies these properties and then infer by using a suitable theory of refinement
that the program with the concrete c-queue ADT (that is interp[c-queue])
also satisfies these properties whenever c-queue is a refinement of z-queuek .
The above proof can be done in a prover like VCC for example by using a
ghost implementation of the abstract z-queuek ADT called g-queuek , shown
in Fig. 1.6. Since g-queuek is a simpler program than c-queue the latter
check is more tractable for a prover than the former.

The second advantage of using refinement is that it enables the existing
clients of an ADT implementation to use a new, more efficient and refined
ADT implementation without sacrificing their proved properties. For example,
suppose we have an ADT implementation C that is used by several client
programs P1,P2, . . . about each of which we have proved certain properties ϕi .
We can now replace the ADT C in each of these clients by a more efficient one

1.4. Selecting a notion of refinement 7

C ′ refining C, to obtain Pi [C ′]. A suitable theory of refinement would let us
infer that each Pi [C ′] continues to satisfy ϕi . Thus by using refinement, one
can save the time and effort required to reprove the property ϕi for each Pi [C ′].

The third advantage of using refinement is that it makes the proof more
modular and transparent, since it breaks up the task of reasoning about a
complex implementation into smaller tasks, each of which is more manageable
for both a human and a prover. There are two different techniques, which can
be used in a refinement-based approach, to break up the complexity of proving
functional correctness in a single step. We illustrate these techniques in the
following paragraphs.

The first technique is to use a sequence of refinements to prove that a
complex implementation refines a high-level mathematical model. Suppose we
want to prove the functional correctness of a complex ADT implementation
C with respect to a high-level model M. In a verification based on function
contracts, a user may need to use complex formulas in function contracts,
when there is a large gap between the modelsM and C. Tools like VCC may
run out of memory when one tries to prove complex function contracts on
large models. On the other hand, in a refinement-based approach, one could
use a number of intermediate models to reduce the gap between M and C.
Thus a user could first divide the proof of refinement betweenM and C into
a number of smaller steps, each of which is to prove the refinement between
successive models in a refinement chain, starting with the high-level modelM
and ending with the implementation C. Then the user could infer by using a
suitable theory of refinement that C refinesM.

The second technique is to use simplified ADTs to reason about the cor-
rectness of a client program which calls operations from concrete ADT imple-
mentations. Suppose we want to prove a property ϕ about a client program
P which uses two ADT implementations C1 and C2. Thus the client program
is of the form P [C1][C2] and we need to prove that P [C1][C2] satisfies ϕ. Using
a notion of refinement, one could divide this proof into three steps. Let G1
and G2 be simplified ghost implementations of C1 and C2 respectively. The
first step is to prove that P [G1][G2] satisfies ϕ. The second and third steps
need to prove that each Ci refines Gi . Then the user could infer by using a
suitable theory of refinement that P [C1][C2] refines P [G1][G2] and hence also
that P [C1][C2] satisfies ϕ.

1.4 Selecting a notion of refinement
In this section we discuss different notions of refinement in the literature and
attempt to justify why we prefer one of these notions - namely the VDM/Z
style of refinement - over the others.

The notion of refinement in Event-B [4] is that the abstract simulates the
concrete. This notion allows a concrete operation to strengthen its precondition
[3] and hence provides rather weak guarantees in terms of the properties of
P[A] that carry over to P[C]. If C refines A in this notion of refinement, then
it means that any execution of C that is “exception-free” – that is it does not

8 Chapter 1. Introduction

cause an exception due to say a null-dereference or divide-by-zero error, or
due to non-termination of a loop – can be simulated by an execution of the
abstract specification A.

To illustrate why one would normally want a stronger guarantee than the
above, consider a client program P that is “happy” with an ADT A, in that
P[A] never makes a call that causes an exception and that all its assertions on
its local state are verifiable. Then this notion of refinement will not guarantee
that P will be happy with a refinement C of A as well. In particular, P[C]
can contain an exceptional behavior, even though P[A] did not. For exam-
ple, c-queue2 is a refinement of c-queue3 in this notion of refinement, since
c-queue3 can simulate c-queue2. However a client program which is happy
with c-queue3 will not be happy with c-queue2, since c-queue3 allows op-
eration sequences like “(init, nil, ok), (enq, 1, ok), (enq, 2, ok), (enq, 3, ok)” which
c-queue2 does not.

Liskov and Wing give a notion of refinement in the form of behavioral
subtyping [37]. In a deterministic setting, their refinement notion requires both
the abstract and concrete ADTs to simulate each other. This requirement is
too strong as it does not allow certain refinements, which are valid in the sense
that they preserve the properties required to satisfy the existing clients of the
abstract ADT. For instance, c-queue3 cannot refine c-queue2 in this notion
of refinement, since c-queue2 cannot simulate c-queue3.

The VDM/Z style of refinement [13, 30, 5, 46, 26] preserves the properties
required to satisfy the existing clients of the abstract ADT in the above sense.
In this notion of refinement a concrete ADT must allow an operation whenever
the operation is allowed by the abstract ADT. Thus here refinement basically
means reduction of non-determinism and it allows precondition weakening. In
this notion an ADT is defined to have two special operations namely initializa-
tion and finalization whose purpose is respectively to convert a global (client’s)
state into an ADT state and convert an ADT state to a global state. Thus a
client’s interaction with the ADT is considered as a sequence of ADT opera-
tions starting with the initialization operation and ending with a finalization
operation.

We prefer the VDM/Z style of refinement over the other notions of re-
finement discussed above. It is preferable over the notion of refinement in
behavioral subtyping [37], since it allows more refinements than the other no-
tion, while preserving the properties required to satisfy the existing clients of
an abstract ADT. For instance the VDM/Z style allows c-queue3 to refine
c-queue2 which is not allowed by the other notion. We prefer the VDM/Z
style of refinement over the Event-B notion of refinement, since it is stronger
than the latter in the sense of satisfying the clients of an abstract ADT. For
example if C refines A in the VDM/Z style of refinement and if exception is
non-reachable in P [A], then P [C] will never lead to an exception and every
behaviour of P [C] is also a behaviour of P [A]. On the other hand the Event-B
notion of refinement cannot provide a guarantee as discussed above.

However there are some shortcomings in the VDM/Z style of refinement
which we would like to rectify. The first problem is the way a client can

1.5. The notion of refinement we use and its theory 9

interact with an ADT. A client’s interaction must start with an invocation
to the initialization operation to convert a client state to an ADT state and
end with an invocation to the finalization operation to convert an ADT state
to a client state. Thus a client needs to remember the ADT state in this
notion of refinement. But we need a more natural approach where a client
need not remember the ADT state and a client can interact with the ADT
by invoking an ADT operation by passing input if any and receiving output if
any is returned from the ADT operation.

1.5 The notion of refinement we use and its
theory

We use a notion of refinement similar in spirit to the VDM/Z style, except that
we change the definition of an ADT (mainly its interface) to allow operations
to have input arguments and output values. Thus a client program does not
need the initialization/finalization constructs, but instead repeatedly interacts
with the ADT by calling its operation, each time passing an argument and
making use of the return value. Our definition of refinement is then in terms
of the sequences of operations allowed by the abstract and concrete ADTs.

There is a natural notion of the set of (initialized) sequences of opera-
tion calls allowed by an ADT. Each element of such a sequence is of the
form “(n, a, b)” where n is an operation name, and a and b are respectively
input and output to the operation. For example, z-queue2 allows the se-
quence: (init, nil, ok), (enq, 1, ok), (deq, nil, 1) (here “nil” represents a dummy
input value). This sequence of calls is exception-free. It also allows the se-
quence: (init, nil, ok), (deq, nil, e), which however contains an exception. In
a deterministic setting we say an ADT C refines another ADT A of the
same type, if every exception-free sequence of operations allowed by A must
also be allowed by C. Thus, z-queue3 refines z-queue2, but not vice-versa
since z-queue3 allows the sequences like: (init, nil, ok), (enq, 1, ok), (enq, 2, ok),
(enq, 3, ok) which z-queue2 does not.

This notion of refinement satisfies the requirements discussed above. In
particular, if a client program is happy with an ADT A (in the above sense)
then it will continue to be happy with an ADT C that refines A. This notion
of refinement is clearly also transitive.

A trace-based notion of refinement similar to the above was discussed in the
technical report [1] by Hoare et al, where they considered non-deterministic
ADTs. In their notion of refinement a concrete ADT C refines an abstract
ADT A, if every legal sequence of interactions allowed by C is also allowed by
the totalized version of A. The totalized version of an ADT allows all possi-
ble transitions when an operation is called outside its precondition. However
this notion appears to have been abandoned in favour of the one based on
initialization/finalization in the final version [26].

We give a refinement condition (RC) based on a simulation relation, which
is sufficient to ensure the proposed notion of refinement, and which is also

10 Chapter 1. Introduction

ready, blocked : seq tasks
. . .

init(): ready′ = blocked ′ = 〈〉

create(t: tasks):
ready′ = ready a 〈t〉

resched(cur : tasks):
result: tasks
result = head(ready a 〈cur〉)
ready′ = tail(ready a 〈cur〉)

delay(cur : tasks):
. . .

Figure 1.7: z-sched: An abstract specification of a scheduler ADT.

1: task resched(task cur)
2: {
3: task t;
4: enq(cur);
5: t = deq();
6: return t;
7: }

Figure 1.8: A part of the C implementation c-sched showing the method
resched, which implements the reschedule operation of the scheduler ADT,
that uses c-queue as a sub-ADT. The data-type task is assumed to denote
the type B, the set of bit values.

necessary in the case of deterministic ADTs. This is similar to the result in
[1]. We extend our notion of refinement to deterministic transition systems
modeling ADT implementations. Then we lift our equivalent refinement con-
dition (RC) to ADT implementations. Thus we have a sound and complete
characterization of refinement between ADT implementations as well. We also
prove a substitutivity theorem for ADT implementations, which enables us
to propose a compositional refinement methodology for reasoning about com-
plex ADT implementations which make use of sub-ADTs. In the subsequent
paragraphs we illustrate the use of our substitutivity theorem for proving the
functional correctness of a complex ADT implementation.

Complex ADT implementations often take service from sub-ADTs to im-
plement some operations in their APIs. For example, consider a simple OS
scheduler, which maintains a set of ready tasks (ordered according to arrival
time), and a set of blocked tasks, among other things. We can view the sched-
uler as an ADT that provides the following operations: (i) init, which initializes
the lists to empty, (ii) create, which takes a new task and adds it to the end
of the ready list, and (iii) resched, which takes the currently running task as
input, adds it to the end of the ready list, removes the task at the head of the
new ready list and returns it as the next task to run.

Fig. 1.7 shows an abstract specification of the scheduler ADT, called z-sched
and Fig. 1.8 shows a method, which implements the reschedule operation which
is a part of the C implementation called c-sched of the scheduler ADT.

1.5. The notion of refinement we use and its theory 11

c-queue c-sched

c-schedg-queue

z-sched

c-sched[c-queue]

c-sched[g-queue]

Figure 1.9: Strategy to prove that c-sched[c-queue] refines z-sched. Thick
upward arrows denote refinements to be proved directly and the dotted arrow
denotes the refinement which can be inferred using our substitutivity result.

Suppose we want to show that c-sched refines z-sched. We would like to
reason about this in a step-by-step manner to reduce the complexity involved in
doing this in a single step. As a first step, we could abstract the c-queue com-
ponent and replace it by the simpler and more-abstract g-queue component
(see Fig. 1.6), and argue that c-sched[g-queue] refines z-sched. As a second
step we would need to argue that c-sched[c-queue] refines c-sched[g-queue].
This is depicted in Fig. 1.9. Our substitutivity result tells us that to do this
second step, it is sufficient to show that c-queue refines g-queue. It is in this
way that the substitutivity result adds compositionality to our verification
process.

Conventional notions of refinement handle non-determinism which is a use-
ful mechanism to ease the modeling process. Also it enables the user to delay
the resolution of a non-deterministic choice to a later stage in refinement. To
illustrate the flexibility provided by non-determinism, consider a simple oper-
ating system scheduler where tasks are of the same priority. Here the abstract
model of the scheduler could be specified to schedule any one of the set of ready
tasks. Thus in the abstract model, the user does not have to worry about the
implementation details like the order in which the tasks are maintained. We
propose an extension of our refinement theory to handle non-determinism,
which also assures stronger guarantees to the clients. We extend our theory in
such a manner to preserve exactly the same set of properties preserved by our
notion of refinement for deterministic ADTs.

12 Chapter 1. Introduction

Simplified ADT implementation P1

Concrete ADT implementation P

High-level ADT modelM

Low-level ADT modelM1

Figure 1.10: Illustrating the methodology for proving functional correctness.
Thick arrows denote refinements to be proved directly and the dashed arrow
denotes the refinement, which can be inferred using our transitivity result.

1.6 Methodology for proving functional cor-
rectness

We propose a methodology for proving the functional correctness of an imper-
ative language implementation of an ADT-like system. The proposed method-
ology is based on our theory of refinement. We also propose a couple of tech-
niques to use existing tools such as VCC for proving the refinement conditions
which are required to prove the functional correctness of an ADT implemen-
tation.

Fig. 1.10 illustrates our methodology for proving the functional correctness
of an ADT implementation P .

The first step in the methodology is to specify the functionality of P in
a mathematically precise specification language like Z. LetM be a high-level
mathematical model in Z, specifying the intended behavior of P .

The second step in the methodology is to obtain a simplified ADT im-
plementation say P1 from P by replacing the sub-ADTs, if any, in P with
simplified versions of the sub-ADTs. For instance, suppose P is the implemen-
tation of the scheduler ADT c-sched of Fig. 1.8. The ADT c-sched uses the
sub-ADT c-queue and thus is of the form c-sched[c-queue]. Now we could
replace c-queue in P with the ghost version g-queue of Fig. 1.6, to obtain the
simplified ADT implementation P1 which is of the form c-sched[g-queue].

The next step in the methodology is to reduce the gap between the models
M and P1 by using a number of intermediate ADT models. Let M1 be a
low-level ADT model which refines the high-level ADT model M such that
the modelM1 is sufficiently close to the model P1. For instance, suppose the
set of ready tasks (of same priority) is modeled as a sequence of maximum
length 1024 in the high-level model M, while these tasks are maintained in
two arrays of length 512 each in the simplified scheduler implementation P1.
In this case, we could refineM toM1 by dividing the single sequence of ready

1.6. Methodology for proving functional correctness 13

tasks into two sequences to reduce the gap betweenM and P1.

The methodology now requires to prove that the simplified ADT implemen-
tation P1 refines the low-level ADT modelM1. After proving this refinement,
the next step is to prove the refinement between the concrete sub-ADTs and
their simplified versions used in P1. For instance, in the above example we
need to prove that c-queue refines g-queue.

Finally we can infer using our substitutivity and transitivity results that
the existing implementation P refines the high-level ADT modelM.

A natural question a VCC expert may now ask is why we chose to build a
“metatheory” of refinement on top of VCC, instead of using its internal style
of data abstractions as illustrated in [14]. In the latter idiom, to prove an
assertion about a client program P with a concrete ADT implementation C,
one constructs a joint ADT AC which contains a ghost version of the ADT
called A, and includes a coupling constraint between the states of A and
C. One then proves the assertion in P [AC]. By the restrictions imposed by
VCC on ghost code, it follows that the assertion must continue to hold on
the original program P [C] as well. While this style of verification has many
of the advantages of a refinement-based approach, it loses out in a couple
of aspects. Firstly, VCC must reason about P with the joint structure AC
(instead of simply P [A] in a refinement-based approach). While it is possible
to control the portion of the joint state exposed to the prover, this requires
expert knowledge of VCC. Secondly, if we want to prove a property of P [C],
like a temporal logic specification, which is not possible with VCC, this idiom
is not of much use. On the other hand, using a meta-theory of refinement, we
could use VCC to prove that C refines A, prove the required property about
P [A] using non-VCC means, and infer the property for P [C].

We propose techniques for phrasing the refinement conditions between suc-
cessive models proposed in our verification methodology. Our aim is to formu-
late these conditions in a way that enables us to use existing tools like Z/Eves
[44] and VCC [15], or provers like PVS [41] and Z3 [18] to obtain machine-
checked proofs of correctness of the refinement conditions. However there are
some difficulties to use the existing tools to achieve this.

One problem is that performing a refinement proof between the abstract
models, like a proof thatM1 refinesM is challenging because the level of au-
tomation in tools such as Z/Eves [44] and Rodin [4] is inadequate, and requires
non-trivial human effort and expertise in theorem proving to get the prover
to discharge the proof obligations. To overcome this difficulty, we propose a
technique for using VCC to prove the refinement between abstract Z models.
The idea is to first translate the Z modelsM andM1 respectively to the ghost
implementations G and G1 in VCC, and then to prove in VCC that G1 refines
G. We propose a mechanizable translation procedure from a Z model to a
ghost implementation in VCC. We also present a technique in VCC to check
the refinement between ghost models.

14 Chapter 1. Introduction

xListMap

xList

M

M1

P

P1

USched

USched

High-level scheduler ADT M

Low-level scheduler ADT M1

Figure 1.11: Illustrating the correctness proof of FreeRTOS. Solid upward-
arrows denote directly proved refinements, the dotted arrow denotes the re-
finement inferred using our substitutivity result and the dashed arrow denotes
the refinement inferred using our transitivity result.

1.7 Verifying FreeRTOS: a case-study

We apply our methodology on a case-study where we verify the functional
correctness of the scheduler-related functionality of a popular open-source real-
time operating system called FreeRTOS [38]. FreeRTOS has a large community
of users. There are more than 100,000 downloads from SourceForge each year,
putting it in the top 100 most-downloaded SourceForge codes. FreeRTOS
is architected in a modular fashion. It has a portable layer which contains
compiler/processor independent code (2,500 lines of C code), most of it in 3 C
files task.c, queue.c, and list.c. The non-portable (or hardware-specific)
layer is present in a separate directory associated with each compiler/processor
pair, and is written in C and assembly.

We view the scheduler-related functionality of the FreeRTOS kernel as an
ADT, specify its intended behavior in Z, and then verify that the implemen-
tation refines the Z model. The code verification tool, VCC is used to verify
the refinement conditions in this case-study.

Fig. 1.11 illustrates the strategy used to prove the functional correctness of
the FreeRTOS scheduler. We started with a high-level Z model calledM, spec-
ifying the intended functionality of FreeRTOS. We then obtained a simplified
FreeRTOS implementation say P1 from the existing FreeRTOS implementa-
tion P by replacing a linked list sub-ADT called xList in P with an abstract
ADT in VCC’s ghost language called xListMap. Next we refined the high-level
Z modelM to a low-level Z model calledM1 to capture some implementation
details from P1.

1.8. Checking refinement conditions efficiently 15

We then tried to prove that P1 refines M1. In this step, we have found
a number of subtle bugs (deviations from the high-level model M) in the
implementation of the FreeRTOS scheduler. We reported these bugs to the
developers of FreeRTOS who acknowledged that the reported behaviors were
indeed deviations from what they had intended. We fixed all the bugs found in
the FreeRTOS scheduler and proved that the fixed code say P ′1 is a refinement
ofM1.

Finally we proved that the concrete sub-ADT xList is a refinement of the
abstract sub-ADT xListMap. We then concluded using our substitutivity and
transitivity results that P ′ refines M. This version of FreeRTOS (P ′) can
thus be viewed as a piece of software in which the sequential behaviour of
the task-related API’s has been formally specified and verified. By “sequen-
tial behaviour” we mean that each API behaves correctly in the absence of
interleaving with other API’s.

1.8 Checking refinement conditions efficiently
In our FreeRTOS case-study, we encountered a number of difficulties in carry-
ing out the proofs of successive refinements.

The first problem was the difficulty to prove the refinement between the
low-level Z model and the simplified scheduler implementation. The require-
ments from the Z model were imported as function contracts for the methods
in the implementation, by existentially quantifying away the components from
the Z model. However these function contracts make use of existential quan-
tifications which are difficult to handle for a verification tool like VCC. To
solve this problem, we transformed each of these formulas to a logically equiv-
alent formula which does not use existential quantifications. Nonetheless this
technique also has the disadvantage that a manual translation can be error
prone and hence the equivalence should ideally be checked in a theorem prover
like PVS or Isabelle/HOL.

The second problem we identified was the issue with the scalability of a
code verification tool like VCC for carrying out the refinement checks. VCC
may take a lot of time to prove the refinement conditions or may even run out
of memory for large imperative language models.

We propose a technique to overcome the difficulties mentioned above. The
idea is to first translate the high-level Z model to a high-level ghost model in
VCC, by applying our Z-to-VCC translation procedure mentioned in Sec. 1.6.
Then the proofs of successive refinements from the high-level ghost model to
the existing implementation can be performed in VCC. We use the techniques
proposed in our methodology to prove these refinement conditions in VCC.

We also propose an efficient technique in VCC, which considerably improves
VCC’s performance for checking refinement conditions for large imperative
language models.

We evaluated our translation procedure and the efficient refinement check-
ing technique on a simplified version of FreeRTOS, which we constructed for
this verification exercise. Using our efficient refinement check, VCC always

16 Chapter 1.

terminates and leads to a reduction of over 90% in the total time taken by a
naive check, when evaluated on this case-study.

1.9 Outline
The rest of this thesis is organized as follows. Chap. 2 describes ADTs and a
notion of refinement between ADTs. A transition system model for an ADT
implementation is presented in Chap. 3, where we also describe the refinement
between ADT implementations. In Chap. 4, we describe the mathematical
ADTs induced by ADT specifications in different modeling languages. Chap. 5
describes a methodology for proving the functional correctness of a given ADT
implementation and also presents a couple of techniques for checking refine-
ment conditions using off-the-shelf tools. The concept of conformal ADTs is
presented in Chap. 6, where we also describe the refinement between conformal
ADTs. The FreeRTOS case-study is presented in Chap. 7, which is followed
by a chapter explaining an efficient technique in VCC to check refinement
conditions. Chap. 9 concludes this thesis with a discussion on future work.
An extension of our refinement theory to handle non-determinism is given in
Appendix A.

Chapter 2

Abstract Data Types and
Refinement

This chapter begins with a section introducing the common symbols and no-
tation used in the rest of this thesis. We then define Abstract Data Types
(ADTs) and discuss transition systems as clients of ADTs. Next we introduce
a notion of refinement between ADTs and describe the verification guarantees
provided to the clients by the proposed notion of refinement. We formulate an
equivalent refinement condition for a concrete ADT to refine an abstract ADT
in the proposed notion of refinement. The chapter concludes with a discussion
on the related work in the literature.

2.1 Preliminaries
A (labeled) transition system (TS) is a structure of the form S = (Q,Σ, s,∆)
where Q is a set of states, Σ a set of action labels, s the start state, and
∆ ⊆ Q×Σ×Q the transition relation. We use the notation “s l→ q” to denote
a transition from a state s to a state q in a transition system with the action
label l. Two states p and q are called adjacent if there exists a transition label
l such that p l→ q. Two transitions p l1→ q and r l2→ s are called adjacent if
q = r . That is, adjacent transitions are connected by a state. For example,
s a→ q and q b→ s are adjacent transitions in the transition system of Fig. 2.1(i).

A “path” is a sequence of adjacent transitions in a transition system. We

s q

(iii)

s q

(i)

s q

(ii)

a

b

b a

b

a

b

a

Figure 2.1: Example transition systems: (i) deterministic but not closed, (ii)
non-deterministic but closed and (iii) deterministic and closed.

17

18 Chapter 2. ADTs and Refinement

use the notation “p l1→ q l2→ r” to denote a path with the sequence of transi-
tions: p l1→ q and q l2→ r . This notation can be extended to paths of higher
lengths in a natural way. A path is called finite if it is a finite sequence of
transitions. For example, q b→ s b→ s is a finite path in the transition system
of Fig. 2.1(i). A path is called initial if it begins with the start state. For
example, s a→ s a→ q is an initial path in the transition system of Fig. 2.1(ii).
We use the notation “p1 · p2” to denote the concatenation of the paths p1 and
p2, where p1 is finite.

We use the notation “〈a, b, . . . , k〉” to denote a finite sequence of elements:
a, b . . . , k and the notation “s1 · s2”, to denote the concatenation of the se-
quences s1 and s2.

A “trace” in a transition system is a sequence of adjacent states in the
transition system. For example, 〈s, q, s〉 is an example trace in the transition
system of Fig. 2.1(ii). The trace associated with a path p, denoted “trace(p)”
is the sequence of states in it. For example, trace(s a→ s a→ q) = 〈s, s, q〉.

We use standard notation to deal with strings over an alphabet. For an
alphabet Σ, we use the notations: ε to denote the empty string, Σ∗ to denote
the set of all finite strings over Σ, Σω to denote the set of all infinite strings
over Σ, Σ∞ to denote the union of Σ∗ and Σω, and u · v or simply uv to denote
the concatenation of strings u and v.

The “word” associated with a path p, denoted “word(p)” is the concate-
nation of edge labels in p. For example, word(s a→ s a→ q) = aa. We use the
shorthand notation “s w−→ q” to denote a set of paths P from the state s to
the state q in a transition system with word(p) = w for each path p in P. For
example, s aa−→ q denotes the set of paths {s a→ s a→ q} in the transition system
of Fig. 2.1(ii).

The “language” associated with a transition system S, denoted “L(S)” is
the set of words associated with the set of all initial and finite paths in S (that
is, L(S) =

⋃
p∈P word(p), where P is the set of all initial and finite paths in

S). For example, the set {(ab)∗, (ab)∗ · a} represents the language associated
with the transition system of Fig. 2.1(iii).

We say a transition system S is deterministic if for each p ∈ Q and l ∈ Σ,
whenever p l→ q and p l→ q ′ we have q = q ′. We say a transition system S
is closed (or has no internal choice) if for each p ∈ Q and l, l ′ ∈ Σ, whenever
p l→ q and p l′→ q ′ we have l = l ′. Fig. 2.1 illustrates different types of
transition systems.

We use the standard symbols: B, N and Z respectively to denote the set
{0, 1} of bit values, the set of natural numbers and the set of integers. For a
finite set X , we use the notation X i to denote the set of sequences/strings of
length i over X .

2.2. Abstract data types 19

QTypeB = {init, enq, deq, Iinit,Oinit, Ienq,Oenq, Ideq,Odeq} where:

Iinit = {nil}

Oinit = {ok, e}

Ienq = B

Oenq = {ok, fail, e}

Ideq = {nil} and

Odeq = B ∪ {fail, e}

Figure 2.2: Example ADT type QTypeB.

2.2 Abstract data types
This section gives a formal definition of an Abstract Data Type (ADT). An
ADT essentially gives a set of operations in its Application Programmer In-
terface (API). The clients of an ADT can interact with the ADT by calling
operations in its API.
Definition 2.1 (ADT Type). An ADT type is a structure of the form:
N=(N , (In)n∈N , (On)n∈N), where N is a finite set of operation names, In and
On are respectively the input type and output type associated with an opera-
tion n in N. An input (or output) type is simply a set of values. We require
that there is a special exceptional value denoted by “e”, which belongs to each
output type On; and that the set of operations N includes a designated initial-
ization operation called init.

The type of an ADT defined above is considered as a sort in the literature
on algebraic specifications of ADTs. However we will use the term ADT type
to represent a tuple with a template as defined above, in the rest of this thesis.

We fix an ADT type N=(N , (In)n∈N , (On)n∈N) for the rest of this chapter.
As an example of an ADT type, consider a version of the queue example from
Sec. 1.1, that stores bits rather than integers. Fig. 2.2 shows this ADT type
which we call QTypeB. Here nil is a “dummy” argument for the operations
init and deq, and ok is a dummy return value for the operations init and enq.
Definition 2.2 (ADT). A (deterministic) ADT of type N can be defined as
a 4-tuple: A = (Q,U ,E , {opn}n∈N), where Q is the set of states of the ADT,
U ∈ Q is an arbitrary state in Q used as an uninitialized state, and E ∈ Q
is an exceptional state. Each opn is a realization of the operation n given
by opn : Q × In → Q × On such that opn(E ,−) = (E , e) and opn(p, a) =
(q, e) =⇒ q = E. Thus if an operation returns the exceptional value the
ADT moves to the exceptional state E, and all operations must keep it in
E thereafter. Further, we require that the init operation depends only on its
argument and not on the originating state: thus init(p, a) = init(q, a) for each
p, q ∈ Q \ {E} and a ∈ Iinit.

20 Chapter 2. ADTs and Refinement

QADT k = (Q,U ,E , {opn}n∈QTypeB) where:
Q = {ε} ∪

⋃k
i=1 Bi ∪ {E}

opinit(q, nil) =

{
(ε, ok) if q 6= E
(E , e) otherwise.

openq(q, a) =

{
(q · a, ok) if q 6= E and |q|< k
(E , e) otherwise.

opdeq(q, nil) =

{
(q ′, b) if q 6= E and q = b · q ′
(E , e) otherwise.

Figure 2.3: An ADT QADT k (parameterized by a length k) of type QTypeB.

Fig. 2.3 shows an example ADT called QADT k of type QTypeB. The
subscript k denotes the maximum number of elements allowed in the queue.
The state set Q comprises the set of all binary strings of lengths at most k,
representing the contents of the queue; and the exception state E . The ADT
QADT k enters the exception state in the following cases: (i) the enq operation
is invoked when the queue is full (|q|= k) or (ii) the deq operation is invoked
when the queue is empty (|q|= 0).

2.3 Client transition systems
In this section we describe transition systems whose action labels include calls
to operations from an ADT type N . Such transition systems are called N -
client transition systems. These transition systems are meant to model client
programs of an ADT, like the C program interp of Fig. 1.5, which is a client
of the c-queue ADT of Fig. 1.1.

Definition 2.3 (N -client transition system). An N -client transition system
is a transition system whose action labels include “calls” to an ADT of type
N . It is of the form S = (Q,Σ, s,E ,∆) where:

• Q is a set of states, with s ∈ Q the start state.

• Σ = Σl ∪ ΣN , where:

– Σl is a finite set of internal or local action labels.

– ΣN = {(n, a, b) | n ∈ N , a ∈ In, b ∈ On} is the set of operation call
labels corresponding to the ADT type N . The action label (n, a, b)
represents a call to operation n with input a that returns b.

• E ∈ Q is an exceptional state, which is reached when an exceptional
value is returned by the ADT.

• ∆ ⊆ Q × Σ×Q is the transition relation satisfying:

2.3. Client transition systems 21

(3,u)

(4,u)

(11,0)

if(*)if(*)

(2,u)

(6,0) (6,1)

(12,0)

(11,1)

(12,1)

(5,u)

(init, nil, ok)

(enq, 0, ok/fail)

(enq, 1, ok/fail)

(init, nil, e)

(enq, 0, e)

(enq, 1, e)

(deq, nil, 0)

(deq, nil, 0)(deq, nil, 1)

E

(enq, 1, e)

(deq, nil, e)
(deq, nil, e)

(deq, nil, 1)

(enq, 1, ok/fail)

(deq, nil, fail)

(deq, nil, fail)

(deq, nil, fail)

(enq, 0, ok/fail)

(deq, nil, 0)

(deq, nil, 1)

(deq, nil, e)

(enq, 0, e)

Figure 2.4: A QTypeB-client transition system Sinterp, which represents the C
program interp of Fig. 1.5.

– (p, c,E) ∈ ∆ iff c = (n, a, e) for some operation n in N and input a
in In (thus an exceptional return value leads to the exceptional state
and this is the only way to reach it).

– (p,−, q) ∈ ∆ implies p 6= E (E is a “dead” state).
– (p, (n, a, b), q) ∈ ∆ implies for each b′ ∈ On, there exists a q ′ such

that (p, (n, a, b′), q ′) ∈ ∆ (calls from a state are “complete” with
respect to return values, or in other words: an N -client transition
system must be ready to receive any value permitted by the output
type of an operation n in N, whenever it calls n).

Fig. 2.4 shows a QTypeB-client transition system called Sinterp, which rep-
resents the interp program of Fig. 1.5. In the sequel we will assume that
client transition systems always initialize the ADT they are using before mak-
ing calls to other operations on it. We note that an N -client transition system
is ready to receive any value in the output type On of an operation n in N ,
when it calls the ADT operation n. This is because, an implementation of an
ADT operation n in N is allowed to return any value in the output type On.

Now we describe a transition system which obtained from an N -client
transition system S, by plugging-in an ADT A of type N . We can take the
“product” of the transition systems S and A, denoted S[A], to obtain a new
transition system.

22 Chapter 2. ADTs and Refinement

if(*)

(4,u),0

(12,0),10 (12,1),01

(6,0),1

if(*)

(2,u),U

(5,u),01

(6,1),0

(11,0),1 (11,1),0

(enq, 1, ok)

(init, nil, ok)

(enq, 0, ok)

(enq, 1, ok)

(deq, nil, 0)(deq, nil, 1)

E

(enq, 0, ok)

(3,u),ε

(deq, nil, 0)

Figure 2.5: The transition system Sinterp[QADT 2].

Definition 2.4. Let S = (Q,Σ, s,E ,∆) be an N -client transition system and
let A = (Q′,U ′,E ′, {opn}n∈N) be an ADT of type N . Then we can define
the transition system obtained by using A in S, denoted “S[A]”, to be the
transition system (Q ×Q′,Σ, (s,U ′),∆′), where ∆′ is given by:

(p, p′) l→ (q, p′) if l ∈ Σl and p l→ q in S.
(p, p′) (n,a,b)→ (q, q ′) if (n, a, b) ∈ ΣN , p (n,a,b)→ q in S and

opn(p′, a) = (q ′, b).

Fig. 2.5 shows the transition system Sinterp[QADT 2], which is obtained by
plugging-in QADT 2 in the QTypeB-client transition system, Sinterp of Fig. 2.4.
Plugging-in an ADT of type N in an N -client transition system makes it a
closed transition system. For example, the transition system Sinterp[QADT 2]
of Fig. 2.5 is a closed transition system (see Sec. 2.1).

2.4 Refinement between ADTs
Let A = (Q,U ,E , {opn}n∈N) be an ADT of type N . Then A induces a (deter-
ministic) transition system SA = (Q,ΣN ,U ,∆), where the transition relation
∆ is given by: (p, (n, a, b), q) ∈ ∆ iff opn(p, a) = (q, b) and (p, (n, a, e),E) ∈
∆ iff opn(p, a) = (E , e). For example, Fig. 2.6 shows the transition system
SQADT 2

induced by the ADT QADT2 (see Fig. 2.3), where for simplicity, we
do not show uninitialized sequences of operations.

We define the language of initialized sequences of operation calls of A,

2.5. Verification guarantee 23

(enq, 1, ok)

(enq, 1, ok)

(deq, 1, ok)

(enq, 1/0, e)

0 1

(en
q,
0,

ok)

(d
eq
, 0
, o

k)

(enq, 0
, ok)

(enq, 1/0, e)

(enq, 1, ok) (enq, 0, ok)

(init, nil, ok)

(deq, 1, ok)
(deq, 0,

ok)

(init, nil, ok)
(init, nil, ok)

(init, nil, ok)

(init, nil, ok)

(init, n
il, o

k)

(init, nil, ok) (init, nil, ok)

11100100

U

ε

E

(−,−, e)

(enq, 1/0, e)(enq, 1/0, e)

(deq, nil, e)

(deq, 1, ok) (deq,
0,

ok)

Figure 2.6: The transition system SQADT 2
induced by the ADT QADT 2.

denoted “Linit(A)”, to be L(SA) ∩ ((init,−,−) · Σ∗N). We say a sequence of
operation calls w is exception-free if no call in it returns the exceptional value
e (i.e. w does not contain a call of the form (−,−, e)).

Definition 2.5 (Refinement). Let A and B be ADTs of type N . We say B
refines A, written “B � A”, iff each exception-free sequence of operations in
Linit(A) is also in Linit(B).

For example, Fig. 2.7 shows an ADT QADT ′k which is a refinement of the
ADT of Fig. 2.3. The operations enq and deq in QADT ′k return fail when the
queue is full or empty respectively. Note that QADT k fails with an exception
value in such situations. Also, QADT k refines QADT l whenever k ≥ l.

Proposition 2.1. Let A, B, and C be ADTs of type N , such that C � B, and
B � A. Then C � A.

Proof. Let w ∈ (Σ \ {−,−, e})∗ be an arbitrary exception-free sequence of
operation calls admitted by the ADT A. Then

w ∈ Linit(A) =⇒ w ∈ Linit(B) [Since B � A]
=⇒ w ∈ Linit(C) [Since C � B].

Thus every exception-free sequence of operation calls in Linit(A) is also in
Linit(C) and hence C � A.

2.5 Verification guarantee
We now describe the verification guarantee given by the above definition of
refinement. Let P be a client program which makes calls to an ADT of type

24 Chapter 2. ADTs and Refinement

QADT ′k = (Q,U ,E , {opn}n∈QTypeB) where
Q = {ε} ∪

⋃k
i=1 Bi ∪ {E}

opinit(q, nil) =

{
(ε, ok) if q 6= E
(E , e) otherwise.

openq(q, a) =


(q · a, ok) if q 6= E and |q|< k
(q, fail) if q 6= E and |q|= k
(E , e) otherwise.

opdeq(q, nil) =


(q ′, b) if q 6= E and q = b · q ′
(q, fail) if q 6= E and q = ε
(E , e) otherwise.

Figure 2.7: An ADT QADT ′k , which refines QADT k by returning fail in some
of the cases where QADT k returns an exception.

N , and let A and A′ be ADTs of the same type N such that A′ � A. We show
in this section that P [A] and P [A′] satisfy exactly the same set of temporal
properties when the exception state is non-reachable in P [A].

Let A = (Q,U ,E , {opn}n∈N) and A′ = (Q′,U ′,E ′, {op′n}n∈N) be two ADTs
of type N such that A′ refines A and let T = (R,Σl ∪ ΣN , s,ET ,∆) be an
N -client transition system. We fix A, A′ and T as above for the rest of this
section. There is a natural relation σ between the states of A′ and A such that
(q ′, q) ∈ σ, iff there exists an exception-free initial sequence of operations w
such that U w−→ q in A and U ′ w−→ q ′ in A′. We say that U w−→ q in A iff U w−→ q
in SA. We can use this relation to define a kind of isomorphism σ′ between
T [A′] and T [A]: a state (r , q ′) of T [A′] and a state (s, q) of T [A] are related
by σ′, iff r = s and σ(q ′, q) holds. Thus when two states are related by σ′ the
local states of the client transition system T in them are the same.

Theorem 2.1. Let A, A′, T and σ′ be as above. Then σ′ is an isomorphism
in the following sense:

1. if ((r , p′), (r , p)) ∈ σ′, and (r , p)
l→ (s, q) in T [A] with l a non-exception

action label, then there exists (s, q ′) in T [A′] such that (r , p′) l→ (s, q ′)
and ((s, q ′), (s, q)) ∈ σ′.

2. Conversely, if ((r , p′), (r , p)) ∈ σ′, and (r , p′) l→ (s, q ′) in T [A′], then
either there exists a state (s, q) in T [A] such that (r , p)

l→ (s, q) and
((s, q ′), (s, q)) ∈ σ′, or l is of the form (n, a, b) and (r , p)

(n,a,e)→ (−,E) in
T [A].

Proof.

1. Suppose ((r , p′), (r , p)) ∈ σ′, and (r , p)
l→ (s, q) in T [A] with l a non-

exception action label. There are two possibilities to consider here:

2.5. Verification guarantee 25

(a) l is a local action label in T . This means that r l→ s in T and then
it follows from the definition of T [A] that p = q. Now it follows
from the definition of T [A′] that (r , p′) l→ (s, p′). Also we have
((s, p′), (s, p)) ∈ σ′, since (p′, p) ∈ σ by assumption. Hence we are
done.

(b) l is of the form (n, a, b). Thus we have (r , p)
(n,a,b)→ (s, q) in T [A].

Then by definition of T [A], we have r (n,a,b)→ s in T and p (n,a,b)→ q in
A. It follows from the definition of σ that there exists an exception-
free initial sequence of operations w such that U w→ p in A and
U w→ p′ in A′, since we have (p′, p) ∈ σ. Thus we have U w·(n,a,b)→ q in
A. This implies that there exists a q ′ in Q′ such that U ′ w·(n,a,b)→ q ′ in
A′, sinceA′ � A by assumption. Therefore it follows that p′ (n,a,b)→ q ′

inA′, sinceA′ is deterministic, U ′ w·(n,a,b)→ q ′ inA′ and U ′ w→ p′ inA′.
Now it follows from the definition of T [A′] that (r , p′) (n,a,b)→ (s, q ′)
in T [A′], since we have r (n,a,b)→ s in T . Also it follows from the
definition of σ that (q ′, q) ∈ σ, since we have U w·(n,a,b)→ q in A and
U ′ w·(n,a,b)→ q ′ in A′. This implies that ((s, q ′), (s, q)) ∈ σ′ and hence
we are done.

2. Conversely, suppose ((r , p′), (r , p)) ∈ σ′, and (r , p′) l→ (s, q ′) in T [A′].
Here also we need to consider two cases:

(a) l is a local action label in T . This means that r l→ s in T and
then it follows from the definition of T [A′] that p′ = q ′. Now it
follows from the definition of T [A] that (r , p)

l→ (s, p). Also we
have ((s, p′), (s, p)) ∈ σ′, since (p′, p) ∈ σ by assumption. Hence we
are done.

(b) l is of the form (n, a, b). Thus we have (r , p′) (n,a,b)→ (s, q ′) in T [A′].
Then by definition of T [A′], we have r (n,a,b)→ s in T and p′ (n,a,b)→ q ′
in A′. It follows from the definition of σ that there exists an initial
exception-free sequence of operations w such that U w→ p in A and
U ′ w→ p′ in A′, since we have (p′, p) ∈ σ. Thus we have U ′ w·(n,a,b)→ q ′
in A′. This implies that either there exists a q in Q such that
U w·(n,a,b)→ q in A, or that U w·(n,a,e)→ E in A, since A′ � A by
assumption and U w→ p in A. The latter implies that p (n,a,e)→ E in
A, since A is deterministic and hence the result immediately follows
from the definition of T [A]. The former implies that p (n,a,b)→ q in A,
since A is deterministic, U w·(n,a,b)→ q in A and U w→ p in A. Hence
it follows from the definition of T [A] that (r , p)

(n,a,b)→ (s, q) in T [A],
since we have r (n,a,b)→ s in T . Also it follows from the definition of

26 Chapter 2. ADTs and Refinement

σ that (q ′, q) ∈ σ, since we have U w·(n,a,b)→ q in A and U ′ w·(n,a,b)→ q ′
in A′. Hence we have ((s, q ′), (s, q)) ∈ σ′ and we are done.

Let A, A′, T and σ′ be as above. Then a path p′ = v ′0
a′1→ v ′1 · · ·

a′m→ v ′m
in T [A′] is said to be σ′-equivalent to a path p = v0

a1→ v1 · · ·
an→ vn in T [A],

written “p′ σ
′

≡ p”, iff word(p′) = word(p) (see Sec. 2.1) and (v ′i , vi) ∈ σ′. We say
that two traces: t ′ = 〈v ′0, v ′1, · · · , v ′m〉 and t = 〈v0, v1, · · · , vn〉 in T [A′] and T [A]

respectively are σ′-equivalent, written “t ′ σ
′

≡ t”, iff m = n and (v ′i , vi) ∈ σ′.

Corollary 2.1. Let A, A′, T and σ′ be as above. Then Theorem 2.1 implies
the following:

1. For every path1 p in T [A], there exists a path p′ in T [A′] such that p′ σ
′

≡ p.

2. For every path p′ in T [A′], either there exists a path p in T [A] such that
p′ σ

′

≡ p or there exists a path ppref in T [A] such that p′ is of the form
p′pref

(n,a,b)→ p′suf with p′pref
σ′≡ ppref and ppref

(n,a,e)→ E ∈ T [A].

The condition 1 above follows from condition 1 of Theorem 2.1 and the
condition 2 follows from condition 2 of Theorem 2.1, since the start states of
T [A] and T [A′] are related by σ′.

We follow a notion of Linear Time (LT) properties similar to the one given
in Principles of model checking [8], to formalize the properties preserved by our
notion of refinement. Given a vocabulary Σ, an LT property ϕ is a subset of
the set of all strings in Σ∞ (see Sec. 2.1). For instance, consider the vocabulary
Σ as the state set Q in the transition system of Fig. 2.6, and an LT property ψ:
“it is always the case that the state label is not E and the length of the state
label (binary string) is at most 2”. This may be an interesting LT property
that we want to verify about the transition system of Fig. 2.6. Given an LT
property ϕ over Σ and a string t in Σ∞, t is in ϕ if t satisfies ϕ.

A given path p in a transition system satisfies ϕ, if trace(p) (sequence of
states in p) satisfies ϕ. For instance, the path corresponding to the trace
〈U 〉 · 〈ε, 0〉ω satisfies the property ψ above. A transition system satisfies an LT
property ϕ, if all its initial paths satisfy ϕ. The transition system of Fig. 2.6
does not satisfy the above property ψ, since some of its initial paths like the
path corresponding to the trace 〈U , ε,E〉 do not satisfy ψ.

Let t be a string in (R × S)∞. Then the notation “t � R” represents the
string obtained by projecting each symbol in the string t to the first component.
Thus, if t = 〈(r1, s1), (r2, s2), · · · , (rk , sk)〉, then t � R = 〈r1, r2, · · · , rk〉. Let A,
A′ and T be as above. Then a trace t ′ in T [A′] is said to be locally-equivalent
to a trace t in T [A], written “t ′ l≡ t” iff t ′ � R = t � R. Recall that R is the set
of states in T . That is, two traces t ′ and t in T [A′] and T [A] respectively are

1a path in these conditions is assumed to not contain an exception (a transition label of
the form (−,−, e)).

2.5. Verification guarantee 27

locally equivalent if they have the same number of states and also they have
the same local state (state in T) at the i th position in t ′ and t for all i in the
set {1, 2, . . .|t|}.

Definition 2.6 (Local LT property). Let A, A′ and T be as above. Then a
local LT property over a state vocabulary (R × S) is an LT property ϕ over
(R×S) such that for any two traces t ′ and t in (R×S)∞ with t ′ l≡ t, t ′ satisfies
ϕ iff t satisfies ϕ.

The properties about a client transition system preserved by our notion of
refinement is captured in the following theorem.

Theorem 2.2. Let A, A′ and T be as above. Let ϕ be a local LT property over
the vocabulary (R × (Q ∪ Q′)). Then if T [A] satisfy ϕ, either T [A′] will also
satisfy ϕ or each trace2 violating ϕ in T [A′] contains a prefix with a locally-
equivalent trace leading to the exception state in T [A]. In particular, if the
client T does not see an exception with the abstract ADT A, then both T [A]
and T [A′] satisfy exactly the same set of local LT properties.

Proof. Suppose t ′ is a trace in T [A′] violating ϕ. It follows from Corollary 2.1
that one of the following conditions is true:

1. there exists a trace t in T [A] such that t ′ l≡ t.

2. there exists a trace tpref in T [A] such that t ′ is of the form t ′pref · t ′suf with
t ′pref

l≡ tpref and tpref · 〈E〉 ∈ T [A].

Now condition 1 above cannot be true since it contradicts the assumption
that T [A] satisfies ϕ. Hence the condition 2 must be true and which gives a
prefix for t ′ as required in the theorem and hence we are done.

For example, suppose the interp program of Fig. 1.5, satisfies the follow-
ing properties when it calls the queue operations from the z-queue ADT of
Fig. 1.3: (i) the exception state is not reachable and (ii) the value of t is either
0 or 1 at line 6. This program is of the form interp[z-queue]. Now we can
infer from our theory of refinement that interp[c-queue] satisfies the above
properties when c-queue refines z-queue.

Let A be an ADT of type N and let P be a client program that calls
operations from the ADT A such that every ADT call returns a non-exception
value. We mention below some example properties about the client program
with the abstract ADT (P [A]), preserved by our notion of refinement.

1. Exception state is not reachable.

2. Satisfies a local assertion ψ.

2a trace here is assumed to begin with the start state of the transition system.

28 Chapter 2. ADTs and Refinement

p

p′

q
(n, a, b)

ρ

p

p′

(init, a, b)
qa

(init, a, b′)
q′

a

(init)

(sim)

and b 6= e

and b 6= e =⇒

p

p′

q
(n, a, b)

q′

ρ ρ

(n, a, b)

=⇒

p

p′

(init, a, b)

ρ

(init, a, b′)

qa

q′
a

and b = b′

Figure 2.8: Illustrating the equivalent condition (RC) for refinement.

3. Fairness: Every occurrence of the event “request”, which is represented
by a state in which a local variable say requested has the value true,
is eventually followed by an event “granted”, which is represented by a
state in which a local variable say granted has the value true.

4. Mutual exclusion: At most one process is allowed to enter a critical
section (this may be encoded as a condition on a local counter variable
representing the number of processes in a critical section).

5. Satisfies a local invariant φ.

It is easy to check that the above properties are local LT properties.

2.6 Equivalent refinement condition
Let A = (Q,U ,E , {opn}n∈N) and A′ = (Q′,U ′,E ′, {opn}n∈N) be ADTs of
type N = (N , (In)n∈N , (On)n∈N). We formulate an equivalent condition for
A′ to refine A, based on an “abstraction relation” that relates states of A′ to
states of A. We say A and A′ satisfy condition (RC) if there exists a relation
ρ ⊆ Q′ ×Q such that:

(init) Let a ∈ Iinit and let (qa, b) and (q ′a, b′) be the resultant states and outputs
after an init(a) operation in A and A′ respectively, with b 6= e. Then we
require that b = b′ and (q ′a, qa) ∈ ρ.

(sim) For each n ∈ N , a ∈ In, b ∈ On, and p′ ∈ Q′, with (p′, p) ∈ ρ, whenever
p (n,a,b)→ q in A with b 6= e, then there exists q ′ ∈ Q′ such that p′ (n,a,b)→ q ′
in A′ with (q ′, q) ∈ ρ.

Fig. 2.8 illustrates the equivalent refinement condition (RC).

2.6. Equivalent refinement condition 29

Theorem 2.3. Let A and A′ be two ADTs of type N . Then A′ � A iff they
satisfy condition (RC).

Proof.

(⇐) Let A = (Q,U ,E , {opn}n∈N) and A′ = (Q′,U ′,E ′, {op′n}n∈N) be two
ADTs of type N , and let ρ ⊆ Q′ × Q be an abstraction relation, such
that A and A′ satisfy condition (RC) with respect to ρ. We first prove
the following claim.

Claim 2.1. For any states p, q ∈ Q, p′ ∈ Q′ and an exception-free initial
sequence of operations w of the form w = (init, a, b) · u, if p w−→ q in A,
then there exists a state q ′ in Q′ such that p′ w−→ q ′ in A′ and (q ′, q) ∈ ρ.

Proof. We prove this claim by induction on the length of u.

(Basis) Let |u|= 0. Then w = (init, a, b), where a ∈ Iinit and b ∈ Oinit. Now
it follows from (init) of condition (RC) that there exists a q ′ in Q′

such that p′ (init,a,b)→ q ′ in A′ and (q ′, q) ∈ ρ. Hence we are done.
(Ind. step) Let |u|= k +1. Then w is of the form: w = (init, a, b) ·v · (n, an, bn),

where |v|= k, n ∈ N , an ∈ In, bn ∈ On and let p (init,a,b)·v→ r (n,an ,bn)→ q
be the path corresponding to w in A. It follows from the induction
hypothesis that there exists a state r ′ ∈ Q′ such that p′ (init,a,b)·v→ r ′
in A′ and (r ′, r) ∈ ρ. Now by (sim) of condition (RC), there exists
a state q ′ ∈ Q′ such that r ′ (n,an ,bn)→ q ′ in A′ and (q ′, q) ∈ ρ. Thus
we have p′ w→ q ′ in A′ and (q ′, q) ∈ ρ. Hence we are done.

Now it follows from Claim 2.1 that whenever w ∈ Linit(A) for any
exception-free sequence of operations w, we also have w ∈ Linit(A′).
This proves that A′ � A.

(⇒) Conversely suppose A′ � A. Let ρ be the relation σ ⊆ Q′×Q defined in
the proof of our verification guarantee in Sec. 2.5. Recall that (q ′, q) ∈ ρ,
iff there exists an exception-free initial sequence of operation calls w such
that U w→ q in A and U ′ w→ q ′ in A′.

To show that ρ satisfies (RC-init), suppose p (init,a,b)→ q in A. Then since
A′ refines A, we must have p′ (init,a,b)→ q ′ in A′ for some q ′ ∈ Q′. Also, by
definition of ρ, we have (q ′, q) ∈ ρ. Hence ρ satisfies (RC-init). Recall
that the init operation is independent of the state on which it is invoked.
We now show that ρ satisfies the condition (RC-sim). Suppose (p′, p) ∈ ρ,
and p (n,a,b)→ q in A with b 6= e. By definition of ρ, we know that there
exists an exception-free initial sequence of operations w such that U w→ p
in A and U ′ w→ p′ in A′. Since p (n,a,b)→ q in A by assumption, we have

30 Chapter 2. ADTs and Refinement

p1 p2

p3p4

q1 q2

put

get

put

get

A1 A2

get

put

Figure 2.9: A two-state ADT and a four-state ADT supporting the same set
of operation sequences {(put · get)∗, (put · get)∗ · put}.

U w·(n,a,b)→ q in A. Then by the assumption A′ � A, we have U ′ w·(n,a,b)→ q ′

in A′ for some q ′ ∈ Q′. Now it follows that p′ (n,a,b)→ q ′ in A′, since A′
is deterministic and we have U ′ w→ p′ in A′. Now by definition of ρ we
have (q ′, q) ∈ ρ, since we have U w·(n,a,b)→ q in A and U ′ w·(n,a,b)→ q ′ in A′.
Hence ρ satisfies (RC-sim).

In the above, ρ needs to be a relation and a function does not suffice. For
example, consider an ADT type with the set of operations {put, get}. There
can be a two-state ADT and a four-state ADT, each of which permits the set
of operation sequences {(put ·get)∗, (put ·get)∗ ·put} (see Fig. 2.9). Each one of
these ADTs refines the other, since they both allows the same set of operation
sequences. However there is no abstraction function possible from the states
of the two-state ADT to the states of the four-state ADT. Similarly a bijective
relation does not suffice, since for example there is no bijective relation possible
between the states of the ADTs in this example.

2.7 Related work
The notion of refinement in Event-B [4] satisfies the requirement that every
legal behaviour of a concrete ADT is also a legal behaviour of the abstract
ADT. One of the two conditions for refinement in this notion requires that
the abstract precondition is satisfied whenever the concrete precondition is
satisfied [3]. Thus precondition strengthening is allowed in this notion of re-
finement and hence a concrete ADT may not allow some legal operations al-
lowed by an abstract ADT. In our opinion, this notion is not strong enough
to satisfy the existing clients of an abstract ADT, since this notion gives the
concrete ADT the liberty to not allow certain exception-free behaviors allowed
by the abstract ADT. For instance, in this notion of refinement QADT 2 re-
fines QADT 3, since QADT 3 can simulate QADT 2. However clients of QADT 3

may not be happy with QADT 2, since it cannot allow certain behaviors like
“(init, nil, ok)(enq, 1, ok)(enq, 1, ok)(enq, 0, ok)” which QADT 3 allows. More-
over this notion does not allow what we consider to be valid refinements like

2.7. Related work 31

QADT 3 refining QADT 2, since QADT 2 cannot simulate QADT 3.
Liskov and Wing give a notion of refinement in the form of behavioral

subtyping [37]. In a deterministic setting, their refinement notion requires both
the abstract and concrete ADTs to simulate each other. This requirement is
too strong as it does not allow certain refinements, which are valid in the sense
that they preserve the properties required to satisfy the existing clients of the
abstract ADT. For instance, QADT 3 cannot refine QADT 2, since QADT 2

cannot simulate QADT 3.
The notion of refinement in VDM [13, 30], Z [5, 46] and [26] preserves the

properties required to satisfy the existing clients of the abstract ADT. However
in this notion of refinement, a program (or application context) is considered
as a sequence of ADT operations starting with an initialization operation and
ending with a finalization operation, where an initialization operation converts
a global state (client’s state) into a local ADT state and a finalization operation
converts a local ADT state back to a global state. Thus in this notion of
refinement a client program needs to remember the local state of an ADT in
the client’s state in order to invoke the initialization operation whenever the
client requires to interact with the ADT at a later point of time. On the
other hand our notion does not require the client to maintain the ADT state.
Also we proved a substitutivity result for ADTs which enables us to propose
a compositional way of reasoning about complex ADT implementations which
make use of sub-ADTs.

A trace-based notion of refinement similar to our notion was discussed in
the technical report [1] by Hoare et al. However they found to have abandoned
this notion and have presented a notion similar to the Z notion of refinement
in the published version [26]. Also they lack a compositional way of reasoning
about complex ADT implementations.

A trace-based notion of refinement between software libraries is presented
in [45] in the form of backward compatibility, where the concrete simulates
the observable behaviors allowed by the abstract. This notion preserves the
properties required to satisfy the existing clients of the abstract library in the
above sense. However their theory lacks the presence of an abstract model
of the library and hence the properties about the clients need to be proved
using the concrete library implementation. Also their theory cannot handle
liveness properties. They make an imprecise claim that there is a bijective
relation between the states of compatible libraries. This is not true in general
as illustrated by the above example in terms of a two-state ADT and a four-
state ADT supporting the same set of operation sequences.

32 Chapter 2. ADTs and Refinement

Chapter 3

ADT Transition Systems

This chapter begins with the definition of a special kind of transition system
called an ADT Transition System (ADT-TS), which models an imperative
language implementation of an ADT. ADT transition systems help us to extend
our trace-based notion of refinement for ADTs to ADT implementations as
well. We define a notion of refinement between ADT transition systems and
also describe an equivalent condition for refinement between ADT transition
systems.

We are interested in arguing about complex ADT implementations which
use several layers of sub-ADT s. By the term sub-ADT we simply mean a
stand-alone ADT that is used in the implementation of another ADT, and not
in the sense of a sub-algebraic structure.

We introduce the notion of a client ADT-TS to model an ADT implemen-
tation which in turn calls operations of a sub-ADT. We then state and prove a
substitutivity theorem, which gives us a compositional way of reasoning about
complex ADT implementations.

3.1 ADT transition system
Consider the program c-queue of Fig. 1.1. This program implements an ADT
of a type QTypeZ, which is similar to the ADT type QTypeB defined in Fig. 2.2,
except that the input and output values are integers rather than bits. We use
the term “method” to denote an imperative language implementation of an
ADT operation. For example, the init method in the program c-queue of
Fig. 1.1, implements the operation init in the ADT type QTypeZ.

A program like c-queue which implements an ADT can be modeled by
what we call an “ADT transition system”. How can we model a program like
c-queue as a transition system? We could represent a state in the transition
system as an n-tuple “(loc, v(x1), . . . , v(xn−1))”, where loc is the line number of
the next statement to execute and v is a valuation to the variables x1, . . . , xn−1
in the program. For example, the six-tuple (8, 〈〉, 0, 0, u, nil), represents the
state of the program c-queue just before executing the statement at line 8 in
the init method. In this state, the array A is empty, the variables beg and
end have the same value 0, the variable len has the uninitialized value u and

33

34 Chapter 3. ADT Transition Systems

(6,u,u,u,u,nil) (7,u,0,u,u,nil) (8, 〈〉, 0, 0, u, nil) (9, 〈〉, 0, 0, 0, nil)

len = 0end = 0beg = 0

(0,u,u,u,u,u) (0, 〈〉, 0, 0, 0, u)

ret(ok)in(nil)

Figure 3.1: Transition system induced by the init method in the program
c-queue of Fig. 1.1.

the argument has the dummy value nil. We can use transitions to represent
the state changes induced by the statements of the program. For example, the
transition (8, 〈〉, 0, 0, u, nil) len = 0→ (9, 〈〉, 0, 0, 0, nil), represents the state change
induced by the statement at line 8 in the program c-queue.

It is not difficult to see that, for a given input, each method induces a
deterministic and closed transition system (see Sec. 2.1). Fig. 3.1 shows the
transition system induced by the init method in the program c-queue. The
init method does not take any input. The transition labels: “in(nil)” and
“ret(ok)” respectively model the method reading the dummy input (argument)
value nil and the method returning the dummy output value ok. In the tran-
sition system of Fig. 3.1, the first and the last states are the only states visible
to the clients of the ADT, which we show at the top level in an ADT-TS as
depicted in this figure. The visible states of an ADT-TS are called complete,
in the sense that the ADT operations are complete in such states. We use
statement number 0 to represent a complete state. Other states are internal
states of the ADT-TS and are of no interest to the clients of the ADT.

We fix the ADT type N=(N , (In)n∈N , (On)n∈N) for the rest of this chapter.

Definition 3.1 (ADT transition system). An ADT transition system of type
N can be defined as a 5-tuple: S = (Qc,Ql,Σ,U , {δn}n∈N), where:

• Qc is the set of “complete” states of the ADT-TS (where an ADT oper-
ation is complete) and Ql is the set of “incomplete” or “local” states of
the ADT-TS. The set of states Q of the ADT-TS is the disjoint union
of Qc and Ql.

• Σ = Σl ∪ Γi
N ∪ Γo

N , where:

– Σl is a finite set of internal or local action labels (these basically
model executable statements in a method, like beg = 0 in the init
method of Fig. 1.1).

– Γi
N = {in(a) | ∃ n ∈ N with a ∈ In} is the set of input labels

corresponding to the ADT type N . The action label in(a) models a
method reading an input a.

– Γo
N = {ret(b) | ∃ n ∈ N with b ∈ On} is the set of return labels

corresponding to the ADT type N . The action label ret(b) models a
method returning an output b.

• U ∈ Qc is an uninitialized state.

3.1. ADT transition system 35

t in(nil)

len++

A[end] = t

end++

len++

end++

(16,〈〉,0,0,0,1)

(18,〈1〉,0,0,0,1)

(21,〈1〉,0,1,0,1)

(22,〈1〉,0,1,1,1)

beg = 0

end = 0

len = 0

(9, 〈〉, 0, 0, 0,nil)

ret(ok)

A[end] = t

end < MAXLEN-1

len 6= MAXLEN

end < MAXLEN-1

(17,〈1〉,0,0,0,1)

ret(ok)

(0,〈〉,0,0,0,u) (0,〈1〉,0,1,1,u)

(7, u, 0, u, u,nil)

(8, 〈〉, 0, 0, u,nil)

len 6= MAXLEN

(6, u, u, u, u,nil)

(0, u, u, u, u, u)

(14,〈〉,0,0,0,1)(14,〈〉,0,0,0,2)

(16,〈〉,0,0,0,2)

(22,〈0〉,0,1,1,2)

(0,〈2〉,0,1,1,u)

(21,〈2〉,0,1,0,2)

(18,〈2〉,0,0,0,2)

(17,〈2〉,0,0,0,2)

in(2) in(1) ret(ok)

Figure 3.2: A part of the ADT-TS modeling the program c-queue of Fig. 1.1,
with solid edges representing δinit and dashed edges representing δenq. Here
the value of the constant MAXLEN is assumed to be greater than one. The
state label is a six-tuple representing a valuation for: the line number, the
array A, the variables beg, end and len, and the argument for the concerned
function.

• For each n ∈ N, δn ⊆ Q×Σ×Q, is a transition relation that implements
the operation n. This is meant to model a method like the init method
of Fig. 1.1. It must satisfy the following constraints:

– it is deterministic (see Sec. 2.1).
– it is closed, except for the input actions in Γi

N for which it must
be complete (that is there exists an input transition for each input
a ∈ In - in other words: δn is ready to accept any value in the input
type In).

– Each transition labeled by an input action in Γi
N begins from a Qc

state and each transition labeled by a return action in Γo
N ends in a

Qc state. All other transitions begin and end in Ql states.
– No transition is labeled ret(e). Thus an ADT-TS cannot explicitly

return the exceptional value.

Fig. 3.2 shows a part of the ADT-TS of type QTypeZ, induced by the
program c-queue of Fig. 1.1, which implements an ADT of type QTypeZ.

We fix S = (Qc,Ql,Σ,U , {δn}n∈N) for the rest of this chapter.

36 Chapter 3. ADT Transition Systems

opinit((0, u, u, u, u, u), nil) = ((0, 〈〉, 0, 0, 0, u), ok)

openq((0, 〈〉, 0, 0, 0, u), 1) = ((0, 〈1〉, 0, 1, 1, u), ok)

openq((0, 〈〉, 0, 0, 0, u), 2) = ((0, 〈2〉, 0, 1, 1, u), ok)

Figure 3.3: Operation relations in the ADT induced by the ADT-TS of Fig. 3.2.

Let S be an ADT-TS of type N . Then for each n in N , for each a in In, and
for each q in Qc: “δn(q,a)” denotes the path which begins with the transition
label in(a) from the state q in S. The path δn(q,a) is deterministic and closed
(see Sec. 2.1). The path δn(q,a) may be an infinite path (representing a non-
terminating loop), a finite path ending in the exception state E (representing
exceptions like division by zero) or a finite path ending in a state in Qc.

For example in Fig. 3.2, δenq((0,〈〉,0,0,0,u),1) is a finite path ending in the com-
plete state (0, 〈1〉, 0, 1, 1, u).

Let S be an ADT-TS of type N . Then δN is the set of paths:
{δn(q,a) | ∃ q ∈ Qc and ∃ n ∈ N with a ∈ In} in S. An ADT-TS can be
viewed as a collection of δN paths.

A δN path is called exception-free, if it is a finite path ending in a state in
Qc. We note that an exception-free δN path gives a non-exception return value.
For example, in the ADT-TS of Fig. 3.2, the δQTypeZ path δenq((0,〈〉,0,0,0,u),2) is
exception-free.

ADT induced by an ADT-TS: An ADT-TS of type N like S above
induces an ADT AS of type N given by AS = (Qc ∪ {E},U ,E , {opn}n∈N),
where for each n ∈ N , p ∈ Qc ∪ {E}, and a ∈ In, we have:

opn(p, a) =


(q, b) if the path δn(p,a) is exception-free and ends in the

complete state q with return label ret(b).
(E , e) otherwise.

Thus a path δn(p,a) in an ADT-TS contributes an element ((p, a), (q, b)) for
the operation relation opn in the induced ADT. For example, Fig. 3.3 shows
the operation relations in the ADT induced by the ADT-TS of Fig. 3.2.

3.2 Refinement between ADT transition sys-
tems

In this section we describe the refinement between ADT transition systems.

Definition 3.2. Let S and S ′ be two ADT transition systems of type N . Then
S ′ refines S, iff the induced ADTs AS and AS′ are such that AS′ refines AS .

3.3. Equivalent refinement condition 37

in(nil) ret(ok)in(2)ret(ok) in(1)

qp r

Figure 3.4: A part of an ADT-TS which is assumed to model an implementa-
tion of an ADT of type QTypeZ. Solid edges represent δinit and dashed edges
represent δenq.

For example, let S and S ′ be the ADT transition systems of Fig. 3.4 and
Fig. 3.2 respectively. Then S ′ refines S, since AS′ refines AS . But S cannot
refine S ′, since AS cannot refine AS′ as it cannot simulate the exception-free
initial sequence of operations (init, nil, ok)(enq, 2, ok), which AS′ allows.

It follows from the above definition that our notion of refinement for ADT
transition systems preserves exactly the same set of properties preserved by
our refinement notion for ADTs (see Sec. 2.5).

3.3 Equivalent refinement condition
Let S and S ′ be two ADT transition systems of type N . Then we use the
notations: “δSN ” and “δS′N ” to denote the δN paths in S and S ′ respectively. We
now lift the refinement condition (RC) presented in Sec. 2.6, to ADT transition
systems. Let S = (Qc,Ql,Σ,U , {δn}n∈N) and S ′ = (Q′c,Q′l,Σ′,U ′, {δ′n}n∈N) be
two ADT transition systems of type N . We say S and S ′ satisfy the condition
(RC-TS), if there exists a relation ρ ⊆ Q′c ×Qc such that:

(init) Let a ∈ Iinit, p ∈ Qc and p′ ∈ Q′c. Suppose the path δSinit(p,a) is exception-
free and it ends in the complete state qa with the return label ret(b).
Then the path δS

′

init(p′,a) must be exception-free and it must end in a
complete state q ′a with return label ret(b) such that (q ′a, qa) ∈ ρ.

(sim) For each n ∈ N , a ∈ In, b ∈ On, p, q ∈ Qc, and p′ ∈ Q′c, with (p′, p) ∈ ρ.
Suppose the path δSn(p,a) is exception-free and ends in a state q with return
label ret(b). Then the path δS

′

n(p′,a) must be exception-free and it must
end in a complete state q ′ with return label ret(b) such that (q ′, q) ∈ ρ.

Fig. 3.5 illustrates the equivalent condition (RC-TS) for refinement between
ADT transition systems.

Theorem 3.1. Let S and S ′ be two ADT transition systems of type N . Then
S ′ refines S iff S and S ′ satisfy condition (RC-TS).

38 Chapter 3. ADT Transition Systems

ret(b)

p

ret(b)

p′ q′a

ret(b)

p

in(a)

in(a)in(a)

(init, a, b) (init, a, b)

(init, a, b)

p′

p q

ρ

ret(b)in(a)

(n, a, b)

(RC-TS:init) =⇒
ρ

(RC-TS:sim) =⇒

qa qa

ρ

in(a)

p′ q′

p q

ρ

ret(b)in(a)

(n, a, b)

(n, a, b)

ret(b)

Figure 3.5: Illustrating the equivalent condition (RC-TS) for refinement. Solid
arrows represent transitions in the ADT-TS, dashed arrows represent the ab-
straction relation ρ and dotted arrows represent operation relations in the ADT
induced by the δN paths of the ADT-TS.

Proof. Recall that AS and AS′ represent the ADTs induced by the ADT tran-
sition systems S and S ′ respectively. We fix S, S ′, AS and AS′ as above for
the rest of this section. First we prove the following claim.
Claim 3.1. The ADT transition systems S and S ′ satisfy condition (RC-TS)
with respect to an abstraction relation ρ, iff AS and AS′ satisfy condition (RC)
of Sec. 2.6, with respect to the same abstraction relation ρ.

Proof. Let ρ be an abstraction relation similar to the one used in the proof of
Claim 2.1, except that here the ADTs are obtained from the ADT transition
systems. We know that a state p′ of AS′ is related to a state p of AS , iff there
exists an exception-free initial sequence of operations w such that U w→ p in
AS and U ′ w→ p′ in AS′ .

(⇒) Suppose S and S ′ satisfy condition (RC-TS:init) with respect to ρ. Let a
be an element in Iinit and the path δSinit(p,a) is exception-free and ends in
a complete state q in S with return label ret(b). Then it follows from the
condition (RC-TS:init) that: (i) δS′init(p′,a) is an exception-free path ending
in a complete state q ′ in S ′ with return label ret(b) and (ii) (q ′, q) ∈ ρ.
Now by the definitions of AS and AS′ , we have p (init,a,b)→ q in AS and
p′ (init,a,b)→ q ′ in AS′ . Therefore AS and AS′ satisfy condition (RC:init)
with respect to the abstraction relation ρ.

3.3. Equivalent refinement condition 39

Suppose S and S ′ satisfy condition (RC-TS:sim) with respect to ρ. Let
n be an operation in N , let a be an input value in In, the path δSn(p,a)
is exception-free and ends in a complete state q in S with return label
ret(b), and let p′ be a complete state of S ′ such that (p′, p) ∈ ρ. Then
it follows from the condition (RC-TS:sim) that: (i) the path δS

′

n(p′,a) is
exception-free and ends in a complete state q ′ in S ′ with return label
ret(b) and (ii) (q ′, q) ∈ ρ. Now by the definitions of AS and AS′ , we have
p (n,a,b)→ q in AS and p′ (n,a,b)→ q ′ in AS′ . Therefore AS and AS′ satisfy
condition (RC:sim) with respect to the abstraction relation ρ.

(⇐) Suppose AS and AS′ satisfy condition (RC:init) with respect to ρ. Let
a be an element in Iinit, p (init,a,b)→ q in AS and p′ (init,a,b′)→ q ′ in AS′ .
Then it follows from the condition (RC:init) that b = b′ and (q ′, q) ∈
ρ. Now by the definitions of AS and AS′ it follows that: (i) the path
δSinit(p,a) is exception-free and ends in the complete state q in S with
return label ret(b) and (ii) the path δS′init(p′,a) is exception-free and ends in
the complete state q ′ in S ′ with return label ret(b). Therefore S and S ′
satisfy condition (RC-TS:init) with respect to ρ, since we have (q ′, q) ∈ ρ.

Suppose AS and AS′ satisfy condition (RC:sim) with respect to ρ. Let
n be an operation in N , let a be an input value in In, p (n,a,b)→ q in
AS with b 6= e, and let p′ be a state of AS′ such that (p′, p) ∈ ρ.
Then it follows from the condition (RC:sim) that p′ (n,a,b)→ q ′ in AS′ with
(q ′, q) ∈ ρ. Now by the definitions of AS and AS′ it follows that: (i)
the path δSn(p,a) is exception-free and ends in the complete state q in S
with return label ret(b) and (ii) the path δS

′

n(p′,a) is exception-free and
ends in the complete state q ′ in S ′ with return label ret(b). Therefore
S and S ′ satisfy condition (RC-TS:sim) with respect to ρ, since we have
(q ′, q) ∈ ρ.

Now we prove Theorem 3.1.

(⇒) Suppose S and S ′ satisfy condition (RC-TS). Then from Claim 3.1 we
know that AS and AS′ satisfy condition (RC). Now it follows from The-
orem 2.3 that AS′ refines AS . Then we can conclude from Def. 3.2 that
S ′ refines S.

(⇐) Suppose S ′ refines S. Then by Def. 3.2 we have AS′ refines AS . Now
it follows from Theorem 2.3 that AS and AS′ satisfy condition (RC).
Then we can conclude from Claim 3.1 that S and S ′ satisfy condition
(RC-TS).

40 Chapter 3. ADT Transition Systems

3.4 Client ADT transition systems
A client ADT-TS is similar to the client transition system defined in Sec. 2.3,
except that it is meant to implement an ADT. Thus a client ADT-TS may con-
tain calls to a sub-ADT. For example, consider the method resched of Fig. 1.8.
This method is a part of the ADT implementation c-sched, which implements
the operation resched in the scheduler ADT of Fig. 1.7. The transition system
modeling the program c-sched is called a “QTypeZ-Client ADT-TS” since it
is a client transition system of an ADT of type QTypeZ and also implements
the functionality of another ADT. After plugging-in a particular sub-ADT, a
client ADT-TS becomes an ADT-TS.

Definition 3.3 (M-client ADT-TS). Let M = (M , (Im)m∈M , (Om)m∈M) and
N = (N , (In)n∈N , (On)n∈N) be ADT types. Then anM-client ADT-TS of type
N can be defined as a 6-tuple: U = (Qc,Ql,Σ,U ,E , {δn}n∈N) where Qc, Ql,
and U are as in an ADT-TS. Let Σ = Σl ∪ Γi

N ∪ Γo
N ∪ΣM, where Σl, Γi

N and
Γo
N are as in an ADT-TS and ΣM is the set of operation call labels from the

ADT type M. The state E ∈ Ql is an exceptional state that arises when a
call to a sub-ADT returns an exceptional value. Then, for each operation n in
N, δn is a transition relation of the form δn ⊆ Q × Σ × Q satisfying similar
constraints as in an ADT-TS, except that in addition we require that:

• E is a dead state (i.e. δn has no transition of the form (E ,−,−)).

• δn is “closed” with respect to a given M-operation and input value (thus
if l (m,a,b)→ l ′ in δn and l (m′,a′,b′)→ l ′′ in δn, then m = m′ and a = a′.
This is meant to model actions like enq(cur) in the program c-sched
of Fig. 1.8, where the M-operation (enq) and the argument (the value of
cur) are fixed.

• The δinit transition relation is assumed to initialize the sub-ADT before
going on to make other calls to it.

For example, Fig. 3.6 shows a part of a QTypeB-client ADT-TS modeling
the method reshed in the program of Fig. 1.8, which implements the resched
operation in the scheduler ADT of Fig. 1.7.

Now we illustrate the structural difference between an ADT-TS and aM-
client ADT-TS. Given an M-client ADT-TS U , the sub-transition system of
U induced by δn for an operation n in N and for an input a in In from a state
q in Qc, denoted “δn(q,a)” is a set paths as opposed to the unique path in case
of an ADT-TS. The sub-transition system δn(q,a) branches out when it calls an
M -operation say m with an input say a′, since anM-client transition system
needs to be complete with respect to an M -operation m in M and a′ in Im. For
instance, consider the set of paths δresched(q,1) of the QTypeB-client ADT-TS
of Fig. 3.6. Some of the paths in δresched(q,1) enter the exception state E and
others end in one of the complete states: q1, q2 or q3.

Suppose we want to prove that c-sched[c-queue] refines the abstract
ADT z-queue of Fig. 1.7. We would like to reason about this in a step-
by-step manner to reduce the complexity involved in doing this in a single

3.4. Client ADT transition systems 41

qq1 q2 q3

(deq,nil, 0) (deq,nil, 1)

(deq,nil, fail)

(enq, 0, ok/fail) (enq, 1, ok/fail)

ret(1) ret(fail)in(1)

(deq,nil, fail)

(enq, 0, e) (enq, 1, e)

(deq,nil, e) (deq,nil, e)

ret(0) in(0)

(deq,nil, 1) (deq,nil, 0)

E

Figure 3.6: A part of a QTypeB-client ADT-TS modeling the method reshed
(of Fig. 1.8) in a program implementing the scheduler ADT. We assume that
fail is a value in the output type Oresched.

step. As a first step, we could abstract the c-queue component and replace
it by the simpler and more-abstract g-queue (Fig. 1.6) component, and argue
that c-sched[g-queue] refines z-sched. As a second step we would need to
argue that c-sched[c-queue] refines c-sched[g-queue]. We prove in Theo-
rem 3.2 below that our refinement notion is “substitutive” for ADT imple-
mentations, which ensures that c-sched[c-queue] refines c-sched[g-queue]
whenever c-queue refines g-queue. Thus we could simply prove that c-queue
refines g-queue and then infer using Theorem 3.2 that c-sched[c-queue] re-
fines c-sched[g-queue].

We now consider the transition system obtained by plugging-in an ADT of
type M in an M-client ADT-TS. Let U be an M-client ADT-TS and A be
an ADT of type M. Then we show that the transition system obtained by
plugging-in A in U is an ADT-TS. We fixM = (M , (Im)m∈M , (Om)m∈M) and
N = (N , (In)n∈N , (On)n∈N) for the rest of this section.

Definition 3.4. Let U = (Qc,Ql,Σ,U ,E , {δn}n∈N) be an M-client ADT-TS
of type N and let A = (Q′,U ′,E ′, {opm}m∈M) be an ADT of type M. Then
we can define the ADT-TS obtained by using A in U , denoted “U [A]”, to be
the ADT-TS of the form:

U [A] = (QU [A]c ,QU [A]l ,Σ, (U ,U ′), {δU [A]n }n∈N)

where QU [A]c = Qc × Q′, QU [A]l = Ql × Q′ and {δU [A]n }n∈N is the transition
relation such that for each n in N, for each a in In and for each p in QU [A]c :

42 Chapter 3. ADT Transition Systems

(q2, u)

(deq,nil, 1)

(enq, 0, ok) (enq, 1, ok)

ret(1)in(1)in(0)

(q, 〈1〉)(q, 〈〉)

(deq,nil, 1)

(q2, 〈1〉) (q2, 〈0〉)

ret(1)

Figure 3.7: A part of the ADT-TS obtained by plugging QADT k of Fig. 2.3
in the QTypeB-client ADT-TS of Fig. 3.6.

δ
U [A]
n(p,a) ⊆ δn(p,a) and the transitions in δU [A]n(p,a) are such that:

(p, r ′) l→ (q, r ′) if l ∈ Σl and p l→ q in U .
(p, r ′) (m,a,b)→ (q, s′) if (m, a, b) ∈ ΣM and p (m,a,b)→ q in U and

opm(r ′, a) = (s′, b).

For example, let U be the QTypeB-client ADT-TS of Fig. 3.6 and let A be
the ADT QADT k of Fig. 2.3, which is of type QTypeB. Now the transition
system obtained by plugging-in QADT k in U (that is U [QADT k]) is shown
in Fig. 3.7. We assume here that the value of the parameter k in QADT k is
greater than 1. This figure shows only some of the complete states in U [A].

An M-client ADT-TS U becomes closed (see Sec. 2.1) when we plug-in
an ADT A of type M in U to get U [A]. Therefore there is no possibility of
branching in the sub-transition system δn(q,a) in U [A] and hence δn(q,a) in U [A]
becomes a path for each n in N , for each a in In and for each q in Qc. Hence
U [A] is an ADT-TS.

3.5 Compositionality of refinement
In this section we show that our notion of refinement for ADT implementations
is compositional.

Theorem 3.2. Let U be an M-client ADT-TS of type N , and B and C be
ADTs of typeM such that C � B. Then U [C] refines U [B].

Proof. It is sufficient to define an abstraction relation ρ′ from the complete
states of U [C] to the complete states of U [B] satisfying condition (RC-TS). To
do this we make use of the necessary and sufficient condition for refinement,
(RC) of Theorem 2.3. Since C refines B, by Theorem 2.3 there must exist a
relation ρ from the states of C to the states of B satisfying conditions (init)

3.5. Compositionality of refinement 43

and (sim) of (RC). We now define a relation ρ′ from the complete states of
U [C] to the complete states of U [B] given by ((p, q ′), (r , q)) ∈ ρ′, iff p = r and
(q ′, q) ∈ ρ.

Now we prove that U [C] and U [B] satisfy condition (RC-TS) with respect
to the abstraction function ρ′ defined above. We know that U [B] and U [C] are
ADT transition systems and hence for each operation n in N , for each input a
in In, for each state u in U [B] and for each state u′ in U [C]: δU [B]n(u,a) and δ

U [C]
n(u′,a)

are paths in U [B] and U [C] respectively.

(init) Suppose the path δ
U [B]
init(u,a) in U [B] is exception-free. Then each opera-

tion call to B in δU [B]init(u,a) returns a non-exception value, since δU [B]init(u,a) is
exception-free. Therefore each operation call to C in δU [C]init(u′,a) will produce
the same output as produced in the corresponding call to B in δU [B]init(u,a)

and the resulting state in δ
U [C]
init(u′,a) will be related to the corresponding

resulting state in δU [B]init(u,a) by ρ′, since C refines B. This implies that the
paths δU [B]init(u,a) and δ

U [C]
init(u′,a) terminate in states related by ρ′ and produce

the same output. Hence U [B] and U [C] satisfy (RC-TS:init).

(sim) Let u′ and u be states in U [C] and U [B] respectively with (u′, u) ∈ ρ′

and the path δU [B]n(u,a) is exception-free in U [B]. Then each operation call
to the ADT B in δ

U [B]
n(u,a) returns a non-exception value, since δU [B]n(u,a) is

exception-free. Therefore each operation call to the ADT C in the path
δ
U [C]
n(u′,a) will produce the same output as produced in the corresponding
call to B in δ

U [B]
n(u,a) and the resulting state in δ

U [C]
n(u′,a) will be related to

the corresponding resulting state in δ
U [B]
n(u,a) by ρ′, since C refines B and

(u′, u) ∈ ρ′. This implies that the paths δU [B]init(u,a) and δ
U [C]
init(u′,a) terminate

in states related by ρ′ and produce the same output value. Hence U [B]
and U [C] satisfy (RC-TS:sim).

We can extend the definition of client transition systems to allow them
to have multiple sub-ADTs. Thus an (M1, . . . ,Mn)-client transition system
makes calls to ADTs of type M1, . . . ,Mn. Theorem 3.2 implies that the
congruence property holds for client ADT transition systems with multiple
sub-ADTs as well. For example, if U is an (M1,M2)-client ADT-TS, A1 and
B1 are ADTs of the same type M1, and A2 and B2 are ADTs of the same
typeM2, such that B1 � A1 and B2 � A2; then U [B1,B2] � U [A1,A2]. This

44 Chapter 3. ADT Transition Systems

follows since:

U [B1,B2] = (U [B1])[B2]
� (U [B1])[A2] (by Theorem 3.2 since B2 � A2)
= U [B1,A2]
= (U [A2])[B1]
� (U [A2])[A1] (by Theorem 3.2 since B1 � A1)
= U [A1,A2].

3.6 Related work
Program verification tools like VCC [15], RESOLVE [25] and Dafny [35] allow
verification of imperative language implementations of ADT-like systems with
respect to specifications in the form of function contracts. But these systems
do not talk about a formal model of imperative language programs like the
one we propose. Also there is no explicit notion of refinement used in these
tools and the technique is not compositional.

A technique is presented in [39] with the ideas from separation logic [43]
to ensure that a refined system preserves separation-relations (between the
client and library) satisfied by the abstract system. A sound but incomplete
theory is presented in [23], where separation logic is used to establish non-
interference between a client and a module (or ADT). Non-interference is a
desirable property to ensure soundness of a compositional notion of refinement.

Chapter 4

ADTs in Different Modeling
Languages

Abstract Data Types can be specified in different modeling languages. They
could be specified in a declarative style in a language like Z or in an impera-
tive style in implementation languages like C. In this chapter we describe the
mathematical ADTs induced by these different models.

4.1 ADTs in the Z language
In this section we introduce the Z modeling language and illustrate how ADTs
are specified. We then describe the mathematical ADTs induced by these
specifications.

4.1.1 About the Z language
The Z specification language was originally proposed by Abrial et al [6] based
on the notation used in data semantics [2]. It is a model-oriented specification
language based on set theory and mathematical logic [46]. The logic used is a
first-order predicate calculus.

We choose to use the Z specification language to specify the abstract ver-
sions of ADTs as it gives us a concise yet readable, and mathematically precise
specification of ADTs, with tool support for simulation and validation of Z
models [36, 44]. The rich set of mathematical objects and operators in the Z
language supports easy specification of ADTs.

The schema language is the important aspect of Z, which makes it suitable
for ADT specification. A user can specify data and predicates governing the
properties of data together in a single entity called a schema. A schema has
a name and its specification comprises the following: (i) a declaration part,
where state components can be declared and (ii) a constraint part, where a
set of predicates can be included to constrain the values of the fields in the
schema. The schema language of Z can be used to model the set of states as
well as the set of operations of an ADT.

45

46 Chapter 4. ADTs in Different Modeling Languages

SchedType = {init, create, resched, Iinit,Oinit, Icreate,Ocreate, Iresched,Oresched}

where: Iinit = N

Oinit = {ok, e}

Icreate = B

Ocreate = {ok, fail, e}

Iresched = B

Oresched = B ∪ {fail, e}

Figure 4.1: The ADT type SchedType.

4.1.2 Specifying ADTs in Z
In this subsection we discuss the schema language and some of the mathemat-
ical objects and operators from the Z language, which we use for specifying an
ADT of type SchedType, which we define below. We show how we specify the
states and operations of an ADT using the schema language of Z.

We define an example ADT type called SchedType to illustrate this. Fig. 4.1
shows this ADT type. The scheduler ADT of Fig. 1.7, is of this type except that
(i) here the init operation takes an argument, which represents the maximum
number of tasks in the ready queue and (ii) we do not consider the operation
delay in this ADT type.

The type of a task is considered as B, the set of bit values {0, 1}. The init
operation takes a natural number as an argument, which represents the bound
on the number of tasks in the ready queue. The init operation is expected to
return the dummy value ok, when the operation is successful. The operation
create takes the task to be inserted to the ready list as an argument. The create
operation is expected to return the value ok, when it succeeds in enqueueing
the given task into the ready list, and it is expected to return the value fail,
when it cannot insert the given task to the ready list, due to the unavailability
of space in the ready list. The operation resched takes the currently running
task as an argument. The resched operation is expected to return a task as
the next task to run, when it succeeds in: (i) enqueueing the given task into
the ready list and (ii) extracting a task from the ready list. It can also return
the value fail, when it cannot successfully complete its operation, due to the
unavailability of space in the ready list to insert the given task.

Specifying the states of an ADT in Z

Fig. 4.2 shows a Z schema called Scheduler representing the states of an ADT
of type SchedType. The ready queue is declared as a finite sequence of natural
numbers called ready. The variable bound, which is declared as a natural

4.1. ADTs in the Z language 47

Scheduler
ready : seqN
bound : N

ran ready ⊆ {0, 1}
#ready ≤ bound

Figure 4.2: A Z schema specifying the states of an ADT of type SchedType.

number represents the bound on the length of the ready queue. For a sequence
s in Z, the expression “ran s” denotes the set of elements present in s and the
expression “# s” denotes the length (number of elements) of s.

We use the term data-schema to denote a Z schema describing the states of
an ADT. For example, the schema of Fig. 4.2 is a data-schema which describes
the states of an ADT of type SchedType. The set of states of the ADT described
by this schema is: {(ready, bound) | ready ∈ N∗ and bound ∈ N}, where “N∗”
denotes the set of all finite strings of natural numbers.

The term state-invariant is used to denote the formula constraining the
valuations for the variables in a data-schema. The state-invariant of a data-
schema is the conjunction of the predicates in its constraint part. For example,
the state-invariant of the data-schema of Fig. 4.2 is:

(ran ready ⊆ {0, 1}) ∧ (#ready ≤ bound)

where the first predicate restricts the sequence ready to a finite sequence of
bit values rather than natural numbers and the second predicate bounds the
length of the sequence ready.

An ADT state is called legal, if it satisfies the state-invariant of the data-
schema. For example, the set of legal states of the ADT described by the
data-schema of Fig. 4.2 is:

{(ready, bound) | ready ∈ B∗ and bound ∈ N and #ready ≤ bound}

.

Specifying the operations of an ADT in Z

Now we focus on specifying the operations of an ADT, using the schema lan-
guage of Z.

We use the term operation-schema to denote a Z schema describing an
ADT operation. An operation-schema needs to describe a state change in the
ADT with possible input and output. Therefore the declaration part of an
operation-schema should declare: (i) a before-state, (ii) input variables, (iii)

48 Chapter 4. ADTs in Different Modeling Languages

beforeAfter one
ready : seqN
bound : N
ready′ : seqN
bound′ : N

ran ready ⊆ {0, 1}
#ready ≤ bound
ran ready′ ⊆ {0, 1}
#ready′ ≤ bound′

beforeAfter two
Scheduler
Scheduler′

beforeAfter three
∆Scheduler

Figure 4.3: Equivalent schemas in Z declaring a before-state and an after-state
for the data-schema Scheduler.

an after-state and (iv) output variables.
The schemas of Fig. 4.3, shows three different ways for declaring a before-

state and an after-state, in terms of the data-schema of Fig. 4.2. By convention,
primed variables denote the components in the after-state and unprimed vari-
ables denote the components in the before-state of an operation-schema. For
example, ready′ denotes the ready sequence in an after-state and the predi-
cate “#ready′ ≤ bound′” denotes a constraint on an after-state. On the other
hand, ready denotes the ready sequence in a before-state and the predicate
“#ready ≤ bound” denotes a constraint on a before-state.

In Fig. 4.3, the schemas: beforeAfter two and beforeAfter three are two
other ways in Z, to represent the schema beforeAfter one. Thus, if S is
the name of a data-schema, then the symbol S in the declaration part of an
operation-schema expands to the definition of the schema S representing the
before-state and the symbol S ′ in the declaration part of an operation-schema
expands to the definition of the schema S with primed variables representing
the after-state. The expression “∆S” in the Z language denotes the sequence
of declarations: S ; S ′.

The convention followed in Z for declaring input and output variables is
that the name of an input variable ends with a “?” and the name of an output
variable ends with an “!”. For example, maxLength? is the input variable in
the operation-schema of Fig. 4.4, and status! is the output variable in this
operation-schema.

Fig. 4.4 shows an operation-schema for the init operation in an ADT of
type SchedType. Recall that the init operation in an ADT is independent of
the state from which it is invoked and hence there is no need to declare a
before-state. This is in-line with the specification of an init schema in the Z
notation. The type STATUS is assumed to be a free data-type with the set
of possible values {ok, fail}, and could be defined as “STATUS ::= ok | fail” in
Z. The predicates in this operation-schema require that, in the after-state, (i)

4.1. ADTs in the Z language 49

init
Scheduler′

maxLength? : N
status! : STATUS

ready′ = 〈〉
bound′ = maxLength?
status! = ok

Figure 4.4: An operation-schema in Z
for the init operation in an ADT of
type SchedType.

create
∆Scheduler
taskIn? : N
status! : STATUS

taskIn? ∈ {0, 1}
#ready < bound

ready′ = ready a 〈taskIn?〉
bound′ = bound
status! = ok

Figure 4.5: An operation-schema in Z
for the create operation in an ADT of
type SchedType.

the sequence ready is empty, (ii) the variable bound has the same value as the
input variable maxLength? and (iii) the output variable status! has the value
ok.

Fig. 4.5 shows an operation-schema for the create operation in an ADT of
type SchedType. The constraint part includes two predicates to constrain a
before-state or an input, which are mandatory to have a consistent update.
For instance, without the first predicate, the update may result in an after-
state failing to satisfy the first predicate in the data-schema of Fig. 4.2. This
operation-schema updates a before-state by appending the input task to the
ready sequence in the before-state and defines the output as ok.

Fig. 4.6 shows an operation-schema for the resched operation of an ADT
of type SchedType. For a non-empty sequence s in Z, the expression “head s”
denotes the head (first element) of s and the expression “tail s” denotes a
sequence which is obtained from s by removing its head.

Let S be an operation-schema. Then the conjunction of predicates in S is
called the Before-After Predicate of S , written BAP S . For example, Fig. 4.7
shows the BAP of the operation-schema of Fig. 4.6. Thus the BAP includes
the predicates representing declarations. An operation-schema S is said to
be consistent if there exist a before-state p, an input a, an after-state q and
an output b such that BAPS evaluates to true. Each of the above operation
schemas is consistent. Fig. 4.8 shows a valuation for the free variables in the
BAP of the operation-schema of Fig. 4.6, witnessing its consistency.

4.1.3 Viewing Z models as ADTs
We describe in this subsection how we view a Z model as an ADT as defined
in Chap. 2.

Informally, we view the data-schema of a Z model as a representation of
the states of the ADT and the BAP of an operation-schema as a realization

50 Chapter 4. ADTs in Different Modeling Languages

resched
∆Scheduler
taskIn? : N
taskOut! : N

taskIn? ∈ {0, 1}
taskOut! = head (ready a 〈taskIn?〉)
ready′ = tail (ready a 〈taskIn?〉)
bound′ = bound

Figure 4.6: An operation-schema in Z for the resched operation of an ADT of
type SchedType.

BAPresched = (ready ∈ seqN) ∧ (bound ∈ N) ∧ (ready′ ∈ seqN) ∧ (bound′ ∈ N) ∧

(taskIn? ∈ N) ∧ (ran ready ⊆ {0, 1}) ∧ (#ready ≤ bound) ∧

(taskIn? ∈ {0, 1}) ∧ (taskOut! = head(ready)) ∧

(ready′ = tail(ready)a 〈taskIn?〉) ∧ (bound′ = bound) ∧

(ran ready′ ⊆ {0, 1}) ∧ (#ready′ ≤ bound′)

Figure 4.7: The Before-After Predicate (BAP) of the schema of Fig. 4.6.

ready = 〈0, 1, 1〉 bound = 5

taskIn? = 1 ready′ = 〈1, 1, 1〉

bound′ = 5 taskOut! = 0

Figure 4.8: A consistent valuation for the free variables in the BAP of the
schema of Fig. 4.6.

4.1. ADTs in the Z language 51

of an operation in the ADT type.
More formally, a model M of an ADT in the Z specification language

essentially comprises the following:

• A data-schema DataM with a finite set of variables VarM and a state-
invariant, which constrains the valuations for the variables. Each variable
v ∈ VarM has an associated data-type Tv, which is the set of possible
values for v. A state is a valuation s to these variables with s(v) ∈ Tv
for each v ∈ VarM. A state is legal if it satisfies the state-invariant in
DataM. The state-invariant in the data-schema DataM, is a first-order
logic formula with free variables in VarM.

• A finite set OpM of operation-schemas. Each operation-schema n in OpM
has (for simplicity) a single formal input parameter xn of type XMn , and
a single output variable yn of type YMn ; and a before-after-predicate
BAPMn with free-variables in VarM ∪ {xn, yn} ∪ (VarM)′, where for a
set of variables Var we use the convention that Var′ denotes the set of
variables {v′ | v ∈ Var}. The set of operation-schemas OpM includes
an initialization-schema called init, whose BAP predicate is only on the
input parameter, the output variable and primed variables (i.e it only
constrains the after-state).

We say the Z model is deterministic, if for each operation-schema n ∈ OpM,
before-state p and input value a ∈ XMn , we have at most one after-state q and
output value b ∈ YMn satisfying BAPMn (p, a, q, b).

A deterministic Z model likeM above defines an ADT

AM = (Q′,U ,E , {opn}n∈N) of type N = (N , (In)n∈N , (On)n∈N)

where:

• The set of operations N is OpM with In = XMn and On = YMn ∪ {e},

• Q′ = Q ∪ {E} where Q is the set of states ofM, E is a new exceptional
state, and U is an arbitrary state in Q, and

• for each n ∈ N , we have:

opn(p, a) =

{
(q, b) if ∃(q, b) such that BAPMn (p, a, q, b).
(E , e) otherwise.

Thus we view an operation n as returning an exceptional value whenever it
is called outside its precondition pren, where pren is the set of before-states and
input pairs (p, a) such that there exists an after-state q and output b satisfying
BAPMn (p, a, q, b).

For example, Fig. 4.9 shows the ADT induced by the Z specification dis-
cussed in this section.

52 Chapter 4. ADTs in Different Modeling Languages

SchedADT = (Q,U ,E , {opn}n∈SchedType), where:
Q = (B∗ × N) ∪ {E}

opinit(s, k) =

{
((ε, k), ok) if s 6= E
(E , e) otherwise.

opcreate(s, a) =

{
((w · a, k), ok) if s is of the form (w, k) and |w|< k
(E , e) otherwise.

opresched(s, a) =


((w ′ · a, k), b) if s is of the form (b · w ′, k)
((ε, k), a) if s is of the form (ε, k)
(E , e) otherwise.

Figure 4.9: The ADT of type SchedType, induced by the Z model discussed in
this section.

Refinement between Z models: Given two deterministic Z models M
andM′, we sayM′ refines M, iff the induced ADTs AM and AM′ are such
that AM′ refines AM.

4.2 ADTs in the ghost language of VCC
In this section we describe how one can model ADTs in VCC, which is a tool for
Verifying Concurrent C programs [15]. We first introduce the ghost language
of VCC, which can be used to model an ADT. Then we describe how an ADT
can be specified in the ghost language.

4.2.1 VCC’s ghost language
The tool VCC provides a ghost language for specifying the properties to be
verified about a program. For instance, its ghost language provides the assert
keyword, which can be used to specify a requirement on the program state at a
particular point in the program. VCC can automatically check that a program
satisfies a given property specified as annotations like assert statements.

The ghost language provides mathematical objects, and operators to change
the state of these mathematical objects. For instance, it supports natural
numbers (via the keyword \natural) with operators for performing operations
like addition and multiplication.

VCC provides the ghost language in such a manner that the mathematical
objects provided by it will not interfere with the executable data objects in
the program. Hence a user can safely add ghost statements with mathematical
objects in her program without worrying about the unexpected changes to the
execution semantics of her program [16].

The ghost language is not as rich as the Z specification language, since it
does not support some of the mathematical objects and operators provided in
Z. For instance, the ghost language does not implicitly support mathematical

4.2. ADTs in the ghost language of VCC 53

struct
{

_(ghost bool ready[\natural]);
_(ghost \natural length);
_(ghost \natural bound);

_(invariant length <= bound)
} Scheduler;

Figure 4.10: A struct in VCC modeling the states of an ADT of type
SchedType.

objects like sets and sequences, which are provided in the Z language. Nev-
ertheless, one can use existing mathematical objects in the ghost language to
model such missing mathematical objects.

The ghost language provides the mathematical object map, which is a
handy tool for modeling other mathematical objects like sequences and sets.
“ (ghost range type map name domain type)” is the syntax for declaring
a map in VCC. For example, we can declare an infinite sequence of integers,
namely ready as “ (ghost int ready \natural)”, where \natural repre-
sents the set of natural numbers N. An element in such a sequence can be
accessed using a syntax similar to the syntax for accessing array elements in
the C language. For instance, ready[i] gives the ith integer in the above
sequence.

4.2.2 Modeling ADTs in the ghost language
In this section we explain how one can use the ghost language to model an
ADT. We first describe how the states of an ADT can be modeled in the ghost
language and then we describe how the operations of an ADT can be modeled
in this langiage.

Modeling the states of an ADT

A “struct” in C can be used to model the states of an ADT. A struct allows
a programmer to group a set of related data into a single entity. In VCC, a
user can add invariants in a struct, in addition to the field declarations. An
invariant constrains the valuations for the fields in the struct.

The states of an ADT can be modeled using a struct with ghost fields
to model the state components of the ADT. The constraints on legal states
of the ADT can be specified as invariants in the struct. We use the term
state-structure to denote a struct in VCC modeling the states of an ADT.

Fig. 4.10 shows a state-structure modeling the states of an ADT of type
SchedType of Fig. 4.1. The set of ready tasks is modeled as a ghost field
ready, which is a map from the set of natural numbers to the set of bit values
(boolean). This map resembles a sequence of bit values. Recall that the type

54 Chapter 4. ADTs in Different Modeling Languages

void init(_(ghost \natural maxLength))
{

_(ghost Scheduler.length = 0);
_(ghost Scheduler.bound = maxLength);

}

Figure 4.11: A ghost method, which models the init operation of an ADT of
type SchedType.

void create(_(ghost \bool task))
_(requires (Scheduler.length < Scheduler.bound))

{
_(ghost Scheduler.ready[Scheduler.length] = task);
_(ghost Scheduler.length += 1);

}

Figure 4.12: A ghost method, which models the create operation of an ADT
of type SchedType.

of a task is assumed to be the set of bit values in the ADT type SchedType.
The ghost variable length models the number of tasks present in the set of
ready tasks and the ghost variable bound models the capacity of the ready list.

The invariants in a state-structure specify the legality constraints on the
states of the ADT. For example, the invariant in the state-structure of Fig. 4.10
requires that in a legal state, the number of tasks present in the ready list is
less than or equal to the value of the variable bound.

Modeling the operations of an ADT

We now describe how we model the operations of an ADT, using the ghost
language.

We use ghost methods to implement the operations of an ADT. A ghost
method is similar to a method (function implementation) in C, except that:
(i) it is meant to update an instance of the state-structure modeling the states
of an ADT, which uses ghost fields rather than executable fields, (ii) there can
be a precondition associated with a ghost method, and (iii) a ghost method
should restore the invariants in the state-structure.

Fig. 4.11 shows a ghost method, which models the init operation of an
ADT of type SchedType. We assume that the instance of the state-structure
(Scheduler) is declared as a global variable. The ghost method, init does
not have a precondition.

A ghost method is a sequence of ghost statements as opposed to a set of
predicates in the case of an operation-schema in the Z language. That is, the
order of ghost statements is an important factor deciding the state change
induced by a ghost method, while the order of the predicates does not affect

4.3. Viewing C implementations as ADTs 55

bool reschedule(_(ghost bool task))
{

bool res;
_(ghost Scheduler.ready[Scheduler.length] = task);
_(assume res == Scheduler.ready[0])
_(ghost Scheduler.ready = \lambda \natural i;

(i < Scheduler.length) ?
Scheduler.ready[i+1]

: Scheduler.ready[i]
;
return res;

}

Figure 4.13: A ghost method, which models the resched operation of an ADT
of type SchedType.

the state change represented by an operation-schema.
Fig. 4.12 shows a ghost method, which models the create operation of an

ADT of type SchedType. The ghost keyword requires can be used to specify
a precondition on a method. The ghost method create has a precondition:
the number of ready tasks in a valid before-state is at least one less than
the maximum number of tasks allowed in the set of ready tasks. Without
such a precondition, the method may fail to restore the invariant in the state-
structure.

Fig. 4.13 shows a ghost method, which models the resched operation of an
ADT of type SchedType. The ghost language provides the lambda operator to
update a map instance. For example, the lambda operator is used in the ghost
method reschedule to update the map ready, which essentially performs a
left shift on this sequence. VCC does not allow a ghost method to return
a ghost field and hence the ghost keyword assume is used in this method to
transfer the value of a ghost field into an executable field res, which is returned
from this method.

We discuss a technique in Sec. 4.3, to view a C implementation of an ADT-
like system as an ADT. A similar technique can be used to view a ghost model
as an ADT, except that ghost objects are used in a ghost model rather than
executable objects. If we apply this technique to the ghost model discussed in
this section, then we get the ADT of Fig. 4.9 again.

4.3 Viewing C implementations as ADTs
We present a technique in this section to obtain an ADT-TS and hence an
ADT from a C program, which represents an ADT. The same method could
be applied to obtain an ADT from a ghost implementation also.

We assume that an ADT implementation in C is a program P as follows.
The program P comprises a set of global variables Var. Each variable v ∈ Var

56 Chapter 4. ADTs in Different Modeling Languages

is associated with a type Tv, which is the set of possible values for v. It has a
finite set of function names F with an associated method (function definition)
funcn for each n ∈ F , which could contain local variables.

The program P can be translated to an ADT-TS SP as follows. A state of
the ADT-TS comprises the following: (i) a statement number l, (ii) a valuation
s to the variables (both global and local), (iii) a heap state h that maps heap
locations to values, and (iv) a stack k to model method calls. We assume a
special statement number 0 so that states of the form (0, s, h) (with s mapping
local variables to an uninitialized value “u”) form the complete states Qc of
the required ADT-TS. Other states form the internal states Ql (which may
include values for local variables) of the required ADT-TS (see Def. 3.1).

The local action labels of the required ADT-TS are simply the statements
of the program. We return to the statement number 0 with the global state
and heap state being unchanged and the local variables and stack being reset
to u and empty respectively when any method in F returns.

We would also like to consider C implementations that have a precondition
for each method. We assume that the precondition for method funcn is a
predicate pren on the set of complete states and inputs of the method. We
view such a C method as an ADT-TS that is defined as before, except that for
complete states and inputs that don’t satisfy pren, the ADT-TS transitions to
a “dead” local state.

The above procedure can be used to obtain the ADT-TS SP from a given
ADT implementation P in the C language. Then the technique presented
in Sec. 3.1, could be used to obtain the ADT ASP from the ADT-TS SP .
For example, Fig. 3.6, shows the ADT-TS induced by the method reshed of
Fig. 1.8. The ADT induced by this ADT-TS is shown in Fig. 3.3, in the form
of operation relations in the ADT.

Chapter 5

Methodology for Proving
Functional Correctness

We now present a methodology based on our theory of refinement to prove
the functional correctness of a given imperative language implementation of an
ADT-like system. We are interested in verifying that a given C implementation
of an ADT-like system is a refinement of its abstract ADT specification. We
describe a couple of techniques for phrasing the refinement conditions between
ADTs in different languages. We also propose techniques for using off-the-shelf
tools for verifying these refinement conditions.

5.1 Directed refinement methodology
Here we present a methodology for proving the functional correctness of an
imperative language implementation of an ADT-like system. The proposed
methodology is based on our theory of refinement. In our methodology, one
would need to do a sequence of successive refinements, starting from an ab-
stract ADT model towards the given ADT implementation. Hence we call
this a “directed refinement methodology”. Our aim is to make use of avail-
able tools like VCC/Rodin to carry out the proofs of successive refinements in
the proposed methodology. Fig. 5.1 shows the different steps required in our
methodology for proving the functional correctness of an ADT implementation.

We describe below the different steps proposed in our methodology for
proving the functional correctness of an imperative language implementation
of an ADT-like system.

1. To begin with we view the given implementation as implementing an
ADT of a certain type N = (N , (In)n∈N , (On)n∈N). This may require us
to elide certain code from the given implementation, or to transform some
parts of it to reflect this view. The following are the deviations possible
in a given implementation from being an ADT implementation: (i) there
may not be a separate init operation, but rather the initialization code
is set to execute in the first invocation to an operation in N and (ii)
interactions (between operations) are not purely functional, for example

57

58 Chapter 5. Directed Refinement Methodology

�

�

�

�

Simplified ADT implementation P1

Given ADT implementation Concrete ADT implementation P

Refined ADT ModelM1

Abstract ADT ModelM

Figure 5.1: Illustrating “directed refinement methodology” for proving the
functional correctness of a given ADT implementation P .

an implementation of an ADT of type SchedType (of Fig. 4.1) may use a
shared global variable to represent the running task, which needs to be
updated by different operations in the SchedType. In the first case, we
need to move such initialization code to a separate init operation. In the
second case, we have to eliminate such shared updates by adding suitable
arguments and return value to the operations in N . Let P be the concrete
implementation of the ADT obtained from the given implementation by
applying the required transformations like above.

2. Based on a high-level understanding of the code, and documentation
like user manual and comments in the code, construct an abstract ADT
modelM in a high-level specification language like Z, that captures the
intended behavior of the implementation. An example of such an abstract
ADT model could be the Z model of the scheduler ADT in Sec. 4.1.2.

3. In general, the concrete implementation P may make use of several sub-
ADTs, say B1, . . . ,Bn of type M1, . . . ,Mn respectively. P can thus be
viewed as U [B1, . . . ,Bn], where U is an (M1, . . . ,Mn)-client ADT tran-
sition system of type N . We now replace each sub-ADT implementation
Bi by an abstract version Ai of it expressed using the high-level con-
structs like maps of the ghost language available in tools like VCC. We
refer to this simplified implementation U [A1, . . . ,An] of the concrete im-
plementation P , as P1.

For example, let P be the ADT implementation of type SchedType (see
Fig. 4.1), a part of which is shown in Fig. 1.8. This ADT uses the sub-
ADT c-queue of Fig. 1.1. Thus P is of the form U [B], or more precisely
c-sched[c-queue]. Now we could replace c-queue in c-sched[c-queue]
with g-queue (an abstract ghost version in VCC given in Fig. 1.6), to

5.2. Phrasing refinement conditions 59

obtain the simplified ADT implementation P1. Thus P1 is of the form
U [A], or more precisely c-sched[g-queue].

4. Refine the abstract ADT modelM towards the simplified implementa-
tion P1, via a sequence of successively refined ADT models, that add
increasing details of the implementation. LetM1 be the resulting ADT
model that is sufficiently “close” to P1. The number of intermediate
ADT models required and implementation details to be added could be
decided based on the gap betweenM and P1.

For example, suppose the abstract ADT model has a single sequence
of ready tasks with length 1024 and P1 implements it with four ready
lists of maximum length 256 each, where 256 is the maximum length
supported by the hardware. Then we could refineM toM1 by dividing
the single sequence of ready tasks to four sequences to reduce the gap
between M and P1. We discuss in Sec. 5.2.1, a technique for phrasing
the refinement conditions between ADT models in Z.

5. Check that P1 refines M1. We discuss a technique for doing this in
Sec. 5.2.2. At the end of this step, we would have function contracts in
the form of requires and ensures predicates in a tool like VCC, for the
ghost implementations of the sub-ADTs, that were used to prove that
P1 refinesM1.

6. Take each sub-ADT Ai along with its associated precondition (from the
requires clause of its contract), and check that it is refined by Bi . For
instance, we need to prove in the above example that c-queue refines
g-queue. We discuss a technique for phrasing the refinement conditions
between a ghost model and a C implementation in Sec. 5.2.5.

If these checks are successful, we can conclude using our transitivity result
(Proposition 2.1) and substitutivity result (Theorem 3.2) that:

P = U [B1, . . . ,Bn] � U [A1, . . . ,An] = P1 �M1 �M.

We note that the given implementation and hence both P and P1 may not
conform to the abstract ADT model M and we would need to work with
suitably fixed versions for proofs to go through.

5.2 Phrasing refinement conditions
We present in this section, different techniques for phrasing the refinement
conditions between ADTs in different languages. In particular, we consider
refinement between ADTs in five different contexts: (i) refinement between
Z models, (ii) refinement between Z and C models, (iii) refinement between
ghost models, (iv) refinement between ghost and C models, and (v) refinement
between C models.

60 Chapter 5. Directed Refinement Methodology

Notation Meaning
StateM the data-schema of the Z modelM
OpMn the operation-schema of the Z modelM, which represents the operation n
XMn the type of the argument to OpMn
a the value of the argument to an operation-schema

YMn the type of the return value from OpMn
b the value of the output from an operation-schema

preMn the precondition of OpMn
BAPMn the before-after predicate of OpMn
StateB the state-structure modeling the states of the ADT in a ghost or C model B
funcBn the method which implements the operation n in the model B
ArgBn the type of the argument to funcBn
RetBn the type of the return value from funcBn
preBn the precondition of funcBn

s and s′ the before-state and after-state of an operation in an abstract ADT
t and t ′ the before-state and after-state of an operation in a concrete ADT
u′.y the output variable in the after-state u′ of a method
invu the state-invariant in the ADT state u (u is called legal when it satisfies invu)
invρ the gluing invariant, which relates the concrete states to the abstract states

Table 5.1: Notation used in this chapter.

In each of the above cases, depending on the types of the abstract and con-
crete ADT models, we need to consider one of the following: (i) the sufficient
condition (RC) of Sec. 2.6, (ii) the sufficient condition (RC-TS) of Sec. 3.3 or
(iii) a combination of these.

We show how to formulate the refinement conditions between Z models as
a logical formula, which can be checked in a tool like Z/Eves [44], or Rodin
[4]. For each of the other cases mentioned above, we show how to phrase
the refinement conditions as code level annotations in a tool like VCC [15] or
Verifast [29]. We use the requires annotation, which specifies a condition
on the state and input that is assumed to hold when the method is invoked,
and the ensures annotation (which asserts the condition expected to hold
when the method returns) to specify the refinement conditions as code level
annotations.

Table 5.1 shows the notation used in this chapter. The predicate FMn (x , y)
is similar to the predicate FMn , except that the arguments x and y denote one
of the following: (i) free variables in FMn , (ii) values for free variables in FMn
or (iii) a combination of these.

5.2.1 Refinement between Z models
LetM1 andM2 be two Z models, each of which represents an ADT. Then we
can phrase the sufficient condition (RC) of Sec. 2.6, forM1 andM2 logically
as follows. The Z modelM2 refines the Z modelM1 iff they satisfy all of the
following conditions:

• OpM1 = OpM2 , and input/output types for each n ∈ OpM1 match
(i.e. XM1

n = XM2
n and YM1

n = YM2
n).

5.2. Phrasing refinement conditions 61

• There exists a predicate ρ on VarM1 ∪VarM2 that satisfies the following
conditions:

– For each a ∈ XM1
init , q ∈ QM1 , b, b′ ∈ YM1

init , and q ′ ∈ QM2 :

[BAPM1
init (a, q, b) ∧BAPM2

init (a, q ′, b′)] =⇒ b = b′ ∧ ρ(q ′, q),

– and for each n ∈ OpM1 , a ∈ XM1
n , p, q ∈ QM1 , b ∈ YM1

n , and p′ ∈ QM2 :

[ρ(p′, p) ∧BAPM1
n (p, a, q, b)] =⇒ ∃ q ′ ∈ QM2 such that

BAPM2
n (p′, a, q ′, b) ∧ ρ(q ′, q).

Such a condition can be checked in a theorem prover for Z like Z/Eves [44],
or Rodin [4], or even by a suitable translation into a code verifier like VCC
[15].

5.2.2 Refinement between Z and C models

Let M be a Z model of an ADT of type N and P be a C implementation
of an ADT of type N . Then we describe a technique for phrasing the re-
finement conditions for P to refine M. The idea is to directly import the
requirements from the Z modelM as code level annotations in P . Here we ex-
istentially quantify away the abstract state and hence the resulting requires
and ensures annotations are independent of the abstract state. The required
annotations in the methods of P are shown in Fig. 5.2.

We note that by assumption, the init operation depends only on the input,
and not the before-state. For each input satisfying the abstract precondition
(preMinit) of the init operation, we need to verify the following: (i) the method
funcPinit terminates, (ii) there exists an abstract legal after-state s′ to which
the concrete after-state t ′ is related by the abstract relation ρ, and (iii) the
operation OpMinit and the method funcPinit produce the same output. These
annotations essentially capture the following: the operation OpMinit and the
method funcPinit end with states related by ρ and produce the same output,
when invoked with an input satisfying the abstract precondition. We note
that OpMinit enters the exception state with e as output, when the operation
is invoked with an input not satisfying the abstract precondition, and hence
there is no demand on the method funcPinit to simulate the operation OpMinit.

The annotations for a method funcPn , also has three components similar
to the case above, except that in addition, these formulas use the before-state
as well. The annotations in this case essentially capture the following: the
operation OpMn and the method funcPn end with a joint after-state satisfying ρ
such that the abstract after-state is legal, and both the abstract and concrete
operations produce the same output; when the operation is invoked in a joint
before-state satisfying the abstract state-invariant, abstract precondition and
the gluing invariant.

62 Chapter 5. Directed Refinement Methodology

(init-a) funcPinit must terminate on all inputs x for which initM is defined (i.e.
preMinit(x) is true).

(init-b) funcPinit(XMinit x)
(requires preMinit(x))
(ensures ∃ s′ : BAPMinit(x, s′, s′.y)∧ invs′ ∧ invρ(t ′, s′))
(ensures t ′.y = s′.y))

{
// function body

}

(sim-a) For each operation n, funcPn must terminate on all state-input pairs
(t, x) such that there exists a state-input pair (s, x) of M satisfying:
invs ∧ preMn (s, x) ∧ invρ(t, s).

(sim-b) For each operation n:

funcPn (XMn x)
(requires ∃ s : invs ∧ preMn (s, x) ∧ invρ(t, s))
(ensures ∃ s, s′ : invρ(t, s) ∧BAPMn (s, x, s′, s′.y) ∧ invs′ ∧ invρ(t ′, s′)))
(ensures t ′.y = s′.y)

{
// function body

}

Figure 5.2: Directly importing the requirements from the Z modelM as code
level annotations in the C program (see Table 5.1). Here t and t ′ represent the
before-state and after-state respectively of the methods.

5.2. Phrasing refinement conditions 63

Requirement Possible Z spec. Equivalent VCC spec.
Set of elements
of type T. A T : P T (ghost \bool A T[T])

Set member-
ship. e ∈ A T A T[e]==\true

Set Comple-
ment. AComp T = T \ A T \forall T t; AComp T[t]<==>!A T[t]

Set Union. C T = A T ∪ B T \forall T t;C T[t]<==>A T[t]||B T[t]

Table 5.2: A table showing the procedure for translating sets and operations
in Z, to ghost objects and operations in VCC. If X is a set, then the notation
“A X” denotes an arbitrary subset of X.

5.2.3 Z-to-VCC translation

Motivation: The two approaches described so far to check the refinement
conditions between two Z models and between Z and C models suffer from
the following disadvantages. The first is that performing a refinement proof
between abstract models, is challenging because the level of automation in tools
such as Z/Eves [44] and Rodin [4] is inadequate, and requires non-trivial human
effort and expertise in theorem proving to get the prover to discharge the proof
obligations. The second hurdle is the difficulty in showing the refinement
between a declarative model and an imperative language model. The problem
here is that there is no tool which understands both these modeling languages.
One way of getting around this is to use the technique explained in Sec. 5.2.2,
to “import” the before-after-predicates (BAP s) from the declarative model to
the concrete implementation, by using requires and ensures clauses that are
equivalent to formulas in which the abstract state is existentially quantified
away. However there are some disadvantages of this approach: (i) existential
quantifications are difficult to handle for the theorem prover and can lead to
excessive time requirement or can even cause the prover to run out of resources,
and (ii) can be error-prone, and the equivalence should ideally be checked using
a general-purpose theorem prover like Isabelle/HOL or PVS.

We describe a technique using a VCC-like tool that overcomes some of
these difficulties. The idea is to first translate the high-level Z model to a
ghost model in VCC and then do the successive refinements completely within
VCC. How does this help us to get around the problems mentioned above? The
first problem of proving refinement between abstract models is alleviated as
VCC is typically able to check the refinement between ghost models efficiently
and automatically. The second problem of moving from an abstract model to
an imperative implementation is also addressed because we now have both the
abstract and the concrete models in a language that VCC understands.

Another advantage of this approach is that the ghost model can be used
to verify the local properties of clients of the ADT (see Theorem 2.2).

We propose a mechanizable procedure for translating a Z model to a ghost
model in VCC. Our aim is to translate a given modelM in the Z language to

64 Chapter 5. Directed Refinement Methodology

Requirement Possible Z spec. Equivalent VCC spec.
Partial function
from X to Y

pMap : X 7→ Y (ghost Y pMap[X])
(ghost \bool pMapDom[X])

Domain restric-
tion for maps g = A XC f

\forall gDom x;(g[x]==f[x])∧ \forall X x;
gDom[x]<==>(fDom[x] && A X[x])

Domain sub-
traction for
maps.

g = A X−C f
\forall gDom x; g[x]==f[x])∧ \forall X x;
(gDom[x]<==>(fDom[x] && !A X[x])

Range restric-
tion for maps. g = fB B Y

\forall gDom x; g[x]==f[x])∧ \forall X x;
(gDom[x]<==>(fDom[x] && B Y[f[x]])

Range subtrac-
tion for maps. g = f−B B Y

\forall gDom x; g[x]==f[x])∧ \forall X x;
(gDom[x]<==>(fDom[x] && !B Y[f[x]])

Relational
overriding for
maps (f:X 7→Y,
g:X 7→Y).

h = f⊕ g
\forall hDom x;((gDom[x]==>(h[x]==g[x]))∧
(!gDom[x]==> (h[x]==f[x]))∧\forall X x;
(hDom[x]<==>(fDom[x]||gDom[x]))

Containment of
relational image
(f:X 7→Y).

f(| A X |) ⊆ A Y \forall X x;A X[x]==>A Y[f[x]]

Table 5.3: A table showing the procedure for translating maps and operations
in Z, to ghost objects and operations in VCC.

a model G in the ghost language of VCC, to meet the following objectives: (i)
the ghost model G refines the Z modelM and (ii) the ghost model G admits an
easy proof of the ensuing refinement conditions. We propose a mechanizable
translation procedure, which achieves the above objectives.

We present only those Z constructs that we use in the Z models of the
case-studies in this thesis. Nevertheless other mathematical objects in Z can
be handled in a similar way.

LetM be a Z specification of an ADT of type N . We translate the data-
schema StateM to a state-structure StateG (see Table 5.1). The idea is to
make use of: (i) ghost fields in StateG to model the fields of StateM and (ii)
an invariant in StateG to model the invariant of StateM. For example, our
proposed translation procedure will result in the state-structure of Fig. 4.10,
when applied to the data-schema of Fig. 4.2.

We translate an operation-schema OpMn to a ghost method funcGn . The
idea here is to make use of: (i) a ghost parameter in funcGn to model the input
of OpMn , (ii) requires annotation to model the precondition of OpMn , and (iii)
a sequence of ghost statements in funcGn to model the before-after predicate
BAPMn . For example, our proposed translation procedure will result in the
ghost method of Fig. 4.12, when applied to the operation-schema of Fig. 4.5.

We propose a table look-up procedure to encode some of the Z objects and
operators in VCC, using the ghost language of VCC. Table 5.2, Table 5.3 and
Table 5.4, present look-up procedures for encoding the Z objects: sets, maps
and sequences respectively, using ghost objects in VCC.

The Z objects are encoded in VCC in a way that facilitates easy proofs

5.2. Phrasing refinement conditions 65

Requirement Z spec. Equivalent VCC spec.

An injective
sequence of
elements of
type T

s : iseq T

(ghost T sElmnts[\natural])
(ghost \natural sIndex[T])
(ghost \natural sLength)
(invariant \forall \natural i;(i<sLength)

==>(sIndex[sElmnts[i]]==i))
(invariant \forall T e;sIndex[e]<sLength

==>(sElmnts[sIndex[e]]==e))
Membership in
sequence. e ∈ ran s sIndex[e] < sLength

Disjoint se-
quences. ran s ∩ ran t = ∅

\forall T e; ((sIndex[e]<sLength==>
tIndex[e]>=tLength)∧
(tIndex[e]<tLength==>sIndex[e]>=sLength))

Sequence con-
tainment. ran s ⊆ ran t

\forall T e; sIndex[e]<sLength==>
tIndex[e]<tLength

Concatenation
for injective
sequences of
the same type
(s, t are dis-
joint sequences
of type T).

u = sa t

\forall \natural i;(i<sLength)==>
(uElmnts[i]==sElmnts[i])
\forall \natural i;(i<tLength)==>
(uElmnts[i+sLength]==tElmnts[i])
\forall T e;(sIndex[e]<sLength)==>
(uIndex[e]==sIndex[e])
\forall T e;(tIndex[e]<tLength)==>
(uIndex[e]==tIndex[e]+sLength)
\forall T e;((sIndex[e]>=sLength)&&
(tIndex[e]>=tLength))==>
(uIndex[e]==sLength+tLength])
uLength==sLength+tLength

Filter oper-
ation for a
sequence of
type T.

t = s � A T

tLength<=sLength
\forall \natural i;(i<tLength) ==>
((sIndex[tElmnts[i]]<sLength)&&
(A T[tElmnts[i]]))
\forall \T e;((sIndex[t]<sLength)&&A T[e])
==>(tIndex[e]<tLength) \forall \natural
i,j;((i<j)&&(j<tLength)) ==>
(sIndex[tElmnts[i]]<sIndex[tElmnts[j]])

Extraction
operation for
a sequence of
type T.

t = s � A T

tLength<=sLength
\forall \natural i;(i<tLength)==>
((sIndex[tElmnts[i]]<sLength)&&
(!A T[tElmnts[i]]))
\forall \T e;((sIndex[t]<sLength)&&!A T[e])
==>(tIndex[e]<tLength) \forall \natural
i,j;((i<j)&&(j<tLength)) ==>
(sIndex[tElmnts[i]]<sIndex[tElmnts[j]])

Table 5.4: A table showing the procedure for translating sequences and oper-
ations in Z, to ghost objects and operations in VCC.

66 Chapter 5. Directed Refinement Methodology

for the ensuing verification conditions. Consider the encoding proposed in
Table 5.4, for modeling a sequence of elements of an arbitrary type T. Let
sElements be a ghost map modeling a sequence in VCC. Then we use the
following two auxiliary objects to encode this sequence to admit an easy proof
of the ensuing verification conditions in VCC. The first auxiliary object is a
ghost variable called sLength, which models the number of elements present
in the sequence modeled by the ghost object sElements. The second auxiliary
object is a ghost map called sIndex, which models the positions of elements
in the sequence. The map sIndex could be defined as follows. The value of
an element v under this map (that is, sIndex[v]) is less than the value of the
variable sLength iff sElements[sIndex[v]] = v. Thus VCC requires manual
help to make the verification process efficient and tractable for large programs.

Now we illustrate the use of the above encoding to reduce the complexity
of the ensuing verification condition in VCC. Suppose in the Z model, we have
the predicate “v ∈ ran s” which denotes “v is an element of the sequence s”.
How can we translate this predicate to VCC? A straight forward encoding of
this predicate in VCC could be “∃ pos : N | (sElements[pos] = v)”. But this
encoding uses an existential quantifier, which is difficult for a theorem prover
to handle. Suppose we want to check the validity of a verification condition ϕ,
which uses existential quantifications. A theorem prover usually checks its va-
lidity by checking the satisfiability of the negation of the verification condition
ϕ (i.e. ¬ϕ). Now it is difficult to check the satisfiability of the formula ¬ϕ,
since existential quantifications in ϕ become universal quantifications in ¬ϕ.

Our proposed translation procedure encodes the mathematical objects from
the Z language without making use of existential quantifications. This helps
us in getting a verification condition which is a lot easier for the prover to solve
than otherwise. For instance, the use of auxiliary objects such as sLength and
sIndex help us in avoiding the use of existential quantifications in the encoding
of sequences in VCC. In particular, the membership query in the above example
could be encoded using these auxiliary objects as “sIndex[v] < sLength”.

5.2.4 Refinement between ghost models
We now show how to phrase the refinement conditions when both the abstract
and concrete ADTs are ghost models in VCC. Recall that a ghost model com-
prises a state-structure modeling the states of the ADT and a set of ghost
methods implementing the operations of the ADT.

Let G1 and G2 be two ghost models of an ADT of type N . Then we can
encode the refinement condition (RC-TS) of Sec. 3.3, for the model G2 to refine
the model G1 as follows. We construct a “joint” model G1&2 such that: (i) the
state-structure StateG1&2 combines the contents of StateG1 and StateG2 , (ii)
in StateG1&2 an invariant “invρ” asserts the abstraction relation ρ from the
states of G2 to the states of G1, and (iii) for each operation n in N , there is a
joint ghost method funcG1&2

n which executes the bodies of the methods funcG1n
and funcG2n (see Table 5.1).

Fig. 5.3 shows how we can phrase the refinement condition (RC-TS) using

5.2. Phrasing refinement conditions 67

StateG1&2

{
// contents of StateG1
// contents of StateG2
invρ

};

(init) funcG1&2
init (ArgG1init x)

(requires preG1n)
(ensures invs′ ∧ invρ ∧ s.′y = t ′.y)

{
// body of funcG1init

// body of funcG2init
}

(sim) For each operation n:

funcG1&2
init (ArgG1n x)

(requires invs ∧ preG1n ∧ invρ)
(ensures invs′ ∧ invρ ∧ s.′y = t ′.y)

{
// body of funcG1n
// body of funcG2n

}

Figure 5.3: Phrasing the refinement between ghost models (see Table 5.1).

68 Chapter 5. Directed Refinement Methodology

the combined model G1&2. It shows the joint structure and the combined
methods for both the init operation and an operation n in N . For an operation
n in N , the annotations essentially capture the following: if the execution of the
combined ghost method starts in a joint state with input, satisfying the gluing
(abstraction) relation (invρ), and the abstract state-invariant and precondition;
then the execution terminates in a joint state satisfying the gluing relation such
that the abstract after-state is legal and both the abstract and concrete ghost
methods produce the same output value.

5.2.5 Refinement between ghost and C models
Here we show how to phrase the refinement conditions, when the abstract ADT
is a ghost model in VCC and the concrete ADT is a C program.

Let G be a ghost model of an ADT of type N and P be a C program of
an ADT of type N . Then we can encode the refinement condition (RC-TS)
of Sec. 3.3, for the model P to refine the model G as follows. We construct a
“joint” model CG,P such that: (i) the state-structure StateCG,P combines the
contents of StateG and StateP (see Table 5.1), (ii) in CG,P an invariant invρ
asserts the abstraction relation ρ from the states of P to the states of G, and
(iii) for each operation n in N , there is a joint method funcCG,Pn which executes
the bodies of the methods funcGn and funcPn .

Fig. 5.4 shows how we can phrase the refinement condition (RC-TS) using
the combined model CG,P . The technique is similar to the technique explained
above for phrasing the refinement conditions between ghost models, except
that in addition we need to prove that a concrete method terminates, when
the joint before-state with input satisfies the abstract state-invariant and pre-
condition.

5.2.6 Refinement between C models
We have presented a technique in Sec. 4.3 to view C implementations as ADT
transition systems. We now describe a technique for checking the refinement
condition (RC-TS) of Sec. 3.3 between C programs implementing ADTs of
a given type. Let P1 and P2 be two C programs implementing ADTs of a
type N . Methods in the abstract C program P1 may have preconditions. We
can phrase the sufficient condition (RC-TS) for refinement between P1 and P2

in a similar way as explained in Sec. 5.2.5 (C implementation refines ghost
implementation), except for the following:

1. Let “termP1
n ” denote a predicate describing the set of state-input pairs on

which funcP1
n terminates. Then the condition preGinit in (init-a) and (init-

b) can be replaced by preP1
init ∧ termP1

init, and similarly invs ∧ preGn ∧ invρ
in (sim-a) and (sim-b) can be replaced by invs ∧ preP1

n ∧ invρ ∧ termP1
n .

2. It must be the case that the function implementations of P1 and P2 don’t
“interfere” with each other. That is, there is no shared data which can

5.2. Phrasing refinement conditions 69

StateCG,P
{

// contents of StateG

// contents of StateP

invρ
};

(init-a) funcPinit terminates on all joint state-input pairs satisfying preGinit.

(init-b) funcCG,Pinit (ArgGinit x)
(requires preGinit)
(ensures invs′ ∧ invρ ∧ yGinit = yPinit)

{
// body of funcGinit
// body of funcPinit

}

(sim-a) For each operation n, funcPn must terminate on all state-input pairs
satisfying invs ∧ preGn ∧ invρ.

(sim-b) For each operation n:

funcCG,Pn (ArgGn x)
(requires invs ∧ preGn ∧ invρ)
(ensures invs′ ∧ invρ ∧ yGn = yPn)

{
// body of funcGn
// body of funcPn

}

Figure 5.4: Phrasing refinement between ghost model and C implementation
(see Table 5.1).

70 Chapter 5. Directed Refinement Methodology

QZ
zSeq : seq Z

#zSeq ≤ SIZE

enq
∆QZ
input? : Z

#zSeq < SIZE
zSeq ′ = zSeqa 〈input?〉

Figure 5.5: A part of the Z model of an ADT of type QTypeZ.

struct void enq(int val)
{ _(requires QC.lenC < SIZE)

unsigned lenC; ...
int arr[SIZE]; _(ensures lenC <= SIZE)
_(invariant lenC <= SIZE) {

} QC; QC.arr[QC.lenC] = val;
QC.lenC++;

}

Figure 5.6: A part of the C implementation of an ADT of type QTypeZ.

be updated by both P1 and P2. We present a technique in Sec. 5.5, for
handling shared data.

5.3 Proving refinement conditions in VCC
In this section we describe techniques for proving the refinement conditions
of Sec. 5.2, in the tool VCC. We consider refinements in two different con-
texts. The first one considers the refinement between a declarative model in a
language like Z and an imperative implementation in a language like C. We de-
scribe a technique called the “direct-import” approach for proving refinement
conditions in this case. The second one considers the refinement between two
ADT models in VCC. To handle this kind of refinements, we describe a tech-
nique called the “combined” approach.

We illustrate these techniques using an example ADT of type QTypeZ,
which is discussed in Sec. 3.1. A part of the Z model called z-queue of an
ADT of type QTypeZ is shown in Fig. 5.5. The data-schema in z-queue models
the contents of the queue as a finite sequence of integers namely zSeq. The
invariant in the data-schema bounds the length of this sequence by the constant
SIZE. The figure also shows the operation-schema to insert an element to the
queue. This operation-schema assumes that there is at least one vacant space
in the queue to insert the new element.

Now consider a C implementation called c-queue of an ADT of type
QTypeZ, a part of which is shown in Fig. 5.6. An array of integers namely
arr represents the elements of the queue. The invariant of the struct avoids
the possible array out of bounds error. The method for inserting an element

5.3. Proving refinement conditions in VCC 71

void enq(_(ghost unsigned val))
_(requires \exists \natural lenZ, \exists int zSeq[\natural];

((lenZ <= SIZE) &&
(lenZ < SIZE) &&
((lenZ == lenC) &&
(\forall \natural i; (i < lenZ) ==> (zSeq[i] == QC.arr[i])))))

...
_(ensures \exists \natural lenZ, \exists int zSeq[\natural],

\exists \natural lenZ’, \exists int zSeq’[\natural];
((lenZ == \old(lenC)) &&
(\forall \natural i;

(i < lenZ) ==> (zSeq[i] == \old(QC.arr[i])))) &&
((lenZ’ == lenZ + 1) &&

(\forall \natural i; (i < lenZ) ==> (zSeq’[i] == zSeq[i])) &&
(zSeq’[lenZ] == val)) &&

(lenZ’ <= SIZE) &&
((lenZ’ == lenC) &&
(\forall unsigned i; (i < lenZ’) ==> (zSeq’[i] == QC.arr[i])))))

{
// body of the concrete method

}

Figure 5.7: Illustrating the “direct-import” approach on the method enq of
Fig. 5.6.

to the queue is also shown in the figure.
We fix the names z-queue and c-queue as above for the rest of this section.

In the following subsections we describe two techniques in VCC to prove the
refinement conditions between ADT models.

5.3.1 Direct-import approach
We now describe a technique in VCC to check the refinement conditions for-
mulated in Sec. 5.2.2, that is the refinement between Z and C models. This
approach is called the “direct-import” approach, since we directly import the
requirements from the abstract model as code level annotations in VCC.

Fig. 5.7 illustrates this technique for checking the refinement conditions
between z-queue and c-queue, based on the refinement conditions formulated
in Sec. 5.2.2. If x is a global variable accessible to a method func, then
the variable x in the requires and ensures annotations of the method func
respectively denote the value of the variable x before and after executing the
body of the method func. The expression \old(x) in the ensures annotation
of func denotes the value of the variable x before the execution of the method
func.

The above is a valid technique for checking refinement conditions in VCC.
However it is not a practically feasible approach for large models, since the

72 Chapter 5. Directed Refinement Methodology

void enq(int val)
_(requires QC.lenC < SIZE)
_(ensures

(QC.lenC == \old(QC.lenC) + 1) &&
(\forall \natural i;
(i < \old(QC.lenC)) ==>
(QC.arr[i] == \old(QC.arr[i])) &&

(QC.arr[\old(QC.lenC)] == val))
_(ensures QC.lenC <= SIZE)
...

{
// body of the concrete method

}

Figure 5.8: Illustrating “direct-import approach with quantifier elimination”.

underlying theorem prover in VCC is not good in handling existential quan-
tifications.

A possible way to solve the problem with the “direct-import” approach is to
manually transform the annotations to remove existential quantifications, and
get an equivalent condition that holds over all models of linear arithmetic. The
modified technique with manual transformation is called the “direct-import
approach with quantifier elimination”. For instance, Fig. 5.8 shows how we can
do this for the above example. Here existential quantifications are not used
in the function contract and hence VCC could efficiently check the function
contract.

5.3.2 Combined approach
Now we explain a technique to use VCC for checking the refinement conditions
formulated in Sec. 5.2.5, that is the refinement between ghost and C models.
We assume here that the abstract ADT is available as a ghost model in VCC.
For instance, Fig. 5.9 shows a part of the ghost model called g-queue which
is obtained from the Z model z-queue. Recall that one can use our Z-to-VCC
translation procedure of Sec. 5.2.3, to translate a Z model to a ghost model in
VCC.

The idea is to use a joint model in VCC, which combines the abstract and
concrete models to check the refinement conditions. Therefore this technique
is called the “combined” approach. We use a joint state-structure to represent
the combined states of the abstract and concrete ADTs and for each operation
we use a joint method which executes the statements of both the abstract and
the concrete methods.

To illustrate this technique, consider the models g-queue and c-queue
discussed above. Fig. 5.10 shows the joint state-structure which combines
the states of the models g-queue and c-queue, and Fig. 5.11 shows the
joint method to check the refinement condition with respect to the operation

5.3. Proving refinement conditions in VCC 73

strcut void enq(_(ghost int val))
{ _(requires QG.lenG < SIZE)

_(ghost \natural lenG) _(ensures QG.lenG <= SIZE)
_(ghost int gSeq[\natural]) {
_(invariant lenG <= SIZE) _(ghost QG.gSeq[QG.lenG] = val)

} QG; _(ghost QG.lenG = QG.lenG + 1)
}

Figure 5.9: A part of the ghost implementation of an ADT of type QTypeZ.

struct
{

_(ghost \natural lenG)
_(ghost int gSeq[\natural])
_(invariant lenG <= SIZE)
unsigned lenC;
int arr[SIZE];
_(invariant lenC <= SIZE)
// gluing invariant
_(invariant (lenG == lenC) && (\forall \natural i;

(i < lenG) ==> (gSeq[i] == arr[i])))
} QGC;

Figure 5.10: The joint state-structure which combines the states of the models
g-queue and c-queue.

void enqCombined(int val)
_(requires (QGC.lenG <= SIZE) && (QGC.lenG < SIZE) &&

((QGC.lenG == QGC.lenC) &&
(\forall \natural i; (i < QGC.lenG) ==>

(QGC.gSeq[i] == QGC.arr[i]))))
_(ensures QGC.lenG <= SIZE) && ((QGC.lenG == QGC.lenC) &&

(\forall \natural i; (i < QGC.lenG) ==>
(QGC.gSeq[i] == QGC.arr[i]))))

{
// body of the abstract method
// body of the concrete method

}

Figure 5.11: Joint method to check the refinement between the models g-queue
and c-queue with respect to the operation enq.

74 Chapter 5. Directed Refinement Methodology

unsigned factorial(unsigned val)
_(decreases 0)
...

{
unsigned fact, i;
fact = 1;
for(i = 1; i <= val; i++)

_(decreases (val - i))
...

{
fact = fact * i;

}
return fact;

}

Figure 5.12: Illustrating the technique in VCC to prove termination.

enq. The function contract shown in this figure is generated from the models
g-queue and c-queue by applying the technique described in Sec. 5.2.5.

This technique can be used to check the refinement conditions when both
the abstract and concrete models are in languages that VCC understands.
In particular, this technique can be used to check the refinement conditions
formulated in Sec. 5.2.4 (between ghost models), Sec. 5.2.5 (between ghost and
C models), and Sec. 5.2.6 (between C models).

5.4 Proving termination in VCC

In this section we describe how we use VCC to prove the termination of a
method in C. Recall that some of the refinement conditions formulated in
Sec. 5.2, require us to prove that a concrete method terminates. This is re-
quired when one of the ADT models is an imperative language implementation.

We use the existing technique in VCC to prove the termination of a method
and which is to use the decreases annotation. In the function contract of a
method, the annotation (decreases 0) asserts that the method terminates.
To prove this one should again use the decreases annotation in each loop in
the method to ensure that the value of an expression (of type unsigned in C)
strictly decreases between successive executions of the loop body. We illustrate
this below with a simple example.

Consider a program in C to find the factorial of a number. Fig. 5.12
shows excerpts from a VCC model which illustrates how one can prove the
termination of a method which finds the factorial of the given argument.

5.5. Handling shared data 75

void enq(int t)
...
_(ensures \old(cur) = cur)

{
//body of the method

}

Figure 5.13: Illustrating function contract for verifying the requirements for
ensuring the property “effectively functional”.

5.5 Handling shared data
We assumed in our theory that a client ADT transition system like the sched-
uler implementation of Fig. 1.8, interacts in a purely “functional way” with its
sub-ADT like the c-queue ADT of Fig. 1.1, in the sense that the interaction
between the two is via arguments and return value only. In particular, they
do not communicate via shared data. However most ADT transition systems
violate this assumption. For example, the variable cur, which represents the
currently running task in the scheduler of Fig. 1.8, could be defined as a global
variable and hence violates the above assumption, since c-queue can modify
this variable.

We can safely weaken the above assumption to require that interactions
between a client ADT transition system and its sub-ADT is “effectively func-
tional”. The interactions between a client ADT transition system and its
sub-ADT is said to effectively functional iff each of them does not modify any
shared data, which is owned by the other. To verify this, one would need to
first classify the ownerships of shared data between the ADT transition system
and its client. For instance, the scheduler could be defined as the owner of the
variable cur in the above example.

After classifying ownerships, one could use a suitable function contract
to verify that a method in one component does not modify a shared data
which is owned by the other component. The annotation (ensures \old(x)
= x), in each method in one component could be used to ensure that this
component does not modify the shared variable x, which is owned by the other
component. For example, the annotation (ensures \old(cur) = cur), is
required in each of the methods in the c-queue component, to ensure that the
value of the shared variable cur is not modified by the c-queue component.
The function contract for ensuring this in terms of the enq method in the
program c-queue is shown in Fig. 5.13.

76 Chapter 5. Directed Refinement Methodology

Chapter 6

Conformal ADTs and
Refinement

This chapter is about a notion of refinement between ADTs whose operations
may have different Input/Output (I/O) types. The verification guarantees
provided by the proposed notion of refinement is same as that of the refine-
ment notion for ADTs (see Sec. 2.5), but via an “interface” or “wrapper” that
translates inputs and outputs between the abstract and the concrete ADTs.
We extend the necessary and sufficient refinement condition of Sec. 2.6, to
ADTs with different I/O types.

6.1 Conformal ADTs
In this section we introduce the concept of “conformal” ADTs. We also intro-
duce a running example for this chapter to illustrate the proposed notion of
refinement between conformal ADTs.

A notion of refinement between ADTs with operations supporting different
I/O types is typically required when one refines an abstract ADT model to
a concrete ADT implementation. For example, consider the scheduler ADT
discussed in Sec. 4.1. A natural number is used as a unique task-id to represent
a task in the Z model of the scheduler ADT of Fig. 4.2. Suppose a task is
represented by a struct say TCB in a C implementation of this ADT. Now
an ADT operation like resched, which takes a task as an input and returns a
task as an output has the set of all natural numbers as the I/O type in the Z
model, and the set of all TCBs as the I/O type in the C implementation.

Let N1 = (N1, (I 1n)n∈N1 , (O1
n)n∈N1) and N2 = (N2, (I 2n)n∈N2 , (O2

n)n∈N2) be
two ADT types. Then N1 and N2 are said to be conformal iff N1 = N2.
That is, conformal ADT types have the same set of operations with possibly
different I/O types. For example, the ADT type SchedType1 of Fig. 6.1 and
the ADT type SchedType2 of Fig. 6.2 are conformal, since they both have the
set of operations {init, create, resched}. We fix the ADT types N1 and N2 as
above for the rest of this chapter.

Let A1 be an ADT of type N1 and let A2 be an ADT of type N2. Then
A1 and A2 are said to be conformal, if their types N1 and N2 are conformal.

77

78 Chapter 6. Conformal ADTs and Refinement

SchedType1 = {init, create, resched, I 1init,O1
init, I 1create,O1

create, I 1resched,O1
resched}

where: I 1init = {nil}

O1
init = {ok, e}

I 1create = N

O1
create = {ok, fail, e}

I 1resched = N

O1
resched = N ∪ {fail, e}

Figure 6.1: The ADT type SchedType1.

SchedType2 = {init, create, resched, I 2init,O2
init, I 2create,O2

create, I 2resched,O2
resched}

where: I 2init = {nil}

O2
init = {ok, e}

I 2create = TCB

O2
create = {ok, fail, e}

I 2resched = TCB

O2
resched = TCB ∪ {fail, e}

Figure 6.2: The ADT type SchedType2.

6.1. Conformal ADTs 79

resched
∆State
taskIn? : N
taskOut! : N

taskIn? ≤ maxNumV al
taskOut! = head (ready a 〈taskIn?〉)
ready′ = tail (ready a 〈taskIn?〉)

Figure 6.3: A part of a Z model which represents an ADT of type SchedType1.

typedef struct TCB * cResched(TCB *in)
{ {

unsigned id; TCB *out; unsigned i;
// extra fields ready[len] = in;

} TCB; out = ready[0];
for(i = 0; i < len; i++)

TCB* ready[MAXSIZE]; ready[i] = ready[i + 1];
unsigned len; return out;

}

Figure 6.4: A part of a C program which implements an ADT of type
SchedType2.

A part of a Z model (sayM) which represents an ADT of type SchedType1
is shown in Fig. 6.3. It shows the operation-schema for the resched operation.
This schema assumes that the data-schema State contains a field ready, which
is a sequence of natural numbers modeling the set of ready tasks. It also
assumes that each element in the sequence ready is bounded by the value of
the variable “maxNumV al”, which denotes the maximum value allowed by
the data type unsigned in the C language. A task is represented by a unique
task-identifier (natural number).

Now consider the C program of Fig. 6.4. It shows a part of a C program
(say P) which implements an ADT of type SchedType2. An array called ready
represents the set of ready tasks in the system. In this implementation, a task
is represented by a pointer to the struct called TCB, which contains a field to
store the abstract id of a task and extra fields to store more implementation-
related details.

The ADTsM and P are conformal, since their ADT types are conformal.
We note that the operations in these ADTs have different I/O types. For
instance, the set of natural numbers is the I/O type for the resched operation

80 Chapter 6. Conformal ADTs and Refinement

fresched ⊆ N× {TCB *}, such that tcb ∈ fresched(k) iff k = tcb->id in M .

gresched : {TCB *} → N, such that gresched(tcb) = k, iff tcb->id = k in M .

Figure 6.5: A pair of relations defining the type translations for the resched
operation.

in the Z modelM, but the I/O type for this operation in the C implementation
P is the set of all pointers to the struct TCB. We would like to consider the
C method, which implements the resched operation as a valid refinement of
the operation-schema modeling the same operation. To do this, we need to
extend our theory of refinement to allow a refined operation to have different
I/O types than that of the corresponding abstract operation.

6.2 Refinement between conformal ADTs
Let A1 and A2 be conformal ADTs of types N1 and N2 respectively. Then
we know that N1 = N2, since N1 and N2 are conformal. We define a notion
of refinement between the conformal ADTs A1 and A2, in terms of a pair of
relations: fn ⊆ I 1n × I 2n and gn : O2

n → O1
n, for each operation n in the ADT

type N1.
For example, the relations fresched and gresched for the operation resched in

the above example could be defined as shown in Fig. 6.5. These relations are
assumed to be defined with respect to a particular memory mapM which maps
memory addresses to TCB pointers.

The pair of relations (fn, gn) for each operation n in N1 is called a translation
pair for n, since these relations translate an input (or output) from one type
to another.

Let A1 and A2 be as above and let (fn, gn)n∈N1 be a family of transla-
tion pairs for the operations in N1. Then an initial sequence of operations
allowed in A1, w1 = (n1

0 , a10 , b10) · · · (n1
k , a1k , b1k) is said to be “(fn, gn)-equivalent”

to an initial sequence of operations, w2 = (n2
0 , a20 , b20) · · · (n2

l , a2l , b2l) allowed in
A2 (denoted w1

(fn ,gn)≡ w2), iff |w1|=|w2|; ∀ 0 ≤ i <|w1|, n1
i = n2

i , a2i ∈ fni (a1i)
and gni (b2i) = b1i .

For example, suppose the translation pair for the operation resched is such
that fresched(5) = {(5, tcb1), (5, tcb2)} and gresched(2, tcb3) = gresched(2, tcb4) = 2.
Let σ1 be an initial sequence of operations allowed in A1 and let σ2 be an initial
sequence of operations allowed in A2 such that σ1

(fn ,gn)≡ σ2. Now consider the
initial sequence of operations, γ1 = σ1 · (resched, 5, 2) allowed in A1. Then the
initial sequence of operations, γ2 = σ2 · (resched, (5, tcb2), (2, tcb3)) allowed in
A2 is (fresched, gresched)-equivalent to γ1 (i.e γ1

(fresched,gresched)≡ γ2).
Let A1 and A2 be conformal ADTs as above. Then A2 is said to be a

refinement of A1, iff there exists a family of translation pairs (fn, gn)n∈N1 , such

6.3. Clients with conformal ADTs 81

unsigned resched(unsigned t)
{

struct unsigned res;
{ _(ghost GS.seq[gLen] = t)

_(ghost unsigned seq[\natural]) _(assume res == GS.seq[0])
_(ghost unsigned gLen) _(ghost GS.seq =

} GS; \lambda \natural i;
GS.seq[i + 1]

return res;
}

Figure 6.6: A part of a ghost implementation of an ADT of type SchedType1.

that w1 ∈ Linit(A1) and w1

(fn ,gn)≡ w2 implies w2 ∈ Linit(A2). Recall that the
notation Linit(A) denotes the language of initialized sequences of operation

calls allowed by an ADT A. We use the notation “A2

(fn ,gn)

� A1” to denote the
refinement defined here. It is not difficult to see that the C program of Fig. 6.4
refines the Z specification of Fig. 6.3.

6.3 Clients with conformal ADTs
We explain in this section a technique, which enables an existing client of an
abstract ADT A1 to interact with a conformal ADT A2 refining A1, without
modifying its code. Let P be a client program to an ADT A1 of type N1 and
G be a ghost implementation of A1 in VCC. For example, let G be the ghost
implementation of an ADT of type SchedType1, a part of which is shown in
Fig. 6.6. This is in fact a ghost implementation of the ADT of Fig. 6.3. We fix
the symbol G to denote this ghost implementation for the rest of this chapter
and we will use this as the abstract ADT A1 to illustrate refiement.

We now consider a conformal ADT A2 refining the abstract ADT A1. For
example, consider the C implementation of Fig. 6.4. This program implements
an ADT of type SchedType2. We fix the symbol C to denote this C implemen-
tation for the rest of this chapter. Thus the ADTs G and C are conformal,
since their types are conformal. Let (fn, gn)n∈{init,create,resched} be the family of

translation pairs, a part of which is shown in Fig. 6.5 such that C
(fn ,gn)

� G.
We now consider how a client program P of an abstract ADT A1, can

call the operations in a conformal ADT A2 refining A1, rather than calling
the operations in A1. For example, let P [G] be a client program of G, which
calls the operations from G. Can we replace G in P [G] with C, to obtain P [C]
without modifying the client program P? The answer is “no”, since the I/O
types in C are different from that of G.

We can solve the above problem by adding an interface of wrapper functions
with the same I/O types as G to the refined ADT C. A wrapper function for

82 Chapter 6. Conformal ADTs and Refinement

unsigned resched(unsigned id)
{

TCB *in, *out;
in = select();

// this operation selects a TCB pointer from the
// memory map M such that it points to a TCB with
// id as its task identifier

out = cResched(in);
return out.id;

}

Figure 6.7: Wrapper function for the insert operation.

each operation n in the ADT type does the following sequence of operations:
(i) obtains fn(a), for the given input a in I 1n , (ii) calls the refined operation
with fn(a) as input and stores the output to a temporary variable say out, and
(iii) returns gn(out).

For example, Fig. 6.7 shows an example wrapper function for the resched
operation in C. The method select, which is invoked from the the wrapper
is assumed to select a TCB pointer, which points to a TCB instance tcb such
that in the memory map M , tcb.id = id. The memory map M is assumed to
represent the set of all TCBs that will be created in the lifetime of the system.
This wrapper uses a fixed pair of functions which represents the translation
pair of Fig. 6.5.

In general, if C
(fn ,gn)

� G and if W(C) is obtained from C by adding an
interface of wrapper functions as above, then we can just replace the ADT G
in P [G] with W(C) to obtain P [W(C)].

6.4 Verification guarantee
We now describe the verification guarantees given by our notion of refinement
for conformal ADTs. In fact we extend the verification guarantees for ADTs
presented in Sec. 2.5, to conformal ADTs as well.

Let A1 = (Q1,U1,E1, {op1n}n∈N1) and A2 = (Q2,U2,E2, {op2n}n∈N2) be
conformal ADTs of types N1 and N2 respectively. Let (fn, gn)n∈N1 be a family

of translation pairs such that A2

(fn ,gn)

� A1. We fix the ADTs A1 and A2 as
above for the rest of this section. We also fix the notation “W(A)” to denote
the concrete ADT A2 with a wrapper W as discussed in Sec. 6.3.

Let A1 and A2 be as above and let T = (R,Σl ∪ ΣN1 , s,E ,∆) be an N1-
client transition system. There is a natural relation σ between the states of
A2 and A1 such that (q2, q1) ∈ σ iff there exist exception-free initial sequences
of operations w1 and w2 such that w1

(fn ,gn)≡ w2, U1
w1−→ q1 in A1 and U2

w2−→ q2
in A2. We can use the relation σ to define a kind of bisimulation relation σ′

6.4. Verification guarantee 83

between T [A1] and T [W(A)]: a set of states (s,X2) of T [W(A)] and a state
(r , q1) of T [A1] are related by σ′ iff s = r and σ(q2, q1) holds for each q2 ∈ X2.
We note that for an initial sequence of operations w1 allowed in A1, there can
be a set of initial sequences W2 allowed in A2 such that w2

(fn ,gn)≡ w1 for each
w2 in W2. It follows from the definition of σ′ that, when two states are related
by σ′, the local states of the client program T in them are the same.

Let R be a binary relation. Then we use the notations (a, b) ∈ R or the
notation b ∈ R(a) to denote that a is related to b under the relation R.

Theorem 6.1. Let A1 A2, T , W(A) and σ′ be as above. Then σ′ is a
bisimulation in the following sense:

1. if ((r , p2), (r , p1)) ∈ σ′, and (r , p1)
l→ (s, q1) in T [A1] with l a non-

exception action label, then there exists a non-empty set of states (s,X2)

in T [W(A)] such that (r , p2)
l→ (s, q2) and ((s, q2), (s, q1)) ∈ σ′ for each

q2 ∈ X2.

2. Conversely, if ((r , p2), (r , p1)) ∈ σ′, and for a non-empty set of states
X2 in Q2, (r , p2)

l→ (s, q2) in T [W(A)] for each q2 ∈ X2. Then ei-
ther there exists a state (s, q1) in T [A1] such that (r , p1)

l→ (s, q1) and
((s, q2), (s, q1)) ∈ σ′ for each q2 ∈ X2, or l is of the form (n, a1, b1) and
(r , p1)

(n,a1,e)→ (−,E1) in T [A1].

Proof. We give a proof similar to the proof given for Theorem 2.1 of Sec. 2.5.

1. Suppose ((r , p2), (r , p1)) ∈ σ′, and (r , p1)
l→ (s, q1) in T [A1] with l a

non-exception action label. There are two possibilities to consider here:

(a) l is a local action label in T . This means that r l→ s in T , and then
it follows from the definition of T [A1] that p1 = q1. Now it follows
from the definition of T [W(A)] that (r , p2)

l→ (s, p2). Also we
have ((s, p2), (s, p1)) ∈ σ′, since (p2, p1) ∈ σ by assumption. Hence
we are done.

(b) l is of the form (n, a1, b1). Thus we have (r , p1)
(n,a1,b1)→ (s, q1) in

T [A1]. Then by definition of T [A1], we have r (n,a1,b1)→ s in T and
p1

(n,a1,b1)→ q1 in A1. It follows from the definition of σ that there
exist exception-free initial sequences of operations w1 and w2 such
that w2

(fn ,gn)≡ w1, U1
w1→ p1 in A1 and U2

w2→ p2 in A2, since we
have (p2, p1) ∈ σ. Thus we have U1

w1·(n,a1,b1)→ q1 in A1. This
implies that for each a2 ∈ fn(a1) and for each b2 with gn(b2) =

b1, there exists a q2 in Q2 such that U2
w2·(n,a2,b2)→ q2 in A2, since

A2

(fn ,gn)

� A1 by assumption. Therefore it follows that for each
a2 ∈ fn(a1) and for each b2 with gn(b2) = b1, p2

(n,a2,b2)→ q2 in A2,
since A2 is deterministic and U2

w2→ p2 in A2. Therefore it follows

84 Chapter 6. Conformal ADTs and Refinement

from the definition of W(A) that there exists a non-empty set of
states X2 in Q2 with p2

(n,a1,b1)→ q2 in W(A) for each q2 in X2.
Now it follows from the definition of T [W(A)] that, there exists
a non-empty set of states X2 in Q2 with (r , p2)

(n,a1,b1)→ (s, q2) in
T [W(A)] for each q2 in X2, since we have r (n,a1,b1)→ s in T . Also
it follows from the definition of σ that (q2, q1) ∈ σ for each q2
in X2, since we have U1

w1·(n,a1,b1)→ q1 in A1 and U2
w2·(n,a2,b2)→ q2

in A2 with w1 · (n, a1, b1)
(fn ,gn)≡ w2 · (n, a2, b2). This implies that

((s, q2), (s, q1)) ∈ σ′ for each q2 in X2 and hence we are done.

2. Conversely, suppose ((r , p2), (r , p1)) ∈ σ′, and there exists a non-empty
set of states X2 in Q2 such that (r , p2)

l→ (s, q2) in T [W(A)] for each q2
in X2. Here also we need to consider two cases:

(a) l is a local action label in T . This implies that r l→ s in T and
then it follows from the definition of T [W(A)] that p2 = q2 for
each q2 in X2. Now it follows from the definition of T [A1] that
(r , p1)

l→ (s, p1). Also we have ((s, p2), (s, p1)) ∈ σ′ for each q2 in
X2, since p2 = q2 for each q2 in X2, and (p2, p1) ∈ σ by assumption.
Hence we are done.

(b) l is of the form (n, a1, b1). Thus we have (r , p2)
(n,a1,b1)→ (s, q2) in

T [W(A)] for each q2 in X2. Then by definition of T [W(A)], we
have r (n,a1,b1)→ s in T and p2

(n,a1,b1)→ q2 in W(A) for each q2 in
X2. Therefore there exists an input a2 ∈ fn(a1) and there exists
an output b2 with gn(b2) = b1 such that p2

(n,a2,b2)→ q2 in A2 for
each q2 in X2. It follows from the definition of σ that there exist
exception-free initial sequences of operations w1 and w2 such that
w1

(fn ,gn)≡ w2, U1
w1→ p1 in A1 and U2

w2→ p2 in A2, since we have
(p2, p1) ∈ σ. Therefore there exists an input a2 ∈ fn(a1) and there
exists an output b2 with gn(b2) = b1 such that U2

w2·(n,a2,b2)→ q2
in A2 for each q2 in X2. This implies that for an input a1 with
a2 ∈ fn(a1): either there exists a q1 in Q1 and b1 = gn(b2) such that

U1
w1·(n,a1,b1)→ q1 in A1, or U1

w1·(n,a1,e)→ E1 in A1, since A2

(fn ,gn)

� A1

by assumption. The latter implies that p1
(n,a1,e)→ E1 in A1 since

A1 is deterministic and we have U1
w1→ p1 in A1, and hence the

result immediately follows from the definition of T [A1]. The former
implies that p1

(n,a1,b1)→ q1 in A1, since A1 is deterministic and we
have U1

w1→ p1 in A1, and then it follows from the definition of T [A1]

that (r , p1)
(n,a1,b1)→ (s, q1) in T [A1], since we have r (n,a1,b1)→ s in T .

Also it follows from the definition of σ that (q2, q1) ∈ σ for each
q2 in X2, since we have U1

w1·(n,a1,b1)→ q1 in A1 and U2
w2·(n,a2,b2)→ q2

6.4. Verification guarantee 85

in A2 with w1 · (n, a1, b1)
(fn ,gn)≡ w2 · (n, a2, b2). Therefore we have

((s, q2), (s, q1)) ∈ σ′ for each q2 in X2. Hence we are done

Let A1, A2, T , W(A) and σ′ be as above. Then a path p2 of the form
p2 = v20

a2
1→ v21 · · ·

a2
m→ v2m in T [W(A)] is said to be σ′-equivalent to a path

p1 of the form p1 = v10
a1
1→ v11 · · ·

a1
n→ v1n in T [A1], written “p2

σ′≡ p1”, iff
word(p2) = word(p1) (see Sec. 2.1) and (v ′i , vi) ∈ σ′. We say that two traces:
t2 = 〈v20 , v21 , · · · , v2m〉 and t1 = 〈v10 , v11 , · · · , v1n〉 in T [W(A)] and T [A1] respec-
tively are σ′-equivalent, written “t2

σ′≡ t1”, iff m = n and (v ′i , vi) ∈ σ′.

Corollary 6.1. Let A1, A2, T and σ′ be as above. Then Theorem 6.1 implies
the following:

1. For every path p1 in T [A1], there exists a path p2 in T [W(A)] such
that p2

σ′≡ p1.

2. For every path p2 in T [W(A)], either there exists a path p1 in T [A1]

such that p2
σ′≡ p1 or there exists a path ppref

1 in T [A1] such that p2 is of
the form ppref

2

(n,a,b)→ psuf
2 with ppref

2

σ′≡ ppref
1 and ppref

1

(n,a,e)→ E ∈ T [A1].

A path in the above conditions is assumed to not contain an exception (a
transition label of the form (−,−, e)). The condition 1 above follows from
condition 1 of Theorem 6.1 and the condition 2 follows from condition 2 of
Theorem 6.1, since the start states of T [A1] and T [W(A)] are related by σ′.

We now state and prove a theorem below, similar to Theorem 2.2 of Sec. 2.5,
which shows the properties preserved by our notion of refinement for conformal
ADTs. We use the definitions of LT properties, locally-equivalent traces (l≡)
and local LT properties of Sec. 2.5, with the modification that we use the
bisimulation relation σ′ defined in the beginning of this section instead of the
definition (of σ′) given in Sec. 2.5.

Theorem 6.2. Let A1 A2, T and W(A) be as above. Let ϕ be a local LT
property over the vocabulary (R × (Q1 ∪Q2)). Then if T [A1] satisfy ϕ, either
T [W(A)] will also satisfy ϕ or each trace violating ϕ in T [W(A)] contains
a prefix with a locally-equivalent trace leading to the exception state in T [A1].
In particular, if the client T does not see an exception with the abstract ADT
A1, then both T [A1] and T [W(A)] satisfy exactly the same set of local LT
properties.

Proof. Suppose t2 is a trace in T [W(A)] violating ϕ. It follows from Corol-
lary 6.1 that one of the following conditions is true:

1. there exists a trace t1 in T [A1] such that t2
l≡ t1.

2. there exists a trace tpref
1 in T [A1] such that t2 is of the form tpref

2 · tsuf
2

with tpref
2

l≡ tpref
1 and tpref

1 · 〈E〉 ∈ T [A1].

86 Chapter 6. Conformal ADTs and Refinement

(init) and a ∈ finit(a)

p q
(init, a, b)

and a ∈ fn(a)

p q

(sim) ρ

(n, a, b)

(n, a, b)

=⇒

=⇒

p

p

p

p

and ginit(b) = bρ

q

q

and gn(b) = bρ

q

q

ρ

(init, a, b)

(init, a, b)

(n, a, b)

(n, a, b)

Figure 6.8: Illustrating the equivalent condition (CRC) for refinement.

Now condition 1 above cannot be true since it contradicts the assumption
that T [A1] satisfies ϕ. Hence the condition 2 must be true and which gives a
prefix for t2 as required in the theorem and hence we are done.

Thus our notion of refinement for conformal ADTs preserves exactly the
same set of properties preserved by our notion of refinement for ADTs.

6.5 Equivalent refinement condition
LetA1 = (Q1,U1,E1, {op1n}n∈N1) andA2 = (Q2,U2,E2, {op2n}n∈N2) be conformal
ADTs of types N1 and N2 respectively. We formulate an equivalent condition
for A2 to refine A1, based on: (i) an abstraction relation that relates states of
A2 to states of A1, and (ii) a family of translation pairs (fn, gn)n∈N1 . We say
A1 and A2 satisfy condition (CRC) if there exist, a relation ρ ⊆ Q2 ×Q1 and
a family of translation pairs (fn, gn)n∈N1 such that:

(init) For each a1 ∈ I 1init, if the init operation in A1 transitions to a state q1 with
b1 as output, then for each a2 ∈ fn(a1) and for each b2 with gn(b2) = b1,
there exists a q2 in Q2 such that the init operation in A2 transitions to
q2 with output b2 and (q2, q1) ∈ ρ.

(sim) For each n ∈ N1, a1 ∈ I 1n , b1 ∈ O1
n, p1 ∈ Q1 and p2 ∈ Q2, with (p2, p1) ∈ ρ,

whenever p1
(n,a1,b1)→ q1 in A1 with b1 6= e, then for each a2 ∈ fn(a1) and

for each b2 with gn(b2) = b1, there exists a q2 in Q2 such that p2
(n,a2,b2)→ q2

in A2 with (q2, q1) ∈ ρ.

Fig. 6.8 illustrates the equivalent refinement condition (CRC) between
conformal ADTs.

Theorem 6.3. Let A1 and A2 be as above. Then A2

(fn ,gn)

� A1, iff they satisfy
condition (CRC).

Proof. We give a proof similar to the proof given for Theorem 2.3 of Sec. 2.6.

6.5. Equivalent refinement condition 87

(⇐) Let A1 and A2 be as above. Let (fn, gn)n∈N1 be a family of translation
pairs and let ρ ⊆ Q2 × Q1 be an abstraction relation, such that A1 and
A2 satisfy condition (CRC) with respect to ρ and (fn, gn)n∈N1 .
We first prove the following claim.

Claim 6.1. For any states p1, q1 ∈ Q1, p2 ∈ Q2 and an exception-free
initial sequence of operations w1 of the form w1 = (init, a1, b1) · u1, if
p1

w1−→ q1 in A1, then for each w2 with w2

(fn ,gn)≡ w1, there exists a state q2
in Q2 such that p2

w2−→ q2 in A2 and (q2, q1) ∈ ρ.

Proof. We prove this claim by induction on length of u1.

(Base) Let |u1|= 0. Then w1 = (init, a1, b1), where a1 ∈ I 1init and b1 ∈ O1
init.

Then it follows from (init) of condition (CRC) that for each a2 ∈
finit(a1) and for each b2 with ginit(b2) = b1, there exists a q2 in Q2

such that p2
(n,a2,b2)→ q2 in A2 and (q2, q1) ∈ ρ. Hence we are done.

(Step) Let |u1|= k+1 and w1 = (init, a, b)·v1 ·(n, a1, b1), where |v1|= k, n ∈
N1, a1 ∈ I 1n , b1 ∈ O1

n; and let p1
(init,a,b)·v1−−−−−−→ r1

(n,a1,b1)→ q1 be the path
corresponding to w1 in A1. It follows from the induction hypothesis
that for each (init, a′, b′) · v2 with (init, a′, b′) · v2

(fn ,gn)≡ (init, a, b) · v1,
there exists a state r2 ∈ Q2 such that p2

(init,a′,b′)·v2−−−−−−−→ r2 in A2 and
(r2, r1) ∈ ρ. Now it follows from (sim) of condition (CRC) that for
each a2 ∈ fn(a1) and for each b2 with gn(b2) = b1, there exists a q2
in Q2 such that r2

(n,a2,b2)→ q2 in A2 and (q2, q1) ∈ ρ. Therefore for
each w2 with w2

(fn ,gn)≡ w1, p2
w2−→ q2 and (q2, q1) ∈ ρ and hence we

are done.

Now it follows from Claim 6.1 that whenever w1 ∈ Linit(A1) for any
exception-free initial sequence of operations w1, we also have w2 ∈ Linit(A2),

for each w2 with w2

(fn ,gn)≡ w1. This proves that A2

(fn ,gn)

� A1.

(⇒) Conversely suppose A2

(fn ,gn)

� A1. Let ρ be the relation σ ⊆ Q2 × Q2

defined for the verification guarantee of Sec. 6.4. Recall that (q2, q1) ∈ ρ,
iff there exist exception-free initial sequences of operation calls w1 and
w2 such that w2

(fn ,gn)≡ w1, U1
w1→ q1 in A1 and U2

w2→ q2 in A2.

To show that ρ satisfies (CRC-init), suppose p1
(init,a1,b1)→ q1 in A1. Then

since A2

(fn ,gn)

� A1, we must have p2
(init,a2,b2)→ q2 for each a2 ∈ fn(a1) and

for each b2 with gn(b2) = b1, for a q2 ∈ Q2. Also, by definition of ρ,

88 Chapter 6. Conformal ADTs and Refinement

State
rdySeq : seq N

#rdySeq ≤ SIZE

Figure 6.9: The data-schema in the
ADT z-queue.

insert
∆State
taskIn? : N

#rdySeq < SIZE
rdySeq ′ = rdySeq a 〈taskIn?〉

Figure 6.10: The operation-schema
for the insert operation in the ADT
z-queue.

we have (q2, q1) ∈ ρ. Hence ρ satisfies (CRC-init). Recall that the init
operation is independent of the state on which it is invoked.
We now show that ρ satisfies the condition (CRC-sim). Suppose (p2, p1) ∈
ρ, and p1

(n,a1,b1)→ q1 in A1 with b1 6= e. By definition of ρ, we know
that there exist exception-free initial sequences of operations w1 and w2

such that U1
w1−→ p1 in A1, U2

w2−→ p2 in A2 and w2

(fn ,gn)≡ w1. Since
p1

(n,a1,b1)→ q1 in A1 by assumption, we have U1
w1·(n,a1,b1)−−−−−−−→ q1 in A1. But

since A2

(fn ,gn)

� A1, we know that for each a2 ∈ fn(a1) and for each b2 with
gn(b2) = b1, U2

w2·(n,a2,b2)−−−−−−−→ q2 in A2 for a q2 ∈ Q2. Hence it follows that
p2

(n,a2,b2)→ q2 in A2, for each a2 ∈ fn(a1) and for each b2 with gn(b2) = b1,
since A2 is deterministic and we have U2

w2−→ p2 in A2. Also by definition
of ρ we have (q2, q1) ∈ ρ. Hence ρ satisfies condition (CRC-sim).

6.6 Phrasing and verifying refinement condi-
tions

In this section we describe techniques for phrasing the refinement condition
(CRC) between conformal ADTs. In fact we extend the techniques proposed
for ADTs (in Sec. 5.2) to conformal ADTs. We also show how one can use the
tool VCC, to check these refinement conditions.

The conditions formulated in Sec. 5.2, for ADTs can be easily extended to
conformal ADTs. The extension required is the technique to handle different
I/O types for the operations in the abstract and concrete ADTs. We do this
by using the family of translation pairs from the necessary condition (CRC).
We explain our technique for doing this for handling the refinement between
a Z model and a C model. Similar techniques could be used for other cases.

We use a simple example to illustrate our technique for checking refinement
between conformal ADTs in the tool VCC. Consider the ADT type QTypeZ

6.6. Phrasing and verifying refinement conditions 89

typedef struct
{ void insert(TaskType tt)

unsigned id; {
struct TCB *tcb; ready[len] = tt;

} TaskType; len++;
return;

TaskType ready[MAXSIZE]; }
unsigned len;

Figure 6.11: A part of a C program, which implements an ADT of type
QTypeZ.

Notation Meaning
Arg2

n Type of an argument (or input) to a concrete operation n
x1 Argument (or input) to an abstract operation
x2 Argument (or input) to a concrete operation

preMn Precondition of an abstract operation n
BAPMn Before-After Predicate of an abstract operation n
invs1 State-invariant in an abstract state s1
invρ Gluing invariant between an abstract state and a concrete state
p1 Before-state of an abstract operation
q1 After-state of an abstract operation
p2 Before-state of a concrete operation
q2 After-state of a concrete operation
q1.y Output from an abstract operation
q2.y Output from a concrete operation

Table 6.1: Notations used in Fig. 6.12.

discussed in Sec. 3.1. Fig. 6.9 shows the data-schema and Fig. 6.10 shows the
operation-schema in a Z model called z-queue, which models an ADT of type
QTypeZ. This ADT is assumed to model a FIFO queue of ready tasks in an
operating system. Thus a task is represented by a natural number (task-ID).

Now consider a C program c-queue, a part of which is shown in Fig. 6.11.
This program implements an ADT of type QTypeZ, which is similar to the
ADT type QTypeZ, except that a task is represented by an instance of the
struct called TaskType, rather than a natural number. We note that a task is
an input or output for most of the operations in these ADT types. The ADT
types QTypeZ and QTypeZ are conformal and hence so are the ADTs z-queue
and c-queue.

Phrasing refinement between Z and C models

Now we explain a technique for phrasing the condition (CRC) between a Z
model and a C model. This is in fact an extension of the technique explained

90 Chapter 6. Conformal ADTs and Refinement

(init-a) funcinit must terminate on all inputs x2 ∈ finit(x1) for which initM(x1) is
defined (i.e. preMinit(x1) is true).

(init-b) funcinit(Arg2init x2)
(requires ∃ x1 | x2 ∈ finit(x1) ∧ preMinit(x1))
(ensures ∃ x1, q1 | x2 ∈ finit(x1) ∧BAPMinit(x1, q1, q1.y)∧

invq1 ∧ invρ(q2, q1) ∧ q1.y = ginit(q2.y))
{

// function body
}

(sim-a) For each operation n, funcn must terminate on all state-input pairs (p2, x2)
such that there exists a state-input pair (p1, x1) ofM satisfying: x2 ∈ fn(x1)∧
invp1 ∧ preMn (p1, x1) ∧ invρ(p2, p1).

(sim-b) For each operation n:

funcn(Arg2init x2)
(requires ∃ x1, p1 | x2 ∈ fn(x1) ∧ invp1 ∧ preMn (p1, x1) ∧ invρ(p2, p1))
(ensures ∃ x1, p1, q1 | x2 ∈ fn(x1) ∧ invρ(p2, p1)∧

BAPMn (p1, x1, q1, q1.y)∧ invq1 ∧ invρ(q2, q1) ∧ (q1.y = gn(q2.y))
{

// function body
}

Figure 6.12: Phrasing the refinement condition (CRC) by directly importing
the requirements from the Z model as function contracts in VCC.

in Sec. 5.2.2.
Fig. 6.12 shows how one can directly import the requirements corresponding

to the condition (CRC), from a Z model as function contracts in VCC. Table 6.1
shows different notation used in Fig. 6.12. This technique is similar to the
technique explained in Sec. 5.2.2, except that here we use the family (fn, gn)n∈N1

of translation pairs from the necessary condition (CRC) to translate the input
or output between the abstract and concrete ADTs.

Checking the refinement condition (CRC) in VCC.

We now explain two techniques in VCC to check the refinement condition
formulated above. These techniques are similar to the techniques presented
in Sec. 5.3.1, except that here we need to deal with different I/O types. The
first technique uses the ghost language of VCC to specify the function contract
formulated in Fig. 6.12. However in this technique, function contracts make use
of existential quantifications. The second technique avoids the use of existential
quantifications by manually translating a formula which represents a function
contract to a logically equivalent formula without existential quantifications.

To illustrate the first technique, consider the ADTs z-queue and c-queue

6.6. Phrasing and verifying refinement conditions 91

void insert(TaskType tt)
_(requires \exists \natural taskIn?,

\exists \natural readySeq1[\natural], \natural seqLen1;
(taskIn? == tt.id) && (seqLen1 <= SIZE) &&
(seqLen1 < SIZE) && ((len == seqLen1) &&
(\forall \natural i; (i < seqLen1) ==>

(readySeq1[i] == ready[i].id))))

_(ensures \exists \natural taskIn?,
\exists \natural readySeq1[\natural], \natural seqLen1;
\exists \natural readySeq2[\natural], \natural seqLen2;
(taskIn? == tt.id) && ((\old(len) == seqLen1) &&
(\forall \natural i; (i < seqLen1) ==>

(readySeq1[i] == \old(ready[i].id))) &&
((seqLen2 == seqLen1 + 1) &&
(\forall \natural i; (i < seqLen1) ==>

(readySeq2[i] == readySeq1[i]) &&
(readySeq2[seqLen1] == taskIn?)) &&

(seqLen2 <= SIZE) && ((len == seqLen2) &&
(\forall \natural i; (i < seqLen2) ==>

(readySeq2[i] == ready[i].id)))
{

//body of insert method
}

Figure 6.13: Illustrating a technique in VCC to check the refinement condition
(CRC) shown in Fig. 6.12.

92 Chapter 6. Conformal ADTs and Refinement

void insert(TaskType tt)
_(requires len < SIZE)

_(ensures (len == (\old(len) + 1)) &&
(\forall \natural i; (i < \old(len) ==>

(ready[i].id == \old(ready[i].id)) &&
(ready[\old(len)].id == tt.id))

{
//body of insert method

}

Figure 6.14: Illustrating a technique in VCC to check the refinement condition
(CRC) shown in Fig. 6.12 by manually transforming the requirements from the
Z model.

discussed in the beginning of this section. Fig. 6.13 shows the function contract
in VCC, which is generated based on the conditions shown in Fig. 6.12. Here
the requirement from the Z model of Fig. 6.10 is directly imported as function
contract on the insert method of Fig. 6.11. The problem with this technique
is that it uses existential quantifications which are difficult to handle for the
underlying theorem prover in VCC.

We now extend the “direct-import approach with quantifier elimination” of
Sec. 5.3.1, to conformal ADTs. We illustrate this technique with the running
example in this section. Fig. 6.14 shows how one can manually transform the
requirements from the Z model of Fig. 6.10 as function contract on the insert
method of Fig. 6.11.

Chapter 7

FreeRTOS Case-Study

This chapter presents a case-study in which we apply our verification method-
ology to reason about the functional correctness of the scheduler-related func-
tionality of a real-time operating system called FreeRTOS. During the process
of verifying FreeRTOS we found a number of subtle bugs. These bugs were
fixed and the verification was completed.

7.1 About FreeRTOS
FreeRTOS [38] is a real-time kernel meant for use in embedded applications
that run on microcontrollers with small to mid-sized memory. FreeRTOS has
a large community of users. There are more than 100,000 downloads from
SourceForge each year, putting it in the top 100 most-downloaded SourceForge
codes.

FreeRTOS allows an application running on top of it to organize itself into
multiple independent tasks (or threads) that will be executed according to a
priority-based preemptive scheduling policy. It is implemented as a set of Ap-
plication Programmer Interface (API) functions written in C, that an applica-
tion programmer can include with her code and invoke as method calls. These
APIs provide the programmer ways to create tasks, schedule tasks based on
priority-based preemption, communicate between tasks (via message queues,
semaphores, etc), and carry out time-constrained blocking of tasks.

FreeRTOS is architected in a modular fashion. The implementation of
the FreeRTOS kernel comprises the following: (i) a port-independent layer
written in C which implements the part of the kernel common to all hardware
ports (or architectures) supported by FreeRTOS and (ii) a port-specific layer
which implements the part of the kernel specific to a hardware architecture.
Fig. 7.1 shows the layered architecture of a FreeRTOS application. The arrows
represent interactions between different layers.

The port-independent layer of FreeRTOS comprises about 2,500 lines of
C code. The functionality provided in this layer is implemented in 3 C files:
task.c, queue.c, and list.c. The scheduler-related operations in the API
like operations for creating and maintaining tasks, are implemented in the C
file task.c. FreeRTOS provides a set of operations in its API for interprocess

93

94 Chapter 7. FreeRTOS Case-Study

Embedded application

Port-independent

Hardware

Port-specific

FreeRTOS kernel

Figure 7.1: Layered architecture of a FreeRTOS application.

void foo(void* params)
{

int main(void) for(;;) {}
{ }

xTaskCreate(foo, "A1", 1,...); void bar(void* params)
xTaskCreate(bar, "B2", 2,...); {
vTaskStartScheduler(); for(;;) { vTaskDelay(2); }

} }

Figure 7.2: An example FreeRTOS application.

communication and synchronization, and such operations are implemented in
the C file queue.c. The C file list.c, implements the operations for creating
and maintaining task lists used in the FreeRTOS kernel.

The port-specific layer is present in a separate sub-directory. This sub-
directory contains implementations of the port-specific functionality for each
hardware port (processor/compiler pair) supported by the FreeRTOS kernel.
The port-specific functionality includes: memory management, interrupt man-
agement and operations to store (and load) a process context to (and from)
a hardware architecture. These operations are implemented using the C lan-
guage, and the assembly language of the respective hardware architecture.

7.2 How FreeRTOS works
A simple application that uses FreeRTOS is shown in Fig. 7.2. The applica-
tion creates two tasks “A1” and “B2” with priorities 1 and 2 respectively (a
higher number indicates a higher priority). A task is like a “thread” in an
operating system. After creating the above tasks, the application starts the
FreeRTOS scheduler by invoking the required API: vTaskStartScheduler.
We use a naming convention that indicates the task’s priority in its name.
The task A1’s code is the function “foo” and the task B2’s code is the function

7.2. How FreeRTOS works 95

Time (tick interrupts)

Task B2

Task A1

t1 t2 t3 t4 t5

Figure 7.3: A timing diagram of the FreeRTOS application of Fig. 7.2.

“bar”. After performing some initialization work like creation of the “idle”
task and initialization of the system clock, the scheduler runs task B2, which
is the highest priority task ready to run. The task B2 requests to delay it for 2
time units by invoking the required API: vTaskDelay. B2 is now blocked and
the lower priority task A1 gets to execute. After 2 time units, B2 is ready to
execute and preempts A1. This behavior continues forever. A timing diagram
showing the execution of this application is shown in Fig. 7.3.

We now take a look under the hood to get a closer look at what exactly
happens when our example application executes. Fig. 7.4 shows (on the left)
the main checkpoints in the execution of the application, and (on the right)
the layout of code and data on the processor.

To begin with, the application code (i.e. the code for main, foo, and bar)
is compiled along with the FreeRTOS code (for the scheduler, and the API
calls including xTaskCreate), and loaded into memory as shown in the figure.
The scheduler code is loaded into the Interrupt Service Routine (ISR) code
area so that it services a S/W Interrupt (SWI). This is done by a direction to
the compiler, contained in the FreeRTOS code.

Execution begins with first instruction in main which happens to be a call
to the xTaskCreate API. This code, which is provided by FreeRTOS, allocates
space in the heap for a stack (of size say 1000 bytes) for the task, as well as
space to store its “Task Control Block” or TCB. The TCB contains all vital in-
formation about the task: where its code (foo in this case) is located, where its
stack begins, where its current top of stack pointer is, what its priority is, etc.
The API call duly initializes the TCB entries for A1. Being the first invocation
to the xTaskCreate API, it also creates and initializes the task queues that the
OS maintains: the ready queue which is an array of FIFO queues, one for each
priority; and the delayed and suspended queues. It finally adds A1 to the ready
queue and returns. Next, main calls xTaskCreate for B2 and the API call sets
up the stack and TCB for B2 and adds it to the ready queue, in a similar way.
The next instruction in main is a call to the vTaskStartScheduler API. This
call creates the “idle” task with priority 0, and adds it to the ready queue. It
also initializes the system clock (xTickCount) and sets the timer tick inter-
rupt to occur at the required frequency. Finally, it does a context-switch to
the highest priority ready task. That is it restores its execution state, namely
the contents of its registers, from the task’s stack where they were stored pre-
viously. Thus the processor will next execute the instruction in the task that

96 Chapter 7. FreeRTOS Case-Study

main
xTaskCreate(1)
xTaskCreate(2)
vTaskStartScheduler()

create Idle task
xTickCount := 0
schedule first task

bar (B2)
vTaskDelay()

yield()
foo (A1)

timer interrupt
timer interrupt

bar (B2)

R0

R1

(SP) R13

(LR) R14

(PC) R15

CPSR

SPSR

Scheduler

startscheduler

taskcreate

main

foo

branch instr

bar

DelayedQ

ReadyQ

2

idle

Stack:A1

TCB:A1

Stack:B2

TCB:B2

TCB:idle

Stack:idle

Memory

Registers

ISR Code

IVT Code

App Code

Stack/Heap

0

1

Figure 7.4: Order of statements executed in example application (left) and the
memory contents during the execution (right).

is resumed. In our example, this means that B2 will now begin execution.

When B2 begins execution it makes a call to the vTaskDelay API. The
code for this API call will add B2 to a “delayed queue” which is a priority
queue of delayed tasks, with a key value equal to the current tick-count plus
2, where 2 is the number of clock ticks for which the task needs to be delayed
and that is passed as an argument to the vTaskDelay API. The API code then
does a yield (a software interrupt), which is trapped by the scheduler. The
scheduler picks the (longest waiting) highest priority ready task, which in this
case is A1, and makes it the running task. Before this the scheduler saves the
register context of B2 on its stack, and restores the register context of A1 from
its stack.

A1 now executes it’s trivial for loop, till an IRQ (Interrupt Request) for
the next timer tick arrives from the hardware clock. This interrupt is again
trapped by the scheduler, and it increments its clock value (or tick-count).
The scheduler then checks if any of the delayed tasks have a time-to-awake
value that equals the current tick-count. There are none, and the scheduler
hands back control to A1. However when the next timer interrupt takes place,
the scheduler finds that B2’s time-to-awake equals the current tick-count, and
moves it to the ready queue. Since there is now a higher priority ready task,
A1 is switched out (by saving its register context) and B2’s context is restored
and made to execute. The execution continues in this way, ad infinitum.

7.3. Data-structures maintained by FreeRTOS 97

idle

A1

A1

B2

waitingToRcv

waitingToSnd

NULL

NULL

NULL

xQueue

NULL

NULLn−1

4

3

2

1

0

pxReadyTasksLists:
NULL

pxCurrentTCB:

pxDelayedTaskList:

m1

Figure 7.5: Illustrating some of the data-structures maintained by FreeRTOS.

void vTaskDelay(portTickType xTicksToDelay)
{

...
if(xTicksToDelay > (portTickType) 0)
{

xTimeToWake = xTickCount + xTicksToDelay;
vListRemove(&(pxCurrentTCB->xGenListItem));
listSET_LIST_ITEM_VALUE(&(pxCurrentTCB->xGenListItem),

xTimeToWake);
vListInsert(pxDelayedTaskList,&(pxCurrentTCB->xGenListItem));
...

}
}

Figure 7.6: Excerpts from the vTaskDelay API.

7.3 Data-structures maintained by FreeRTOS
FreeRTOS maintains a number of data-structures which are accessed and up-
dated by the scheduler and the various API calls.

Fig. 7.5 shows a snapshot of some of the main scheduling related data-
structures during the execution of a hypothetical application. The ready queue
is maintained as an array of FIFO queues (one for each priority). The ready
queue in the figure has the task A1 with priority 1, and also has the idle
task which has priority 0. The pointer variable pxCurrentTCB represents the
running task and in this case it is the task A1. The delayed list in the snapshot
contains the task B2. The figure also shows a message queue of capacity 2
bytes, with one free slot. Associated with the message queue are two priority
queues (called “event” queues) which contain tasks that are blocked on sending
to (respectively receiving from) the message queue. Since the message queue in
the snapshot is neither full nor empty, there are no tasks in the event queues.

Fig. 7.6 shows excerpts from the code of the vTaskDelay method. It com-
putes the time-to-awake, removes the current task from the ready queue, up-
dates its key value to the time-to-awake, and inserts it in the delayed queue,

98 Chapter 7. FreeRTOS Case-Study

uxNumberOfItems = 3

pxNext

pxPrevious

pvOwner

pvContainer

xItemValue = 0

pxNext

pxPrevious

pvOwner

pvContainer

xItemValue = 0

pxNext

pxPrevious

pvOwner

pvContainer

xItemValue = 0

struct xListItem struct xListItem struct xListItem

TCB : Task A0 TCB : Task B0 TCB : Task C0

pxCurrentTCB

struct TCB struct TCB struct TCB

struct TCB*

pxIndex

pxNext

pxPrevious

struct xList

xItemValue=0xffffffff

Header node

struct xMiniListItem

Figure 7.7: An example xList instance of a ready (FIFO) queue of priority 0.

when this method is invoked with an argument greater than zero. The last 3
steps are done using calls to a list data-structure called xList, which we de-
scribe in the subsequent paragraphs. The list from which a node to be deleted
need not be passed as an argument to the vListRemove API, as one of the
field (pvContainer) in the node gives the list in which it is present.

The core data-structure used in FreeRTOS is xList, which is a circu-
lar doubly linked-list. Each node in it is of type xListItem which con-
tains a key field called xItemValue. Based on the invariants it satisfies an
xList can be used as a priority queue, a FIFO queue, or a generic list.
It provides 13 different operations, including enqueue in a priority queue
(vListInsert), get the task that owns the node at the head of a priority queue
(listGET OWNER OF HEAD ENTRY), and rotate left and then get the task that
owns the next node of a FIFO queue (listGET OWNER OF NEXT ENTRY).

The xList data-structure is used to represent each of the task lists main-
tained by the FreeRTOS kernel. Fig. 7.7 shows an example instance of the
xList data-structure. Each of the xList instances comprises a header node
and a circular doubly linked-list of task-nodes. The header node contains the
number of task-nodes present in the linked-list (uxNumberOfItems), a pointer
to one of the task-nodes in the linked-list (pxIndex), and a special node namely
xListEnd which is used to mark the end of the circular linked-list for a prior-
ity queue. A task-node contains the following information, in addition to the
pointers to the successor and predecessor nodes: (i) a key value (xItemValue),
(ii) a pointer to the TCB of the task which owns this node (pvOwner) and

7.3. Data-structures maintained by FreeRTOS 99

void vListInsert(xList *pxList, xListItem *pxNewItem)
{

...
xValOfInsertion = pxNewItem->xItemValue;
for(pxIterator = &(pxList->xListEnd);

pxIterator->pxNext->xItemValue <= xValOfInsertion;)
{

pxIterator = pxIterator->pxNext;
}
pxNewItem->pxNext = pxIterator->pxNext;
pxNewItem->pxNext->pxPrevious = pxNewItem;
...

}

Figure 7.8: Excerpts from the xList method vListInsert.

(iii) a pointer to the header node of the list in which this node is present
(pvContainer).

The following are some of the example task lists maintained in the FreeR-
TOS kernel. The set of ready tasks is maintained as an array of xList in-
stances, each of which represents a FIFO queue. Here tasks are arranged in
the order of their insertions into the respective ready queues. The set of de-
layed tasks is maintained as two xList instances, each of which represents a
priority queue. Here tasks are arranged in the increasing (or more precisely,
non-decreasing) order of their time-to-awake values. In addition to the above,
the waiting lists (of tasks) associated with the message queues are also repre-
sented using the xList data-structure.

The xList instance shown in Fig. 7.7, represents a ready (FIFO) queue
corresponding to the priority value 0. The first node of a FIFO queue is the
node pointed to by the pxNext field of the node pointed to by the pxIndex field
of the header node of the list. Thus the instance shown in Fig. 7.7, represents
the sequence of tasks 〈C0, A0, B0〉.

Fig. 7.8 shows a part of the vListInsert method of xList. This operation
is used to insert a node into a priority queue. It first finds the required position
of the node to be inserted (given by the second argument), and then inserts
it so that the resulting xList instance maintains the nodes in the increasing
(or more precisely, non-decreasing) order of key values. We note that the
value of the key field (xItemValue) of the end-marking node (xListEnd) is the
maximum possible value allowed by its data type. A task node in a priority
queue is expected to have a key value which is strictly less than the maximum
value allowed by its data type.

Invoking the correct API operation is important to get the intended func-
tionality of the three kinds of task lists supported by the xList data-structure.
For example, the method vListInsert should be used for inserting a task to a
priority queue, while vListInsertEnd is the operation to be used for inserting
a task to a FIFO queue.

100 Chapter 7. FreeRTOS Case-Study

xList Sapp−intUSched

local

local

local

pointer manip

ok

pointer manip

ok

vListRemove(curTsk.xli)

curTsk.xli.xItemValue = xTickCount + d

vListInsert(delayed, curTsk.xli)

compute curTsk

vTaskDelay(d)

Figure 7.9: An application running with the FreeRTOS scheduler. Solid
downward-arrows represent local transitions and dashed arrows represent op-
eration calls to sub-ADTs.

7.4 Overview of FreeRTOS verification
In this section we give an overview of different steps involved in the verification
of the FreeRTOS scheduler. We apply our “directed refinement methodology”
of Sec. 5.1, to verify the functional correctness of the FreeRTOS scheduler.

In an actual execution of a FreeRTOS application, API calls could be
interleaved in a non-atomic fashion. For example, while the vTaskDelay
method is running, a tick interrupt might arrive causing the kernel method
vTaskIncrementTick to execute, before the call to vTaskDelay finishes. But
in this verification exercise, we assume a limited form of preemption in which
interleavings are assumed to happen only at API boundaries.

USched Sapp−intxList

Figure 7.10: State of an application running with the FreeRTOS scheduler.

7.4. Overview of FreeRTOS verification 101

We view the system corresponding to a FreeRTOS application as concep-
tually having the following two components. The first one is an interpreter
for the application program, which keeps track of the local states of each task,
which task is currently running, etc. The second one is a component which
we call the scheduler, whose job is to maintain the scheduling related state of
the FreeRTOS kernel: the set of tasks created and their priorities, the con-
tents of the ready and delayed queues, the current tick-count (clock value),
etc. The interpreter component makes calls to the operations (APIs) provided
by the scheduler (for example vTaskDelay(d)), and gets back a return value
which typically indicates the task to be run next. Thus, in the terminology
of Sec. 2.3, the application-interpreter is a FreeRTOS-client transition system
(say Sapp−int), that uses the scheduler component as an ADT.

The scheduler itself is an ADT that comprises two components: its own
local state (keeping track of the tick-count, array of ready lists, etc), and the
state of xList that maintains a bunch of lists. Thus, in the terminology of
Sec. 3.4, the scheduler is an xList-client ADT transition system (say USched)
and hence is of the form USched[xList]. The scheduler component USched com-
municates with the xList sub-ADT via interface operations like vListInsert,
vListRemove, list GET OWNER OF HEAD ENTRY, etc. In Fig. 7.10, we show
the components of a state of an application running with FreeRTOS.

A typical execution of an interpreted application with its scheduler ADT
and the xList sub-ADT is shown in Fig. 7.9. The application interpreter
(Sapp−int) invokes interface operations in the scheduler ADT (USched). For
instance Sapp−int in the figure invokes the vTaskDelay API with the ticks-
to-delay as argument. The variable curTsk is assumed to be a global variable
representing the currently running task (pxCurrentTCB). The scheduler ADT
USched in turn makes calls to the xList sub-ADT. For instance the body of the
method vTaskDelay in USched of the figure does the following. Firstly it calls
the vListRemove API to remove the current task from the ready queue. Then
it computes the time-to-awake value and assigns it to the xItemValue field of
the node which represents the current task. Then it invokes the xList API
vListInsert to insert this node to the delayed queue. Finally it computes
and returns (via the global variable curTsk) a new ready task as the current
task to run. One of the invariants maintained by the FreeRTOS scheduler is
that there is always a task which is ready to run. The “idle” task is used
to maintain this invariant and it is assumed that FreeRTOS applications will
never try to delay or block the idle task.

In this work, our interest lies in the verification of the conceptual scheduler
component. We restrict ourselves to the task-related APIs in the file task.c,
and the xList APIs in the file list.c of the FreeRTOS code. We consider
the relevant parts of this code to be the implementation P of the scheduler
component. The list of task-related APIs verified in this work is shown in
Table 7.1. In addition to the task-related APIs, we verified the set of all list-
related APIs in the xList sub-ADT. Our aim is to specify and verify this
ADT implementation (USched[xList]) using our theory of refinement explained
in Chap. 2 and Chap. 3, and by using the methodology outlined in Sec. 5.1.

102 Chapter 7. FreeRTOS Case-Study

FreeRTOS API Basic Functionality
vTaskStartScheduler Schedule the longest waiting highest priority task.
xTaskCreate Create the given task and add it to the ready queue.
vTaskDelete Delete the given task (move it to the deleted queue).
vTaskDelay Delay the current task for a given period of time.
vTaskDelayUntil Delay the current task relative to its previous wake-time.
vTaskIncrementTick Increment the tick-count and awaken delayed tasks.
vTaskPrioritySet Change the priority of the given task.
vTaskSuspend Suspend the given task.
vTaskResume Resume the given task which is in the suspended state.
xTaskGetTickCount Get the value of the current tick-count.
vTaskPriorityInherit Implements the priority inheritance scheme in FreeRTOS.

Table 7.1: Scheduler APIs considered in this verification

The strategy used to verify the functional correctness of the FreeRTOS
scheduler is shown in Fig. 7.11. Following the methodology of Sec. 5.1, we first
build a high-level deterministic modelM of the scheduler in the Z specification
language.

Next we observe that the existing implementation of the FreeRTOS sched-
uler P (or USched) uses a sub-ADT, namely xList, and thus is of the form
USched[xList]. We now obtain a simplified FreeRTOS implementation say P1

from P by replacing the sub-ADT, xList in USched by a ghost implementation
in VCC which we call xListMap. Thus the simplified FreeRTOS implementa-
tion P1 is of the form USched[xListMap].

The set of delayed tasks is modeled as a single sequence of tasks in the Z
modelM. But this set of tasks is implemented as two different lists in FreeR-
TOS namely delayed-list and overflow-delayed-list. The following is
the reason for using two delayed lists in P1. The value of tick-count in FreeR-
TOS cycles in the interval [0,maxNumVal], where maxNumVal denotes the max-
imum value that an unsigned variable can take in C. Now a task to be delayed
is added to delayed-list, when its value of time-to-awake is less than or equal
to maxNumVal. Otherwise the task is added to overflow-delayed-list, with
the value of time-to-awake computed modulo “(maxNumVal+1)”. The FreeR-
TOS scheduler interchanges the roles of these delayed lists when the clock
value cycles back to 0 from maxNumVal.

We reduce the gap between the models M and P1 by refining the high-
level Z model M to a low-level Z model called M1, by adding a separate
“overflow-delayed-list” list to store tasks whose time-to-awake values are be-
yond maxNumVal. The Z modelsM andM1 differ only in the way they main-
tain the set of delayed tasks. Therefore vTaskDelay and vTaskDelayUntil
are the only operation-schemas that differ between the models M and M1.
We verified the refinement between M and M1 as follows. Firstly we ap-
plied our Z-to-VCC translation technique explained in Sec. 5.2.3, to obtain
the ghost implementations G and G1 respectively from M and M1. In fact

7.4. Overview of FreeRTOS verification 103

xListMap

xList

M

M1

P

P1

Low-level Z model ADT M1

USched

USched

High-level Z model ADT M

Figure 7.11: Illustrating the correctness proof of the FreeRTOS scheduler. Bold
upward-arrows represent directly proved refinements, the dotted arrow repre-
sents the refinement inferred using our substitutivity result, and the dashed
arrow represents the refinement inferred using our transitivity result.

we obtained ghost methods corresponding to the operations vTaskDelay and
vTaskDelayUntil. We then applied the technique explained in Sec. 5.2.4 to
check the refinement between the ghost models G and G1.

The modelsM1 and P1 are very similar. Hence we applied our “direct im-
port approach with quantifier elimination” of Sec. 5.3.1 to verify the refinement
between the models M1 and P1. We found a number of bugs in this step of
FreeRTOS verification. We fixed all these bugs and the fixed implementation
is proved to be a refinement of the modelM1.

The final step in the FreeRTOS verification is the proof of refinement be-
tween the list models xListMap and xList. We applied our “combined” ap-
proach of Sec. 5.3.2 to prove that xList refines xListMap. Now it follows from
our substitutivity result that P = USched[xList] refines P1 = USched[xListMap].
Also it follows from transitivity of refinement that the C implementation, P
of FreeRTOS refines the high-level Z modelM.

The sequence of steps in our verification process is summarized below:

104 Chapter 7. FreeRTOS Case-Study

M � M1

(proved via the ghost models G and G1, using our
“combined” approach of Sec. 5.3.2)

� P1 = USched[xListMap]

(proved using Theorem 6.2 and our “direct import
approach with quantifier elimination” of Sec. 5.3.1)

xListMap � xList

(proved using our “combined” approach of Sec. 5.3.2)
P1 = USched[xListMap] � USched[xList] = P

(follows from our substitutivity result (Theorem 3.2),
since xListMap � xList)

M � P
(follows from transitivity of refinement (Proposition 2.1))

In this verification of FreeRTOS we assumed a limited form of concur-
rent/interleaved execution. In particular we assumed that if an API starts
executing, it is allowed to continue its execution until it finishes. Thus the
properties guaranteed about FreeRTOS by our verification hold only if this
assumption is satisfied. But such an assumption is not typically satisfied by
a FreeRTOS application. For example an interrupt can occur during the exe-
cution of an API which may cause another API of a different task to execute
before the currently running API completes. We suggest below some ideas to
extend our verification guarantees when concurrent execution is allowed.

One could use a method in VCC like the one proposed by Cohen et al [17] to
prove refinement when the APIs are allowed to execute in a concurrent fashion.
One could also utilize correctness requirements for shared data objects, like
linearizability proposed by Herlihy and Wing [27] to extend our verification to
ensure correctness when concurrent execution is allowed.

In subsequent sections we describe the details of the steps involved in the
verification of the FreeRTOS scheduler.

7.5 Details of steps in FreeRTOS verification
In this section we report the details of the steps involved in the verification
of the FreeRTOS scheduler. We have verified the functional correctness of the
scheduler-related functionality of the FreeRTOS version 6.1.1. All artifacts of
our FreeRTOS verification case-study are available in [24].

We did some transformations (or changes) in the FreeRTOS scheduler code
to view it as an ADT implementation. Firstly we added a separate initializa-
tion operation to the FreeRTOS API. In the existing implementation of the

7.5. Details of steps in FreeRTOS verification 105

FreeRTOS scheduler the vTaskStartScheduler API includes a part of the
initialization code, and rest is included in the xTaskCreate API such that
this part of the code will be executed when a FreeRTOS application calls the
xTaskCreate API for the first time. We moved these initialization codes into a
separate initialization API and thus require a FreeRTOS application to invoke
the initialization API before invoking any other FreeRTOS APIs. Recall that
there is a designated initialization operation in an ADT type.

Secondly we replaced two configurable constants in the FreeRTOS sched-
uler with corresponding variables. In the FreeRTOS scheduler, the maxi-
mum priority of a task is represented by a user-configurable macro in the
file “FreeRTOSConfig.h”. The maximum numeric value that a kernel variable
can take is also represented as a macro, but it is fixed for a compiler/hardware
combination. Our aim is to do a parameterized verification of the FreeRTOS
scheduler such that the verification guarantee provided is independent of the
values for these configurable macros. To achieve this, we replaced these macros
with corresponding variables such that their values can be initialized via argu-
ments to the initialization API discussed above. All other APIs are specified
to not modify the values for these variables.

7.5.1 Z models
In this section we describe the Z models used in the verification of the FreeR-
TOS scheduler. We use two Z models in the sequence of refinements to prove
the functional correctness of the FreeRTOS scheduler. We started with a high-
level Z model capturing the intended functionality of the FreeRTOS scheduler
and then we refined it to a low-level Z model to capture some implementation
details. Some of the important aspects of these models are described in the
following subsections.

High-level Z model

We tried to understand the “intended” behavior of the FreeRTOS scheduler
based on the details given in the FreeRTOS user guide [10]. For some of
the APIs, we had to look at the code and the comments therein to infer the
meaning.

Next we specified this behavior in a high-level Z model which we callM.
To represent the state of the scheduler, we adopted the basic design of the
FreeRTOS implementation. In particular, we chose to represent the ready
queue as a sequence of sequences, resembling the priority-indexed array of
FIFO queues used in FreeRTOS.

The data-schema of Fig. 7.12, shows the main state components in the high-
level modelM. The variables maxPrio and maxNumVal denote the variables
that we added in places of the configurable macros in FreeRTOS as described
in the preamble of Sec. 7.5.

The type TASK is a free data-type in Z, which represents the set of all
tasks which will be created in the system and the variable tasks represents the
set of tasks already being created.

106 Chapter 7. FreeRTOS Case-Study

SchedulerM
maxPrio,maxNumVal, tickCount, topReadyPriority : N
tasks : PTASK
priority : TASK 7→ N
running, idle : TASK
ready : seq (iseqTASK)
delayed : seq (TASK × N)
blocked : seqTASK
. . .

idle ∈ tasks ∧ idle ∈ rana/(ran ready)
running task ∈ tasks ∧ topReadyPriority ∈ dom ready
running task = head ready(topReadyPriority)
∀ i, j : dom delayed | (i < j) =⇒ (delayed(i).2 ≤ delayed(j).2)
∀ tcn : ran delayed | tcn.2 > tickCount
tickCount ≤ maxNumVal
∀ i, j : dom blocked | (i < j) =⇒ (priority(blocked(i)) ≥ priority(blocked(j)))
. . .

Figure 7.12: The data-schema modeling the states of the FreeRTOS scheduler.

The priorities of tasks in the system is modeled as a partial function called
priority from the set of tasks in the system to the set of natural numbers. Now
the priority of a task t is obtained by priority(t).

The set of ready tasks is modeled as a sequence of injective sequences
(sequences with distinct elements) called ready. A finite sequence of length n
in Z is a map from the set {1, 2, . . . , n} to the set of elements in the sequence.
Now the expression “dom s” denotes the set {1, 2, . . . , n} and the expression
“ran s” represents the set of elements present in s, for a finite sequence s of
length n. The expression s.i can be used to access the ith element in the
sequence s. Now the sequence of ready tasks of the same priority i can be
accessed by the expression ready(i) and the j th task in this sequence can be
accessed by the expression ready(i).j. In Z, a/ is a “flatten” operator that
takes a list of lists and flatten it by concatenating the lists in it. Thus the
expression a/{〈e1, e2〉, 〈e3, e4〉} gives the sequence 〈e1, e2, e3, e4〉.

The set of delayed tasks is modeled as a sequence of pairs called delayed.
An element “(t, n)” in this sequence represents the delayed task t with time-to-
awake value n. The expression “(t, n).2” represents the second element (that
is n) in this pair. There are two invariants specified on this sequence. The
first specifies that the pairs are arranged in the increasing (or more precisely,
non-decreasing) order of time-to-awake values. The second invariant specifies
that the time-to-awake value of each of the delayed tasks is strictly greater
than the current clock value (tickCount).

We model an event queue in FreeRTOS as a sequence of tasks called blocked.

7.5. Details of steps in FreeRTOS verification 107

Init
maxP? : N
maxN? : N

. . .
maxPrio′ = maxP?
maxNumVal ′ = maxN?
tasks′ = {idle}
running task ′ = idle
tickCount′ = 0
ready′(0) = 〈idle〉
. . .

Figure 7.13: The operation-schema for the init operation in the Z modelM.
.

This represents an event queue like the set of tasks waiting to receive a message
from a message queue. There is an invariant specified on this sequence to
maintain the tasks in this sequence in the decreasing (or more precisely, non-
increasing) order of their priority values.

We now describe two important operation-schemas in the Z modelM. The
first one models the initialization operation discussed above and the second one
models the vTaskDelay API.

The operation-schema of Fig. 7.13, models the initialization operation in
the FreeRTOS scheduler. It takes two arguments maxN? and maxP? which
give the values to initialize the state variables maxNumVal and maxPrio re-
spectively. This schema initializes the system by defining a valuation for the
fields in the data-schema. For instance, the initialization results in a state
where the clock value is zero and the task “idle” is running.

The operation-schema of Fig. 7.14, models the vTaskDelay API. Recall
that this API is for delaying the running task for a given number of clock
ticks. This schema includes an input variable called delay?, which represents
the number of clock ticks for which the current task needs to be delayed.
This schema assumes that the requested delay period is greater than zero and
also that the ready sequence corresponding to the priority of the running task
(represented by topReadyPriority) contains at least one task other than the
currently running task, which is at the head of this sequence. The temporary
sequences delayedPrefix and delayedSuffix are constrained to be the prefix and
the suffix which divides the sequence delayed such that the new pair repre-
senting the currently running task should be inserted in-between these two.
The symbol “⊕” represents the function overriding operator, which is used in
this schema to replace the sequence of ready tasks indexed by the priority of
running task with the tail of this sequence.

108 Chapter 7. FreeRTOS Case-Study

TaskDelay
∆Scheduler
delay? : N
delayedPrefix, delayedSuffix : seq (TASK × N)

delay? > 0
tail ready(topReadyPriority) 6= 〈〉
delayed = delayedPrefixa delayedSuffix
∀ tcn : ran delayedPrefix | tcn.2 ≤ (tickCount + delay?)
∀ tcn : ran delayedSuffix | tcn.2 > (tickCount + delay?)
running task ′ = head (tail ready(topReadyPriority))
ready′ = ready⊕ { (topReadyPriority 7→ tail ready(topReadyPriority)) }
delayed ′ = delayedPrefixa 〈(running task, (tickCount + delay?))〉a

delayedSuffix
. . .

Figure 7.14: Operation schema for the vTaskDelay API.

70 80 95 110 135

10 3570 80 95

delayed

delayedM oDelayed

Figure 7.15: An instance of the list delayed in M and the corresponding
instances of the lists delayedM oDelayed inM1.

Low-level Z model

In this step of the verification, our aim was to reduce the gap between the
modelsM and P1 of Fig. 7.11. There are two mismatches between these two
models, which we describe in the following paragraphs.

The first mismatch is the way the set of delayed tasks are maintained in
these models. In the model P1 these tasks are represented by two delayed
lists called delayed-list and overflow-delayed-list, while these tasks are
represented by a single sequence called delayed in the model M. The fol-
lowing is the reason for using two lists in the model P1. The clock value
in P1 cycles in the interval [0,maxNumVal]. Recall that “maxNumVal” rep-
resents the maximum value that an unsigned int in C can take. FreeRTOS
allows to delay the running task for a maximum period of “maxNumVal”
clock ticks. Therefore a delayed task may have its time-to-awake value in
the interval [0, 2 × maxNumVal]. This is managed in the model P1 by main-
taining the above two delayed lists such that delayed-list stores the de-
layed tasks with time-to-awake values in the interval [0,maxNumVal] and
overflow-delayed-list stores the delayed tasks with time-to-awake values

7.5. Details of steps in FreeRTOS verification 109

SchedulerM1

. . .

delayedM1 , oDelayed : (seqTASK × N)

. . .

∀ tcn : ran delayedM1 | tcn.2 ≤ maxNumVal
∀ tcn : ran delayedM1 | tcn.2 > tickCount
∀ tcn : ran oDelayed | tcn.2 ≤ maxNumVal

// (modulo “(maxNumVal + 1)” value.)
∀ tcn : ran oDelayed | tcn.2 ≤ tickCount
∀ i, j : dom oDelayed | (i < j) =⇒ oDelayed(i).2 ≤ oDelayed(j).2
∀ i, j : dom blocked | (i < j) =⇒

(maxPrio− priority(blocked(i))) ≤ (maxPrio− priority(blocked(j)))

Figure 7.16: The data-schema of the low-level Z modelM1.

in the interval [maxNumVal+1, 2×maxNumVal]. The latter contains the tasks
which have to be awakened after the clock value overflows (cycles back to 0
from maxNumVal), and hence the name overflow-delayed-list. In fact the
time-to-awake values in the latter is maintained modulo “(maxNumVal+1)”,
which is necessary as maxNumVal represents the maximum value that a nu-
meric variable can store. That is if “val” is the required time-to-awake value
in the interval [maxNumVal+ 1, 2×maxNumVal], then the key value stored in
overflow-delayed-list is “val−(maxNumVal+1)” rather than “val”. FreeR-
TOS interchanges the roles of these two lists when the clock value overflows.

Fig. 7.15 shows an instance of the single delayed sequence in the high-level
Z model M and instances of the corresponding sequences used in the low-
level Z model M1. In this figure we assume that maxNumV al = 99 and
tickCount = 65.

The second mismatch between the modelsM and P1 is the order in which
the set of blocked tasks is maintained in these models. In the model P1, these
tasks are maintained in the increasing order of their complemented priority
values, while these tasks are maintained in the decreasing order of their priority
values in the modelM. For a task t with priority p, the complemented priority
is “maxPrio− p”. The reason for using complemented priority to order the set
of blocked tasks in FreeRTOS is as follows. The task lists which represent
the set of delayed tasks are maintained in the increasing order of key (time-
to-awake in this case) values. Therefore maintaining the set of blocked tasks
also in the increasing order of key (complemented priority in this case) values
enables FreeRTOS to use the same data-structure namely xList to represent
each of these priority queues thereby reducing the footprint of the code.

We bridge the above gap between the models M and P1 by refining the
high-level Z model M to a low-level Z model called M1. The data-schema
of Fig. 7.16, shows the important components which are added (or changed)
to obtain this schema from the data-schema of the model M. To rectify
the first mismatch discussed above, we divided the single sequence delayed,

110 Chapter 7. FreeRTOS Case-Study

TaskDelayM1

delay? : N
oDelayedPrefix : (seqTASK × N)
oDelayedSuffix : (seqTASK × N)
. . .

delay? + tickCount > maxNumVal
. . .

oDelayed ′ = oDelayedPrefixa

〈(running task, (tickCount + delay?)− (maxNumVal + 1))〉a
oDelayedSuffix

delayedM1
′
= delayedM1

. . .

Figure 7.17: An operation-schema for the vTaskDelay operation in the model
M1.

which represents the set of delayed tasks in the model M to two sequences
namely delayedM1 and oDelayed in the model M1, which respectively store
the delayed tasks with time-to-awake values in the intervals: [0,maxNumVal]
and [(maxNumVal + 1), 2 ∗maxNumVal]. The latter stores the time-to-awake
values modulo “(maxNumVal + 1)”. The second mismatch discussed above is
rectified by replacing the invariant on the sequence of blocked tasks with a
logically equivalent invariant in terms of complemented priority values.

The operation-schemas in the modelM1 for the FreeRTOS scheduler APIs
init, vTaskDelay, vTaskDelayUntil and vTaskIncrementTick are obtained from
the model M by making necessary changes in accordance with the changes
made for the data fields discussed above. The rest of the operation-schemas
remain unchanged in the refined model.

Fig. 7.17 shows an operation-schema in the modelM1 for the vTaskDelay
operation in FreeRTOS. This schema assumes that the required value of time-
to-awake for running task is in the interval [(maxNumVal+1), 2×maxNumVal],
and hence the running task needs to be added to the sequence oDelayed. This
schema applies a similar technique as in the schema of Fig. 7.14 to update the
state of the data-schema, except that here the time-to-awake value is computed
modulo (maxNumVal + 1).

7.5.2 Checking refinement between Z models
Now we explain the technique used to verify the refinement between the Z
models M and M1. To do this we first applied our Z-to-VCC translation
technique explained in Sec. 5.2.3, to obtain the ghost models G and G1 respec-
tively from the Z modelsM andM1. In fact we translated only those schemas
which differ between these models. Then we applied the “combined” approach

7.5. Details of steps in FreeRTOS verification 111

struct
{

...
_(ghost \bool tasks[TaskType])
_(ghost TaskType delayed-one[\natural])
_(ghost \natural delayed-two[\natural])
_(ghost \natural delayedLength)
...
// invariants
...
_(invariant \forall \natural i,j;

((i < j) && (j < delayedLength)) ==>
(delayed-two[i] <= delayed-two[j]))

...
} SchedulerM;

Figure 7.18: A part of the state-structure modeling the data-schema of the
high-level Z modelM.

explained in Sec. 5.3.2 to check the refinement between the ghost models G
and G1.

The data-structure of Fig. 7.18, shows a part of the state-structure obtained
from the data-schema of the high-level Z model M. We applied our table
lookup procedure explained in Sec. 5.2.3, to translate the data-schema into
this state-structure. This figure mainly shows the components of the structure
which model the set of delayed tasks in the system. It also shows how the set
of tasks in the system is represented in this ghost model G.

The set of tasks in the system is represented by a ghost field called tasks,
which is a map from the set of all tasks in the system to the set of boolean values
{true, false}. A task in the system is represented by a unique task-identifier
of type TaskType, which is simply the type unsigned in C. The value of a
task-identifier t under this map is true, iff t is a valid (already created) task
in the system.

The set of delayed tasks in the system, which is represented as a sequence of
pairs in the Z modelM, is represented by two ghost maps namely delayed-one
and delayed-two. The first one represents the sequence of delayed tasks and
the second one represents the sequence of time-to-awake values such that the
i th value in the second sequence represents the time-to-awake value for the
i th task in the first sequence. That is, delayed-one[i] and delayed-two[i]
respectively represent the i th delayed task and its time-to-awake value. The
figure also shows the translated version of the first invariant on the delayed
list in the data-schema of the Z modelM.

The state-structure of the ghost model G1 and the methods of the ghost
models G and G1 are obtained in a similar way from the respective Z models.

A part of the combined state-structure representing the joint-state of the
ghost models G and G1 is shown in Fig. 7.19. This figure shows the gluing

112 Chapter 7. FreeRTOS Case-Study

struct
{

...
//gluing invariants
_(invariant

(delayedLength = delayedM1Length + oDelayedLength) &&
(\forall \natural i, (i < delayedM1Length) ==>

((delayedM1-one[i] == delayed-one[i]) &&
(delayedM1-two[i] == delayed-two[i]))) &&

(\forall \natural i, (i < oDelayedLength) ==>
((oDelayed-one[i] ==

(delayed-one[delayedM1Length + i] - (maxNumVal + 1))) &&
(oDelayed-two[i] ==
(delayed-two[delayedM1Length + i] - (maxNumVal + 1))))))

} SchedulerMandM1;

Figure 7.19: A part of the structure representing the combined state of the
ghost models G and G1.

invariant which relates the delayed lists of the models G and G1. Given this
invariant the number of tasks in the single delayed sequence in the model G
is the same as the sum of the number of tasks present in the two delayed
sequences of the model G1, also the delayed sequence of the model G is the
concatenation of the sequences of the model G1, except that (maxNumVal+1) is
subtracted from the time-to-awake values of the tasks from the list oDelayed
(see Fig. 7.15).

Now the refinement between the ghost models G and G1 is proved by using
our “combined” approach of Sec. 5.3.2 as follows. For each of the ghost meth-
ods for the FreeRTOS scheduler APIs init, vTaskDelay, vTaskDelayUntil and
vTaskIncrementTick we proved that the joint method results in a joint after-
state satisfying the state-invariant in G and the gluing invariant, and also
that both the abstract and concrete methods produce the same output, when
the joint before-state and input satisfy the abstract state-invariant, abstract
precondition and the gluing relation.

7.5.3 Verifying that P1 refines M1

We now address the task of showing that the simplified FreeRTOS implemen-
tation P1 refines the low-level Z model M1. Recall that P1 uses the ghost
version xListMap rather than the linked-list xList for the task lists in the
FreeRTOS scheduler. Fig. 7.20 shows a part of the definition of xListMap.

Like xList, the state-structure of the ghost model xListMap maintains a
sequence of pointers to xListItem nodes. This sequence is represented as a
ghost map called list. The field length records the number of items present
in this sequence. The field type keeps track of whether the list is meant to
be a FIFO queue or a priority queue. The invariant on the respective list is

7.5. Details of steps in FreeRTOS verification 113

typedef struct
{

_(ghost xListItem *list[unsigned])
_(ghost unsigned length)
_(ghost enum xListType type)
_(invariant length <= MAXSIZE)
_(invariant (type == PQ)==>

(\forall unsigned i,j; (i < j && j < length) ==>
(list[i]->xItemValue <= list[j]->xItemValue)))

...
} xListMap;

void vListInsert(xListMap *mList, xListItem *xli)
_(requires \wrapped(mList))
_(requires mList->length < MAXSIZE)

{
unsigned index;
_(assume ((index <= mList->length) &&

(\forall unsigned i; (i < index) ==>
(mList->list[i]->xItemValue <= xli->xItemValue) &&
(\forall unsigned i;
((i >= index) && (i < mList->length)) ==>

(mList->list[i]->xItemValue > xli->xItemValue)))
...
_(ghost mList->list = \lambda unsigned i;

(i <= mList->length) ?
((i < index) ?

mList->list[i]
: ((i == index) ?

xli
: mList->list[i-1]))

: (xListItem*) NULL)
_(ghost mList->length++)
...

}

Figure 7.20: Excerpts from the ghost implementation: xListMap.

114 Chapter 7. FreeRTOS Case-Study

void vTaskDelay(unsigned delay _(out unsigned oDIndex))
_(requires (delay > (SchedP1.maxNumVal - SchedP1.tickCount)))
...
_(ensures \old(pxCurrentTCB)->xGLI.xItemValue ==

(delay - (SchedP1.maxNumVal - SchedP1.tickCount) - 1))
_(ensures ((oDIndex <= \old(SchedP1.oDLength)) &&

(\forall unsigned i;
(i < oDIndex) ==> (\old(SchedP1.oD[i].xli.xItemValue) <=

\old(pxCurrentTCB)->xGLI.xItemValue)) &&
(\forall unsigned i;

((i >= oDIndex) && (i < \old(SchedP1.oDLength))) ==>
(\old(SchedP1.oD[i].xli.xItemValue) >
\old(pxCurrentTCB)->xGLI.xItemValue))))

_(ensures \forall unsigned i; (i < oDIndex) ==>
(SchedP1.oD[i] == \old(SchedP1.oD[i]))

_(ensures SchedP1.oD[oDIndex] == \old(pxCurrentTCB)->xGLI)
_(ensures \forall unsigned i;

((i > oDIndex) && (i <= \old(SchedP1.oDLength))) ==>
(SchedP1.oD[i] == \old(SchedP1.oD[i - 1]))

_(ensures SchedP1.oDLength == (\old(SchedP1.oDLength) + 1))
...

{
//body of the method

}

Figure 7.21: Excerpts from verification of the method vTaskDelay in the model
P1.

defined in terms of the list-type. For instance, the invariant shown in the figure
specifies that the items are stored in the increasing order of item-values, when
the list is a priority queue.

The figure also shows a part of the definition of the ghost method called
vListInsert. The annotation “\wrapped(mList)” essentially asserts that the
instance mList satisfies the state-invariant in the struct xListMap. We use an
assume annotation, to guess the required position of the node to be inserted
in the sequence represented by the map list. The lambda operator in VCC
is used to update the ghost map list.

Now we describe the technique used to verify the refinement between the
modelsM1 and P1 in verification of the FreeRTOS scheduler. To do this we
applied our “direct-import approach with quantifier elimination” described in
Sec. 5.3.1. We illustrate this step below, in terms of the vTaskDelay API.

Fig. 7.21 shows excerpts from verification of the method vTaskDelay in the
model P1. We use the “direct-import approach with quantifier elimination”
to import the requirements from the Z model of Fig. 7.17 to the vTaskDelay
API in the model P1. A ghost output parameter called oDIndex is used in
this method to simplify the formulas in the function contract. This variable

7.5. Details of steps in FreeRTOS verification 115

represents the position at which the running task is inserted in the sequence
oD. The expressions like “delay? + tickCount > maxNumVal” in the model
M1 is rephrased to avoid the possible overflows in the computation. The field
xGLI of the TCB struct represents the xListItem node, which in this case
represents the running task in a delayed list. The field oD of the scheduler
struct is the map which represents overflow-delayed-list in the model P1.

We applied our theory explained in Chap. 6 together with the “direct-
import approach with quantifier elimination” to handle the change of data
types between operations in the modelsM1 and P1. We assumed a particular
memory map which represents the set of all task TCBs that will be created in
the lifetime of the scheduler to define the family of translation pairs for checking
the refinement between M1 and P1. In particular we used translation pairs
similar to the one shown in Fig. 6.5.

VCC was able to check most of the resulting annotations in the APIs in
P1, except for the xTaskCreate API, and a couple of other APIs we mention
in Sec. 7.6. The problem with xTaskCreate was as follows. FreeRTOS follows
a convention of keeping the running task at the end of the ready queue corre-
sponding to its priority. However this convention leads to inconsistencies like
the following. Consider the scenario where the tasks A1, B1 (both of prior-
ity 1) are ready, with A1 currently executing. By the FreeRTOS convention,
the ready queue is the list 〈B1,A1〉. Now suppose A1 creates a task C1. The
xTaskCreate API uses the xList operation vListInsertEnd to add C1 to the
end of the queue, to get 〈B1,A1,C1〉. Thus the running task A1 is no longer
at the end of the queue. If a couple of tick interrupts now arrive, causing A1
and then B1 to be preempted, it will be A1 that runs again (instead of C1!).

We chose to fix this problem in the design of FreeRTOS by following the
convention of our Z models to keep the running task at the head of its ready
queue. However to do this we needed to add two new functions to the xList
(and xListMap) library: listRotateLeft and list GET FIRST ENTRY that
respectively rotate a FIFO queue by one position to the left, and return the
task that owns the node at the head of the list. The method listRotateLeft
is used in the case of preemption (time slicing within tasks of the top priority),
while list GET FIRST ENTRY is used to find the next task to run. With
these changes and other fixes we mention in Sec. 7.6, VCC verifies all the API
operations of P1.

7.5.4 Verifying that xList refines xListMap

Now we describe the method used to verify the refinement between the list
models xList and xListMap. This part of the FreeRTOS scheduler verification
is done jointly with Anirudh Kushwah, a Masters student of 2011-2013 batch.

The xList data-structure and hence the xListMap data-structure represent
a bunch of lists in the models P and P1 respectively. However it is sufficient
to consider a single pair of instances of xList and xListMap, since we are
verifying the functionality of these data-structures which is the same for all
instances.

116 Chapter 7. FreeRTOS Case-Study

struct
{

// contents of the struct xListMap
// contents of the struct xList
// Gluing invaraints
...
_(invariant length == uxNumberOfItems)
_(invariant (type == PQ) ==> (list[0] == xListEnd.pxNext))
_(invariant (type == PQ) ==> (\forall unsigned i;

((length > 0) && (i >= 0) && (i < (length - 1))) ==>
((list[i]->pxNext == list[i + 1]) &&
(list[i + 1]->pxPrevious == list[i]))))

_(invariant (length > 0) ==>
((list[length - 1]->pxNext == list[0]) &&
(list[0]->pxPrevious == list[length - 1])))

...
} xListJoint;

void vListInsertJoint(xListItem *xli)
_(requires \wrapped(xListJoint))
_(requires xListJoint.length < MAXSIZE)
...
_(ensures \wrapped(xListJoint))

{
body of the abstract method
body of the concrete method

}

Figure 7.22: Excerpts from xList - xListMap refinement check.

7.5. Details of steps in FreeRTOS verification 117

We applied the “combined” approach explained in Sec. 5.3.2, to verify the
refinement conditions between the models xList and xListMap. Fig. 7.22
shows excerpts from the VCC model used to verify this refinement. The gluing
invariants in the joint structure of the figure shows how the xList state is
related to the xListMap state when the list is of type PQ. The figure also shows
the skeleton of the joint method used to verify the refinement condition for the
list API vListInsert.

VCC verifies that each of the methods in the xList data-structure refines
the corresponding method in the xListMap data-structure.

7.5.5 Handling shared data and proving termination
The kernel data in the FreeRTOS scheduler, like the task lists, currently run-
ning task etc are defined as global variables and hence both the scheduler
and the xList data-structure can modify these data. Hence we need to prove
that the communication between the scheduler and the xList data-structure
is effectively functional (see Sec. 5.5). We applied the technique explained in
Sec. 5.5 to prove this.

We classified the ownerships of the shared data maintained by FreeR-
TOS, between the scheduler and the xList data-structure. Then by using
an ensures annotation in each of the method in the FreeRTOS implementa-
tion, we proved that the communication between the scheduler and the xList
data-structure is effectively functional. In particular, we used the annotation
(ensures \old(x) = x), in each method, where the variable x of this an-

notation in component is assumed to be a shared data owned by the other
component.

We applied the technique explained in Sec. 5.4, to prove terminations for
the methods with loops in the scheduler and the xList data-structure.

7.5.6 Verification effort involved
The verification effort involved in this case-study is shown in Fig. 7.23. It
shows the number of lines of code involved at the different layers of the strategy
used to verify the scheduler-related functionality of FreeRTOS. The numbers
reported exclude comments and blank lines.

The high-level Z modelM comprises 50 schemas in the Z language, some
of them are data-schemas and others are operation-schemas. We followed the
Z convention of modeling the states of a system using a number of sub-schemas
to make the model simple and readable. We also use a number of operation-
schemas to model an API such that two operation-schemas modeling an op-
eration differ in their preconditions. For instance, the operation-schema for
delaying a task when the task needs to be added to overflow-delayed-list
has a different precondition than the operation-schema which needs to add the
running task to the delayed-list. There are 766 lines of code (or predicates)
in the Z modelM.

The low-level Z model M1 includes 60 schemas and there are 1239 lines

118 Chapter 7. FreeRTOS Case-Study

Z Model M Z Model M1 API functions in P1

Schemas LOC Schemas LOC Funcs. LOC LOA
50 766 60 1239 11 377 2347

xListMap xList
lines of ghost code Funcs. LOC LOA (xListJoint)

1339 15 121 1450

Figure 7.23: Size of artifacts in the verification of the FreeRTOS scheduler
(LOC stands for Lines of Codes and LOA for Lines of Annotation).

of predicates in it. As we already explained in Sec. 7.5.2, we verified the
refinement between the modelsM andM1 by translating these models in to
ghost models in VCC. There is an inevitable blow-up of around 10x in the
number of specification lines while going from Z to VCC. The reason for this
blow-up is that VCC does not support many data-types such as sequences
and operators that Z supports and hence one would need to use many lines of
specifications to encode a Z object like a sequence.

The port-independent layer of FreeRTOS comprises 2514 lines of code,
which include the scheduler-related functionality and the APIs for inter-process
communication and synchronization. The scheduler-related functionality is
included in the C file task.c which contains 30 APIs, many of which deal
with tracing and other non-core functionality. The core functionality of the
scheduler is implemented by 11 APIs and it comprises 377 lines of C code.
This is the lines of code in the model P1. We used 2347 lines of annotations
in VCC to verify these 11 APIs.

The xList data-structure includes 15 APIs and comprises 121 lines of C
code. As we already explained, a ghost version of this data-structure namely
xListMap is used to verify the correctness of the model P1. The xListMap
data-structure comprises 1339 lines of ghost code. We used our “combined”
approach of Sec. 5.3.2 to verify that xList refines xListMap and there we used
1450 lines of ghost code in the joint model.

7.6 Bugs found
We now report the bugs found in the course of our verification exercise in
addition to the previously mentioned problem with xTaskCreate. Another
related problem is that if the application creates tasks “A1” followed by “B1”,
and then starts the scheduler, the task that runs is “B1” (instead of “A1”).
This is due to a problem with the way the pxCurrentTCB is updated. In
particular, the comparison operator “<=” is used in the guard to update the
value of pxCurrentTCB rather than the required comparison operator “<”. We
fixed this problem by appropriately changing the comparison operator in this
guard.

A more serious bug was in the vTaskPrioritySet method which changes
the priority of a given task. The issue here is that when the given task is in
a blocked queue (say waiting to receive a message from a message queue), its
priority is updated but its position in the waiting queue (which is a priority

7.6. Bugs found 119

queue) is not adjusted. This has the following consequence. Let “A2” and “B1”
be two tasks waiting to receive a message from a message queue “mq”. By our
naming convention, the tasks “A2” and “B1” have priorities 2 and 1 respectively.
Thus the waiting queue is 〈A2, B1〉 with “A2” being the higher priority task, at
the front of this queue. Now suppose the running task performs the following
sequence of operations. Firstly it increases the priority of the waiting task “B1”
to 3 by invoking the vTaskPrioritySet API. Secondly it sends a message to
the message queue mq. The first operation, changes the priority of the task
“B1” to 3 and thus the waiting queue becomes 〈A2, B3〉. The second operation
causes the scheduler to unblock the waiting task at the front of the waiting
queue which is “A2”, instead of the higher priority waiting task “B3”. This is a
violation of a guarantee given by FreeRTOS that “the longest waiting highest
priority task will be unblocked when a message arrives in the queue” (see page
50 in the FreeRTOS user guide [10]).

Mutexes are provided in FreeRTOS for inter-process synchronization. A
situation where a higher priority task is made to wait for a mutex which is
held by a lower priority task is called priority inversion. FreeRTOS implements
a scheme called priority inheritance to minimize the negative effects of priority
inversion. The idea is to temporarily increase the priority of the mutex holder
to the priority of the task requesting the mutex so that the mutex holder
can complete sooner and hence can minimize the waiting time for the higher
priority task to get the mutex.

The method vTaskPriorityInherit implements the priority inheritance
scheme in FreeRTOS. In our verification process, VCC failed to prove that this
method is a refinement of the corresponding abstract method. The problem
here is similar to the problem mentioned above for the vTaskPrioritySet API.
Consider the example scenario explained in the case of the vTaskPrioritySet
API. Suppose the task “B2” is holding a mutex while it is waiting for a message
to arrive in the message queue mq. Now suppose the running task “C3” of
priority 3 requests the mutex held by the task “B2”. This causes the scheduler
to increase the priority of the mutex holder to 3 and hence the waiting queue
becomes 〈A2, B3〉. Thus when a message arrives in the message queue mq, the
scheduler unblocks the task “A2” instead of the task “B3” and hence it nullifies
the intended purpose of the priority inheritance scheme.

The APIs vTaskPrioritySet and vTaskPriorityInherit in turn call the
xList method list SET ITEM VALUE, which however does not have the de-
sired effect, when the lower priority task is in a blocked queue. A simple fix is
to modify these APIs by first removing the concerned node from the blocked
queue, update its priority by invoking the method list SET ITEM VALUE, and
then insert it back in the queue by invoking the list method vListInsert.

Another problem we found is the issue with the vTaskSuspend API. In
our Z models of FreeRTOS, this operation is assumed to suspend a task only
when it is ready to execute. We note that the running task is also a “ready”
task in FreeRTOS. During the verification process, we found that the imple-
mentation does not have such an assumption. This API and the vTaskResume
API are used to temporarily suspend or resume a task. Consider a situation

120 Chapter 7. FreeRTOS Case-Study

Figure 7.24: Example FreeRTOS application.

1 void interp(void)
2 {
3 unsigned t;
4 init();
5 xTaskCreate(Task1,"A1",1,...);
6 t = vTaskStartScheduler();
7 _(assert t == 1)
8 t = vTaskDelay(1);
9 _(assert t == 0)

10 }

Figure 7.25: Example interpreter for the FreeRTOS application in Fig. 7.24.

where vTaskSuspend is used to suspend a blocked or a delayed task. The
vTaskResume API when invoked to resume this task will take it back to the
ready list rather than to the blocked or delayed list from which it was taken
out. In particular, a task which is made to delay for a certain time period
may execute before the delay period is over if some other task suspends and
resumes it in-between. A fix is to allow the suspend operation only when the
task to be suspended is ready.

We communicated these issues to the developers of FreeRTOS who ac-
knowledged that our understanding of the intended behavior was correct and
that the said behaviors were indeed deviations from what they had intended
[9]. They would like to make the proposed fixes provided they do not con-
flict with other design choices in FreeRTOS: for example a time-consuming
priority-based insert operation is okay to do in a lightweight critical section
where the scheduler is suspended, but not when interrupts are disabled.

Finally, the fixes made to obtain the fully verified version of the APIs
involved only a small part of the code: 19 lines in the API code were modified
and 7 lines added to xList.

The modified version of the FreeRTOS scheduler can be viewed as a piece of
software in which the sequential behaviour of the task-related API’s has been
formally specified and verified. By “sequential behaviour” we mean that each
API behaves correctly in the absence of interleaving with other API’s. The
verified version of FreeRTOS and other artifacts of our FreeRTOS verification
case-study are available in [24].

7.7 Verifying FreeRTOS application
In this section we describe the verification guarantees provided to the FreeR-
TOS clients. We illustrate this with an example program which interprets a
FreeRTOS application.

7.8. Related work 121

Fig. 7.24 shows an example FreeRTOS application and Fig. 7.24 shows an
interpreter for this application. Consider what happens when this interpreter
program executes. Firstly the interpreter invokes the init API, which initial-
izes the scheduler and creates the “idle” task with task-id 0. After this the
interpreter creates the task “A1” by invoking the xTaskCreate API and then
it invokes the vTaskStartScheduler API, which now returns the first task to
run which is “A1” with task-id 1 (task-ids for user created tasks are assigned
in the order of their creations starting from 1). Now the interpreter invokes
the vTaskDelay API with argument 1, which causes the scheduler to return
the “idle” task with task-id 0 as the next task to run. Thus the interpreter
program satisfies the assert statements in it.

Using our ghost implementation G of FreeRTOS, we proved in VCC that
the interpreter program satisfies the assert statements in it. These are local
LT properties in the terminology of Sec. 2.5. Now it follows from our notion
of refinement, Theorem 2.2 and Theorem 6.2 that the interpreter application
with a suitable wrapper (see Sec. 6.3) continues to satisfy this assertion when it
calls these operations in the verified version of the FreeRTOS implementation.

Can we infer this property if we use the notion of refinement which al-
lows the concrete ADT to strengthen the precondition of an ADT operation?
The answer is “no”, because the concrete may strengthen the precondition of
some of these APIs and hence can lead to unpredictable behaviors. For ex-
ample, suppose the concrete implementation strengthens the precondition of
the vTaskDelay API to require the argument at least 2 units of time. Then
anything can happen when vTaskDelay API is invoked with argument 1 and
hence the second assertion in the interpreter will fail. For instance, suppose
the concrete vTaskDelay method returns the running task itself as the next
task to run when the argument value is less than 2, which in this case is 1 and
hence violates the assertion at line 9 of the interpreter program.

7.8 Related work
We first consider the design-for-verification projects. The most prominent
work here is the seL4 project [33], where a formally verified micro kernel was
developed. The scope of their work is larger than ours, addressing among
other things memory allocation and interrupts. They also use a refinement-
based approach to prove functional correctness of the C implementation with
respect to a high-level specification in Haskell. The main difference in our
verification is that we did a post-facto verification of an existing software which
was designed for efficiency rather than verifiability. For instance the authors of
FreeRTOS may not have used a complex data structure like a circular doubly
linked-list if they had verification in mind.

Among the work on post-facto verification, the most related is the Verisoft
XT project [12] at Microsoft, where the goal was proving the functional cor-
rectness of the Hyper-V hypervisor and PikeOS operating systems. While
details of the Hyper-V effort are not publicly available (see [31],[34]) PikeOS
[11] is an embedded OS, similar in nature to FreeRTOS though with a few

122 Chapter 7. FreeRTOS Case-Study

more features like virtualization. The verification uses VCC where specifica-
tions are annotations and correctness is in terms of conformance to ghost code
in a two-tier structure which contains both the concrete implementation and a
ghost specification which are related by a coupling relation. However there no
explicit notion of refinement and hence leads to some disadvantages that we
discussed in Sec. 1.6. In contrast, we have an abstract specification (or model)
and give a clear guarantee in terms of conforming to the abstract model.

In [42] the authors verify properties like data-race freedom of a Linux USB
keyboard driver using Verifast, but do not address functional correctness.

An open framework called OCAP is proposed by Feng et al in [21], which
supports domain-specific verification systems for verifying individual compo-
nents and also allows inter-operation of different verification systems. Reuse of
individual proofs is an important aspect of this framework. This framework is
applied in a case-study [22] in which a complete OS kernel is considered in the
sense that they consider both the port-specific and port-independent layers of
the OS, to verify the implementation of preemptive threads and some synchro-
nization primitives. In contrast we verified the complete functional correctness
of the port-independent layer of the FreeRTOS scheduler.

A framework is proposed by Zhaozhong et al in [40] to verify the correctness
of three context management functions for the x86 architecture. The require-
ment is specified as properties in terms of a context structure and the assembly
verification framework XCAP is used to verify the correctness. The Coq proof
assistant is used to check the verification condition by encoding the XCAP
theory, machine model and the functions together with their specifications; in
Coq. In our verification exercise we have proved the functional correctness of
the scheduler-related functionality of FreeRTOS with respect to an abstract
mathematical model of the FreeRTOS scheduler.

Chapter 8

Checking Refinement
Conditions Efficiently

In this chapter we propose an efficient way to phrase the refinement conditions
in VCC, which considerably improves the performance of VCC. We illustrate
this technique with a case-study in which we verify a simplified C implemen-
tation of the FreeRTOS scheduler, with respect to its abstract Z specification.

8.1 Motivation
Our aim is to propose a practically efficient technique for carrying out the
proofs of successive refinements proposed in our “directed refinement method-
ology”.

We presented two techniques namely “direct-import” approach (of Sec. 5.3.1)
and “combined” approach (of Sec. 5.3.2) for checking refinements in VCC.
However these approaches suffer from some disadvantages, which we describe
in the subsequent paragraphs.

The following are the problems with the “direct-import” approach. Firstly,
the manual transformation can be error prone and the equivalence should
ideally be checked in a theorem prover like PVS or Isabelle/HOL. Secondly,
the requirements need to be specified directly on the concrete state. This can
be quite complex for both a human and a tool especially when dealing with
complex objects like self-referential data-structures.

The problem with the “combined” approach is that it leads to excessive
time requirements for discharging the proof obligations when one of the ADT
models is an imperative language implementation. This approach may cause
the prover to take a lot of time or may even cause the prover to run out of
memory. In our opinion, this is mainly due to the fact that a large number
of extra annotations are required when reasoning about a joint (abstract and
concrete) state that are both mutable. Each extra annotation is required as
a loop invariant (or as a function contract), to specify that each ghost (or
abstract) object in the system is kept unmodified by a loop (or a function)
that modifies a concrete data object. We illustrate this problem with the
following example.

123

124 Chapter 8. Efficient Refinement Checking in VCC

strcut int deq()
{ _(requires QG.lenG > 0)

_(ghost \natural lenG) _(ensures lenG <= SIZE)
_(ghost int seq[\natural]) {
_(invariant lenG <= SIZE) int resG,

} QG; _(assume resG == QG.seq[0])
_(ghost QG.seq = \lambda \natural i;

QG.seq[i + 1])
_(ghost QG.lenG = QG.lenG - 1)
return resG;

}

Figure 8.1: A part of the ghost implementation of an ADT of type QTypeZ.

strcut int deq()
{ ...

unsigned lenC; _(ensures lenC <= SIZE)
int arr[SIZE]; {
_(invariant lenC <= SIZE) int resC,i;

} QC; resC = QC.arr[0];
for(i = 0; i < (QC.lenC - 1); i++)
...

{
QC.arr[i] = QC.arr[i + 1];

}
QC.lenC--;
return resC;

}

Figure 8.2: A part of the C implementation of an ADT of type QTypeZ.

Consider an ADT of type QTypeZ, which we discussed in Sec. 3.1. Let
g-queue be a ghost implementation of an ADT of type QTypeZ, a part of
which is shown in Fig. 8.1 and let c-queue be a C implementation of an ADT
of this type, a part of which is shown in Fig. 8.2. The method deq in c-queue
uses a for loop to update the state of the array. Verifying methods with loops
is a difficult task in VCC. This is because of the fact that VCC forgets its
knowledge about the state of the method (or program) when it enters a loop.
Hence it is the responsibility of the user to provide suitable loop invariants,
which are necessary to prove the postcondition of a method. For instance,
in the “combined” approach for proving the refinement between g-queue and
c-queue, in terms of the deq operation, the user should provide the following
loop invariant to ensure that the ghost components are not modified by the
loop body.

8.2. Proposed efficient approach 125

ρ

t

s ∈ preGn

=⇒

BAPP
n

ρ

t′

s ∈ preGn

t

invs and

(a) Step 1 for the concrete model.

invs ∧ preGn and

BAPP
n

BAPG
n

=⇒ρ

BAPP
n

BAPG
n

ρ

n n

ρ

t t′ t t′

s s s′s′

(b) Step 2.

Figure 8.3: Illustrating the conditions checked in the two-step approach.

(lenG == \old(lenG)) &&

(\forall \natural i; (i < lenG) ==> (seq[i] == \old(seq[i])))

The above loop invariant is required regardless of the order in which the
combined method executes the bodies of the abstract and concrete methods.
In one case, this invariant is required to ensure that the modified state of the
abstract model is preserved by the loop. In the other case, it is required to
ensure that the initial state of the abstract model is preserved by the loop.

A second possibility in the “combined” approach is to use method invo-
cations in the joint method rather than directly executing the abstract and
concrete method bodies. However one would need to use more annotations in
this technique, than the above, since the function contract of the method in
one model should include a similar predicate to ensure the preservation of the
state of the other model.

We fix the models g-queue and c-queue as above for the rest of this chap-
ter.

8.2 Proposed efficient approach
We now propose an efficient approach called the “two-step” approach, which
overcomes the difficulties mentioned above. The idea is to divide the refinement
checking task into two steps. The first step is to prove the BAP s for the
abstract and concrete methods separately, by manually supplying the BAP s.
Recall that the BAP of an operation is a predicate representing the state
change induced by the operation. The second step is to prove the following:
(i) the after-states represented by the abstract and concrete BAP s satisfy the
gluing invariant and (ii) the abstract and concrete BAP s represent the same
output value.

Fig. 8.3 illustrates the two steps required in our approach to prove the
refinement between an abstract ADT model G and a concrete ADT model
P . It shows Step 1 of the “two-step” approach only for the concrete method.
A similar BAP check is required to be performed on the abstract method.

126 Chapter 8. Efficient Refinement Checking in VCC

opG() opP()
(requires invGs ∧ preGop) (requires invGs ∧ preGop ∧ invρ)
(ensures BAP Gop) (decreases 0)

(ensures BAPPop)
{ {

// body of opG // body of opP

} }
(a) (b)

Figure 8.4: (a): Step 1 of the “two-step” approach for proving the abstract
BAP and (b): Step 1 of the “two-step” approach for proving the concrete
BAP .

int deqStep1Abstract()
_(requires (QGC.lenG <= SIZE) && (QGC.lenG > 0))
_(ensures

(QGC.lenG == (\old(QGC.lenG) - 1)) &&
(\forall \natural i;

(i < QGC.lenG) ==> (QGC.seq[i] == \old(QGC.seq[i + 1]))))
{

// body of the abstract method
}

Figure 8.5: Illustrating the Step 1 of the “two-step” approach for proving the
abstract BAP BAP g-queue

deq .

Fig. 8.4 shows the skeletons of the methods in VCC to prove the abstract and
concrete BAP s for an ADT operation op. Here the notations: “invGs ”, “preGop”,
“BAPBop” and “invρ” respectively denote - the invariant on the state-structure
of the abstract ADT, the precondition of the method in the abstract ADT
corresponding to the operation op, the BAP of the operation op in the model
B, and the gluing invariant, which relates the abstract and concrete states.

For example, consider the ADT models g-queue and c-queue discussed
above. Step 1 of the “two-step” approach for proving the abstract BAP ,
BAP g-queue

deq for the deq method in the model g-queue is shown in Fig. 8.5.
Fig. 8.6 shows Step 1 of the “two-step” approach for proving the concrete
BAP , BAP c-queue

deq for this method in the model c-queue. The decreases
annotation ensures that the method terminates (see Sec. 5.4).

The problem with the “direct-import approach with quantifier elimination”
is solved, since manually supplying the BAP s for the abstract and concrete
methods is more transparent and easy to do than specifying the requirements
completely on the concrete data-structures, by manually translating the re-
finement conditions to eliminate existential quantifications. The problem with

8.2. Proposed efficient approach 127

int deqStep1Concrete()
_(requires (QGC.lenG <= SIZE) && (QGC.lenG > 0) &&

((QGC.lenG == QGC.lenC) && (\forall \natural i;
(i < QGC.lenG) ==> (QGC.seq[i] == QGC.arr[i])))))

_(decreases 0)
_(ensures

(QGC.lenC == \old(QGC.lenC) - 1) &&
(\forall \natural i;

(i < QGC.lenC) ==> (QGC.arr[i] == \old(QGC.arr[i + 1])))
{

// body of the concreet method
}

Figure 8.6: Illustrating the Step 1 of the “two-step” approach for proving the
concrete BAP BAP c-queue

deq .

the “combined” approach is also solved, since in Step 1, we are interested in
proving only the concrete BAP as the post condition of the concrete function,
and hence there is no need to use the set of predicates in a loop (or a concrete
function contract), which is otherwise required to ensure that the abstract
state is not modified by a loop (or a method).

The second step of the “two-step” approach is to check the validity of the
following implication, whose RHS specifies that the after-states defined by the
abstract and the concrete BAP s are related by the gluing relation and also
that the abstract and the concrete operations produce the same output.

invGs ∧ preGop ∧ invρ ∧BAP Gop ∧BAPPop =⇒ inv′ρ ∧ resG = resP .

In the above implication, the notation “inv′ρ” denotes the gluing invariant
in the joint after-state. One can use a method with suitable function contract
in VCC to check the validity of a predicate like this. For instance, Fig. 8.7
shows the method which proves Step 2 of the “two-step” approach for proving
the refinement between the models g-queue and c-queue in terms of the deq
operation in the ADT type QTypeZ. Firstly the method assumes the part of
the LHS of the implication, which is about the joint before-state and input.
Then havoc is invoked to inform VCC that the abstract and concrete states
are changed in some way. This is followed by an annotation which assumes the
part of the LHS of the implication which represents the BAP s of the abstract
and concrete methods. The RHS of the implication is specified as the ensures
annotation in the method.

128 Chapter 8. Efficient Refinement Checking in VCC

int deqStep2()
_(ensures

((QGC.lenG == QGC.lenC) && (\forall \natural i;
(i < QGC.lenG) ==> (QGC.seq[i] == QGC.arr[i]))) &&

(resG == resC))
{

_(assume
(QGC.lenG <= SIZE) && (QGC.lenG > 0) &&

((QGC.lenG == QGC.lenC) && (\forall \natural i;
(i < QGC.lenG) ==> (QGC.seq[i] == QGC.arr[i]))))

havoc();
_(assume

((QGC.lenG == (\old(QGC.lenG) - 1)) &&
(\forall \natural i;
(i < QGC.lenG) ==> (QGC.seq[i] == \old(QGC.seq[i + 1])))) &&

((QGC.lenC == \old(QGC.lenC) - 1) &&
(\forall \natural i;
(i < QGC.lenC) ==> (QGC.arr[i] == \old(QGC.arr[i + 1])))))

}

Figure 8.7: Illustrating the Step 2 of the “two-step” approach for the operation
deq.

8.3 Case-study: Simp-Sched

In this section, we describe a case-study in which we apply our efficient re-
finement checking technique, to prove the functional correctness of an existing
ADT implementation. We also report a comparison of the relative performance
of the approaches: “direct-import with quantifier elimination”, “combined”
and ”two-step”; in terms of this case-study.

FreeRTOS implementation uses a linked-list data-structure to implement
the task lists maintained in the kernel, also it uses a pointer to a TCB struct
to represent a task. We wanted to avoid the complexity of dealing with heap
data-structures and pointers in this case-study, since here we aim to evaluate
the performance improvement of the “two-step” approach over the other two
approaches. Hence we decided to work with a simplified version of the FreeR-
TOS scheduler called Simp-Sched, which we constructed for this verification
exercise. The operations provided by the Simp-Sched API and the operations
in its sub-ADT called list are shown in Fig. 8.8. Simp-Sched maintains all
key aspects of timing and scheduling in FreeRTOS. The simplification is with
respect to the following two aspects:

1. A task in the FreeRTOS scheduler is maintained in a struct called a
TCB, which includes pointers to function behavior. In Simp-Sched, we
simply use an integer task-ID to represent the TCB of a task.

8.3. Case-study: Simp-Sched 129

listInsertEnd,

listInsert,

listRemove,

listIsEmpty, ...

listInitialise, init, taskCreate,

taskStartScheduler,

taskDelay, taskDelete,

taskBlock, taskUnblock,

taskTickIncrement

Task APIsList APIs

Simp-Sched architecture

Figure 8.8: Components in the scheduler implementation

2. Each task list like ready and delayed is maintained using the xList data-
structure, which is implemented as a circular doubly linked-list in FreeR-
TOS. In Simp-Sched, we replace this data-structure with an array-based
list implementation.

All other aspects of the FreeRTOS scheduler implementation are main-
tained. We use the high-level Z model, which is used for the verification of the
FreeRTOS scheduler for verifying Simp-Sched. Given this, one of the key uses
of our Simp-Sched implementation is the use in a run time monitor that can be
used to identify potential scheduling inconsistencies and errors in the FreeR-
TOS scheduler. Each method in FreeRTOS can be instrumented to include
a call to the corresponding method in Simp-Sched, so that the two scheduler
implementations are running in parallel.

The C implementation of Simp-Sched includes 769 lines of C code and 106
lines of comments [20]. The task lists are implemented as a separate library in
which lists are implemented using arrays in C.

8.3.1 Proving the functional correctness of Simp-Sched

We now describe the technique used for proving the the functional correctness
of the scheduler: Simp-Sched. We started with the high-level Z model that we
used to prove the functional correctness of the FreeRTOS scheduler (Sec. 7.5.1).
Then we proved that the C implementation of Simp-Sched is a refinement of
the high-level Z model.

The strategy used here is similar to the strategy of Sec. 7.4, which is used
to verify the functional correctness of the FreeRTOS scheduler, except that
here we use our “two-step” approach when one of the ADT models is a C
implementation. To avoid repetition, we do not give the details of this case-
study. Nonetheless we describe the technique in terms of the methodology
used for verifying Simp-Sched. The methodology is shown in Fig. 8.9, which
involves six stages:

1. We start with the high-level Z model M, which is used to prove the
functional correctness of the FreeRTOS scheduler.

130 Chapter 8. Efficient Refinement Checking in VCC

map based list
implementation

implementation
array based list

lArray −

Refined VCC

Z model VCC model

in C

implementation
in C

lMap −

Concrete

Simplified
implementation

P1

model

M G

G1

P

Figure 8.9: Overview of the verification of Simp-Sched. Dashed arrow de-
notes the Z-to-VCC translation, bold upward-arrows denote the refinements
to be proved and dotted arrows denote the refinements which follows from our
transitivity or substitutivity results.

2. The next step in the methodology is to apply our mechanizable transla-
tion procedure explained in Sec. 5.2.3, to translateM to a ghost model
in VCC, which we call G. Recall that our translation guarantees that G
refinesM.

3. We know that the implementation, P of Simp-Sched uses the operations
from the lArray sub-ADT to implement the task lists maintained in
Simp-Sched. Thus the existing implementation is of the form P [lArray].
We now obtain a simplified implementation P1 of Simp-Sched from P by
replacing the sub-ADT lArray in P with a map-based sub-ADT called
lMap. Thus the simplified implementation is of the form P1[lMap].

4. We then refine the high-level ghost model G to a low-level ghost model
called G1 to capture some implementation details in P1. For instance, the
system clock is unbounded in G. On the other hand, the system clock
is implemented as a bounded variable in P1 whose value cycles in the
interval [0, maxNumVal], where maxNumVal is the maximum value that
an unsigned int in C can take. This change has another effect: the
set of delayed tasks, which is maintained in a single delayed list in G, is
implemented as two task lists in P1 to cope with the bounding of the
clock value. We refine the model G to the low-level model G1 to capture
these changes. We use the “combined” approach explained in Sec. 5.3.2,
to prove that the low-level ghost model G1 refines the high-level ghost
model G.

5. The next step in the methodology is to prove the refinement between G1
and P1. We prove this refinement by applying our “two-step” approach
explained in Sec. 8.2.

8.3. Case-study: Simp-Sched 131

Model Lines of code Lines of annotation
M - 222
G 1317 1580
G1 1954 2287
G1 � G 3271 741
P1 609 293
P1 � G1 24 7639
lMap 240 602
lArray 104 56
lArray � lMap 20 837
P 769 -

Table 8.1: Code metrics and annotation effort involved in the verification of
Simp-Sched.

6. The final step in the methodology is to prove that P refines P1. For
this we first prove by using our “two-step” approach that lArray refines
lMap. Then we infer using Theorem 3.2 (refinement is substitutive), that
P refines P1.

Now it follows from Proposition 2.1 (transitivity of refinements), that P
refines G. Recall that our mechanizable translation procedure of Sec. 5.2.3,
translates the Z modelM to the ghost model G such that G refinesM. Hence
it follows that the C implementation of Simp-Sched, P refines the Z model
M. The verification artifacts from this case-study are available at [20].

8.3.2 Code metrics and human effort involved
We spent two human-months to obtain the implementation Simp-Sched from
a FreeRTOS implementation and to verify the functional correctness of this
simplified implementation with respect to the high-level Z modelM for FreeR-
TOS. The code metrics are given in Table 8.1. Even though there are around
22500 lines of code/annotations, there are only a few lines of modifications
required in successive refinements and hence the size of the high-level ghost
model G and the lMap model, which is extracted from G, are the important
parts deciding the human effort required. The size of G and lMap comes to
2422 lines of annotations is VCC and that is about 3 times the size of the
executable code P .

8.3.3 Performance comparison
In this section we report the time taken by VCC to prove the refinement condi-
tions between the different models in this case-study. Table 8.2 shows the time
taken under three different approaches namely “direct-import with quantifier
elimination”, “combined” and “two-step” approaches described earlier. On an
average, our “two-step” approach takes only 7.4% of the total time taken by
the “direct-import” approach. The time taken by the “combined” approach

132 Chapter 8. Efficient Refinement Checking in VCC

Sl.No. API
Time taken by VCC (in seconds)

“direct-import” “combined” “two-step”
Step 1 Step 2 Total

P1 � G1

init 257 89 231 4 235
taskCreate 357 781 9 4 13
taskStartScheduler 10 14 5 4 9
taskDelay 285 18773 22 8 30
taskDelete 436 18391 68 8 76
taskBlock 423 20699 22 5 27
taskUnblock 227 16838 27 6 33
listInitialise 2 3 2 2 4
listGetNumberOfElements 2 2 2 2 4
listIsEmpty 2 2 4 2 6

lArray listIsContainedIn 2 2 3 4 7
� listGetIDofFirstFIFOtask 3 2 2 3 5

lMap listGetIDofFirstPQtask 2 3 3 4 7
listGetKeyOfFirstPQtask 2 3 2 2 4
listInsertEnd 2 3 2 5 7
listInsert 32 9 3 2 5
listRemove 4448 43 4 2 6

Total time taken by each technique 6493 75658 490

Table 8.2: Time taken by VCC to prove refinement conditions under the dif-
ferent techniques.

is much longer than the time taken by the “direct-import” approach. This is
because of the presence of the abstract objects, abstract invariants, gluing re-
lation and the statements in the abstract methods, in addition to the overhead
involved in the “direct-import” approach.

This case-study shows that our “two-step” approach consistently improves
the performance of VCC for checking refinement between complex models.
This is evident from the time savings that we achieved for checking the re-
finement between the task APIs. However when the concrete model is very
short like the lArray model which contains less than 10 lines of C code in each
method, the other approaches performs better than the “two-step” approach.
This is because of the fact that in such a case the time savings possible in
Step 2 is less than the time requirement for Step 1.

Chapter 9

Conclusion and Future Work

In this thesis we have proposed a methodology to carry out mechanized proofs
of functional correctness of Abstract Data Type (ADT) implementations.

The methodology is based on a natural notion of refinement in which we
require the concrete ADT to support all the exception-free sequences of opera-
tions that the abstract ADT allows. A client program of an ADT is viewed as
interacting with the ADT in a “purely functional” way by making operation
calls and using the return values. In this setting we spell out the properties pre-
served in a client when an abstract ADT is replaced by a refined version. We
prove a substitutivity result that is convenient while reasoning about complex
implementations of ADTs that use sub-ADTs to realize their functionality.

We explore this methodology using mainly the VCC tool as a vehicle. We
show how to represent abstract versions of ADTs using auxiliary ghost con-
structs in VCC and reason about refinement within VCC. Though we have to
deal with issues like ownership in VCC, on the whole VCC provides a powerful
and convenient environment for executing our methodology.

We have evaluated our methodology using a couple of case-studies centered
around a popular open-source embedded operating system, FreeRTOS. In the
first, more elaborate, case-study we use our methodology to prove the func-
tional correctness of the FreeRTOS scheduler. In this process we uncovered
significant errors in the implementation, which we had to fix for the verification
to go through. As an end product we have a version of the FreeRTOS sched-
uler with a mathematically precise specification for its sequential behaviour
and a machine checked proof of conformance to that specification. As a proof
of concept we also show how we can efficiently prove desirable properties of
FreeRTOS applications using the abstract specification.

In the second case-study we investigate different ways of phrasing the re-
finement conditions of our theory in a simplified version of FreeRTOS. We show
that a certain two-step approach to phrase these conditions leads to significant
saving in time and memory that VCC spends to check these conditions.

9.1 Future work
There are several interesting directions we would like to pursue as future work.

133

134 Chapter 9. Conclusion and Future Work

In our refinement theory we assumed that the execution of a program which
implements an ADT is sequential, in the sense that the execution of each
method when started will run to completion before another method can start
execution. However this assumption is not satisfied by most of the programs
even in a single processor architecture. For instance, an interrupt can start
execution causing another API to run before the currently executing method
completes. We would like to extend our theory to handle interleaved and
parallel executions of the methods in a program, which implements an ADT.
Here one could use a method in VCC like the one proposed by Cohen et al [17]
or the notion of linearizability proposed by Herlihy and Wing [27] to achieve
this.

The verification in the FreeRTOS case-study is completed with the assump-
tion that the execution is sequential. However FreeRTOS supports a limited
form of interleaved execution. For instance, a tick interrupt can cause the
scheduler to execute immediately by preempting the currently running task
while it is executing in the middle of a FreeRTOS API. Some synchroniza-
tion primitives like disabling interrupts are used in FreeRTOS to ensure that
shared data is accessed/updated in a safe way in an interleaved execution. We
would like to make use of the built-in support of VCC to verify the FreeRTOS
implementation by considering the restricted form of interleaved executions
allowed. To do this one would need to see how the synchronization primitives
in FreeRTOS can be encoded in VCC to use its built-in support for reasoning
about concurrency.

One aspect of the scheduler functionality in FreeRTOS that we have not ad-
dressed in this thesis inter-process communication and synchronization through
message queues and semaphores. An interesting future direction is to verify the
operations for inter-process communication and synchronization. One could
use the VCC tool to carry out the steps proposed in our methodology to verify
this, in a similar way as we did for verifying the scheduler-related functional-
ity. Another direction is to address the correctness of the port-specific layer of
FreeRTOS.

The stand-alone ghost model of the FreeRTOS scheduler that we developed
for proving the scheduler-related functionality can be used together with our
theory of refinement to prove local linear time properties about FreeRTOS
applications. We have proved such properties about few simple FreeRTOS
applications which we developed. A future direction is verifying interesting
local linear time properties about real FreeRTOS applications using the ghost
model of FreeRTOS from our case-study.

Our translation procedure from the Z language to VCC’s ghost language
is not automated. Also it covers only a part of the Z language, that we used
in our case-studies. This basically uses relations and finite sequences with
operations on them. A possible future direction is to consider more Z objects
in the translation procedure and to automate the translation procedure.

VCC’s ghost language does not support abstract mathematical objects like
sets and sequences, which are provided by specification languages like Z. Such
mathematical objects are essential to ease the task of specification. A future

9.1. Future work 135

work along this line is to extend VCC’s ghost language to support the essential
mathematical objects required in a specification language. One could use a
technique similar to the one in our Z-to-VCC translation procedure to achieve
this.

In our opinion, a simulator in VCC may help the user to make the modeling
phase easy. Hence we would like to have an option in VCC to simulate the ghost
model, like the ProZ animator for the Z language, which is supported by the
tool ProB. One could do this by translating the ghost objects into equivalent
objects in C and hence by generating an equivalent C program which could be
executed in the background to simulate the ghost model.

136 Chapter 9. Conclusion and Future Work

Bibliography

[1] C.A.R. Hoare, I.J. Hayes, Jifeng He, C.C. Morgan, J.W. Sanders, I.H.
Sorensen, J. M. Spivey and B.A. Sufrin. Data refinement refined. Type-
script, Programming Research Group, Oxford University., May 1985.

[2] Jean-Raymond Abrial. Data semantics. In IFIP Working Conference Data
Base Management, pages 1–60, 1974.

[3] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engi-
neering. Cambridge University Press, 2010.

[4] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son
Hoang, Farhad Mehta, and Laurent Voisin. Rodin: An open toolset
for modelling and reasoning in Event-B. Software Tools for Technology
Transfer, 12(6):447–466, November 2010. http://dx.doi.org/10.1007/
s10009-010-0145-y.

[5] Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer. Spec-
ification language. In On the Construction of Programs, pages 343–410.
1980.

[6] Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer. Spec-
ification language. In On the Construction of Programs, pages 343–410.
1980.

[7] E. Alkassar, M. Hillebrand, W. Paul, and E. Petrova. Automated ver-
ification of a small hypervisor. In 3rd Intl Conf on Verified Software:
Theories, Tools, and Experiments (VSTTE’10), volume 6217 of LNCS,
pages 40–54, Edinburgh, UK, 2010. Springer.

[8] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008.

[9] Richard Barry. personal communication.

[10] Richard Barry. Using the FreeRTOS Real Time Kernel – A Practical
Guide. 2010.

[11] Christoph Baumann, Bernhard Beckert, Holger Blasum, and Thorsten
Bormer. Lessons learned from microkernel verification – specification is
the new bottleneck. In Franck Cassez, Ralf Huuck, Gerwin Klein, and
Bastian Schlich, editors, SSV, volume 102 of EPTCS, pages 18–32, 2012.

137

http://dx.doi.org/10.1007/s10009-010-0145-y
http://dx.doi.org/10.1007/s10009-010-0145-y

138 BIBLIOGRAPHY

[12] Bernhard Beckert and Michal Moskal. Deductive Verification of System
Software in the Verisoft XT Project. KI, 24(1):57–61, 2010.

[13] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development
Method: The Meta-Language, volume 61 of Lecture Notes in Computer
Science. Springer, 1978.

[14] Ernie Cohen. Data abstraction in vcc. pages 79–114.

[15] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,
Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.
VCC: A Practical System for Verifying Concurrent C. In TPHOLs, pages
23–42, 2009.

[16] Ernie Cohen, Mark A. Hillebr, Stephan Tobies, MichaÅĆ Moskal, and
Wolfram Schulte. Verifying c programs: A vcc tutorial, 2011.

[17] Ernie Cohen, Michal Moskal, Wolfram Schulte, and Stephan Tobies. Local
verification of global invariants in concurrent programs. In CAV’10, pages
480–494, 2010.

[18] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.
In TACAS, pages 337–340, 2008.

[19] Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby, N. Shankar,
Maria Sorea, and Ashish Tiwari. SAL 2. In Proceedings of the 16th
International Conference on Computer Aided Verification (CAV), LNCS,
Boston, July 2004. Springer Verlag. Tool descript.

[20] Efficient refinement check in VCC. Project artifacts. www.csa.iisc.
ernet.in/~deepakd/SimpSched, 2014.

[21] Xinyu Feng, Zhaozhong Ni, Zhong Shao, and Yu Guo. An open framework
for foundational proof-carrying code. In FranÃğois Pottier and George C.
Necula, editors, TLDI, pages 67–78. ACM, 2007.

[22] Xinyu Feng, Zhong Shao, Yu Guo, and Yuan Dong. Combining domain-
specific and foundational logics to verify complete software systems, 2008.

[23] Ivana Filipovic, Peter W. O’Hearn, Noah Torp-Smith, and Hongseok
Yang. Blaming the client: on data refinement in the presence of pointers.
Formal Asp. Comput., 22(5):547–583, 2010.

[24] FreeRTOS verification project. Project artifacts. www.csa.iisc.ernet.
in/~deepakd/FreeRTOS, 2014.

[25] RESOLVE Software Research Group. The FreeRTOS Project.
http://resolve.cs.clemson.edu/interface.

[26] Jifeng He, C. A. R. Hoare, and Jeff W. Sanders. Data refinement refined.
In Bernard Robinet and Reinhard Wilhelm, editors, ESOP, volume 213
of Lecture Notes in Computer Science, pages 187–196. Springer, 1986.

www.csa.iisc.ernet.in/~deepakd/SimpSched
www.csa.iisc.ernet.in/~deepakd/SimpSched
www.csa.iisc.ernet.in/~deepakd/FreeRTOS
www.csa.iisc.ernet.in/~deepakd/FreeRTOS

BIBLIOGRAPHY 139

[27] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463–492, July 1990.

[28] Gerard Holzmann. Spin Model Checker, the: Primer and Reference Man-
ual. Addison-Wesley Professional, first edition, 2003.

[29] Bart Jacobs and Frank Piessens. The VeriFast program verifier. Technical
Report CW-520, Department of Computer Science, Katholieke Univer-
siteit Leuven, Belgium, 08 2008.

[30] Clifford B. Jones. Systematic software development using VDM. Prentice
Hall International Series in Computer Science. Prentice Hall, 1986.

[31] Gerwin Klein. Operating system verification — an overview. Sādhanā,
34(1):27–69, February 2009.

[32] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. Comprehensive for-
mal verification of an os microkernel. ACM Trans. Comput. Syst., 32(1):2,
2014.

[33] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: formal verification of an os kernel. In Jeanna Neefe Matthews and
Thomas E. Anderson, editors, SOSP, pages 207–220. ACM, 2009.

[34] D. Leinenbach and T. Santen. Verifying the Microsoft Hyper-V Hypervi-
sor with VCC. In 16th International Symposium on Formal Methods (FM
2009), volume 5850 of LNCS, pages 806–809, Eindhoven, 2009. Springer.

[35] K. Rustan M. Leino. Dafny: An automatic program verifier for functional
correctness. In Edmund M. Clarke and Andrei Voronkov, editors, LPAR
(Dakar), volume 6355 of Lecture Notes in Computer Science, pages 348–
370. Springer, 2010.

[36] Michael Leuschel and Michael Butler. ProB: A model checker for B. In
Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003:
Formal Methods, LNCS 2805, pages 855–874. Springer-Verlag, 2003.

[37] Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping.
ACM Trans. Program. Lang. Syst., 16(6):1811–1841, 1994.

[38] Real-Time Engineers Pvt Ltd. The FreeRTOS Project. www.freertos.
org, Cited 10 April 2012.

[39] Ivana Mijajlovic, Noah Torp-Smith, and Peter W. O’Hearn. Refinement
and separation contexts. In Kamal Lodaya and Meena Mahajan, editors,
FSTTCS, volume 3328 of Lecture Notes in Computer Science, pages 421–
433. Springer, 2004.

www.freertos.org
www.freertos.org

140 BIBLIOGRAPHY

[40] Zhaozhong Ni, Dachuan Yu, and Zhong Shao. Using XCAP to certify re-
alistic systems code: Machine context management. In Theorem Proving
in Higher Order Logics, 20th International Conference, TPHOLs 2007,
Kaiserslautern, Germany, September 10-13, 2007, Proceedings, pages
189–206, 2007.

[41] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, 11th International Conference on Au-
tomated Deduction (CADE), volume 607 of Lecture Notes in Artificial
Intelligence, pages 748–752, Saratoga, NY, jun 1992. Springer-Verlag.

[42] Willem Penninckx, Jan Tobias Mühlberg, Jan Smans, Bart Jacobs, and
Frank Piessens. Sound formal verification of linux’s usb bp keyboard
driver. In Alwyn Goodloe and Suzette Person, editors, NASA Formal
Methods, volume 7226 of Lecture Notes in Computer Science, pages 210–
215. Springer, 2012.

[43] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th Annual IEEE Symposium on Logic
in Computer Science, LICS ’02, pages 55–74, Washington, DC, USA,
2002. IEEE Computer Society.

[44] Mark Saaltink. The Z/Eves System. In ZUMâĂŹ97: Z Formal Specifica-
tion Notation, pages 72–85. Springer-Verlag, 1997.

[45] Yannick Welsch and Arnd Poetzsch-Heffter. A fully abstract trace-based
semantics for reasoning about backward compatibility of class libraries.
Sci. Comput. Program., 92:129–161, 2014.

[46] Jim Woodcock and Jim Davies. Using Z: specification, refinement, and
proof. Prentice-Hall, 1996.

Appendix A

Non-deterministic ADTs and
Refinement

In this appendix we propose an extension to our refinement theory to handle
non-deterministic ADTs. Non-determinism gives more flexibility in abstract
specification. For example the scheduler of a simple operating system, where
tasks are of the same priority can be specified to schedule any one of the set of
ready tasks and thus have the freedom of resolving this choice at a later stage
in refinement. We propose a notion of refinement for non-deterministic ADTs
which preserves the same set of properties preserved by our refinement notion
for deterministic ADTs.

A.1 Non-deterministic ADTs
We consider an ADT type called SchedType2 and an ADT of this type to
explain the notion of refinement for non-deterministic ADTs. Fig. A.1, shows
the ADT type SchedType2. The type of a task is assumed as N, the set of
natural numbers. There is no argument to the init operation and hence is
assumed to take the dummy argument nil. The init operation is expected to
return ok when the operation is successful. The operation create takes the
task to be inserted to the ready list as an argument. The create operation
is expected to return ok, when it succeeds in inserting the given task to the
ready list and it is expected to return the value fail, when it cannot insert the
given task to the ready list, may be due to the unavailability of a vacant space
in the ready list. The operation resched takes the currently running task as
an argument. The resched operation is expected to return a task as the next
task to run, when it succeeds in: (i) inserting the given task to the ready list
and (ii) extracting a task from the ready list. It can also return the value
fail, when it cannot successfully complete its operation, may be due to the
unavailability of a vacant space in the ready list to insert the given task or due
to the unavailability of a task to extract from the ready list.

Definition A.1 (NADT). A (non-deterministic) ADT of type N can be de-
fined as a 4-tuple: A = (Q,U ,E , {opn}n∈N) similar to a deterministic ADT,

141

142 Appendix A. Non-deterministic ADTs

SchedType2 = {init, create, resched} where:

Iinit ={nil} Oinit ={ok, e}

Icreate =N Ocreate ={ok, fail, e}

Iresched =N Oresched =N ∪ {fail, e}

Figure A.1: The ADT type SchedType2.

SchedADT2 = (Q,U ,E , {opn}n∈SchedType2) where
Q ⊆ 2N ∪ {E}

opinit(q, nil) =

{
{(ε, ok)} if q 6= E
{(E , e)} otherwise.

opcreate(q, a) =

{
{(q ∪ {a}, ok)} if q 6= E
{(E , e)} otherwise.

opresched(q, a) =

{
{(q ′ ∪ {a}, b)} if q 6= e where b ∈ q and q ′ = q \ {b}.
{(E , e)} otherwise.

Figure A.2: An NADT SchedADT2 of type SchedType2.

except that for each operation n in N, opn is now a non-deterministic realiza-
tion of the operation n: opn ⊆ (Q × In) × (Q × On) satisfying the following
conditions:

1. if (q, e) ∈ opn(p, a) then q = E,

2. if (E , e) ∈ opn(p, a) and (q, b) ∈ opn(p, a) then q = E and b = e, and

3. opn(E ,−) = {(E , e)}.

Thus if an operation returns the exceptional value the ADT moves to the
exceptional state E, and all operations must keep it in E thereafter. Also if
an operation can return the exception value, then it cannot return any other
value.

Fig. A.2 shows an example ADT called SchedADT2 of type SchedType2.
The state set Q models the set of ready tasks in the operating system. It also
contains the exception state E . The resched operation non-deterministically
removes a task, inserts the given (currently running) task into the set of ready
tasks and returns the removed task as the next task to run .

A.2 Refinement between NADTs
Let A = (Q,U ,E , {opn}n∈N) be an NADT of type N = (N , (In)n∈N , (On)n∈N).
We note that Linit(A) represents the language of initialized sequences of oper-
ation calls allowed by an ADT A.

A.3. Verification guarantee 143

SchedADT2′ = (Q,U ,E , {opn}n∈SchedType2) where
Q = {ε} ∪

⋃∞
i=1Ni ∪ {E}

opinit(q, nil) =

{
{(ε, ok)} if q 6= E
{(E , e)} otherwise.

opcreate(q, a) =

{
{(q · a, ok)} if q 6= E
{(E , e)} otherwise.

opresched(q, a) =

{
{(q ′ · a, b)} if q 6= E and q = b · q ′
{(E , e)} otherwise.

Figure A.3: An ADT SchedADT2′ refining the SchedADT of Fig. A.2.

Definition A.2 (Refinement). Let A and B be NADTs of type N . We say B
refines A, written B � A, iff they satisfy each of the following conditions:

1. For each exception-free sequence w in Linit(A):

(a) w is in Linit(B) or
(b) w = u · (n, a, b) · v such that u · (n, a, b) not in Linit(B) and there

exists a “b′” in On such that u · (n, a, b′) in Linit(A) and u · (n, a, b′)
in Linit(B). That is, after the prefix u, B decided to reduce non-
determinism by avoiding the transition corresponding to output b,
and allowing the transition corresponding to the output b′, which is
also allowed by A.

2. For each exception-free sequence w in Linit(B):

(a) w is in Linit(A) or
(b) w = u · (n, a, b) · v and u · (n, a, e) in Linit(A). That is a prefix of w

leads to exception in A.

The ADT, SchedADT2′ of Fig. A.3, is a refinement of the NADT of
Fig. A.2. SchedADT2′ refines SchedADT2 by determinizing its only non-
deterministic operation resched. To achieve this, SchedADT2′ uses a sequence
instead of set for modeling the set of ready tasks and the operation resched
returns the longest waiting task as the next task to run.

A.3 Verification guarantee
Let us consider now the verification guarantee given by this definition of refine-
ment. Let A = (Q,U ,E , {opn}n∈N) and A′ = (Q′,U ′,E ′, {op′n}n∈N) be two
NADTs of type N such that A′ refines A and let S = (R,Σl ∪ΣN , s,ES ,∆) be
an N -client transition system. There is a natural relation σ between the states
of the NADTs A′ and A such that (q ′, q) ∈ σ iff there exists an exception-free
initial sequence of operations w such that U w−→ q in A and U ′ w−→ q ′ in A′. We
can use this relation to define a kind of homomorphism σ′ from the states of

144 Appendix A. Non-deterministic ADTs

S[A′] to the states of S[A] such that (s, q ′) of S[A′] is related to (t, q) of S[A]
under σ′ iff s = t and σ(q ′, q) holds. Thus when two states are related by σ′,
the local states of the client program in them are the same. This relation σ′
can be seen to be a homomorphism in the following sense:

Let (s, q ′) be a state in S[A′], then for each (s, q ′) l→ (t, r ′) in S[A′],
either there exists a state (s, q) in S[A] such that ((s, q ′), (s, q)) ∈ σ′ and
(s, q)

l→ (t, r) in S[A] with ((t, r ′), (t, r)) ∈ σ′ or l is of the form (n, a, b)
and there exists a state (s, q) in S[A] such that ((s, q ′), (s, q)) ∈ σ′ and
(s, q)

(n,a,e)→ (−,E) in S[A].

It is not difficult to see that Theorem 2.2 is valid for refinement between
NADTs also. In fact here the proof follows more easily from condition 2 of the
definition of refinement. Hence our notion of refinement for NADTs preserves
the same set of properties preserved by the notion of refinement for ADTs.

A.4 Sufficient refinement condition
Let A = (Q,U ,E , {opn}n∈N) and A′ = (Q′,U ′,E ′, {opn}n∈N) be NADTs of
type N = (N , (In)n∈N , (On)n∈N). We formulate a sufficient condition for A′
to refine A, based on an abstraction relation that relates states of A′ to states
of A. We say A and A′ satisfy condition (NRC) if there exists a relation
ρ ⊆ Q′ ×Q such that:

(init) For each a ∈ Iinit and b ∈ Oinit, if init(p, a) 6= {(E , e)} in A for some state
p in Q, then init(p′, a) 6= {(E , e)} in A′ for any state p′ ∈ Q′ and for each
(q ′, b) ∈ init(p′, a) in A′ there exists a q ∈ Q such that (q, b) ∈ init(p, a)
in A for some state p in Q, and (q ′, q) ∈ ρ.

(sim) For each n ∈ N , a ∈ In, b ∈ On, and p′ ∈ Q′, with (p′, p) ∈ ρ, if
n(p, a) 6= {(E , e)} in A, then n(p′, a) 6= {(E , e)} in A′ and for each
(q ′, b) ∈ n(p′, a) in A′, there exists a q ∈ Q such that (q, b) ∈ n(p, a) in
A, and (q ′, q) ∈ ρ.

Fig. A.4 illustrates the sufficient condition (NRC) for refinement between
NADTs. This condition essentially captures the following: (i) concrete cannot
introduce a new transition when the abstract transition is not an exception
and (ii) concrete ADT must allow at least one of the non-exception transitions
allowed in the abstract.

Theorem A.1. Let A and A′ be two NADTs of type N . Then A′ � A if they
satisfy condition (NRC).

Proof. We first prove the following claim.
Claim A.1. Let A abd A′ be as above and ρ ⊆ Q′×Q an abstraction relation,
such that A and A′ satisfy condition (NRC) wrt ρ. Then for any states p, q ∈
Q, p′ ∈ Q′ and an exception-free sequence of operations w of the form w =
(init, a, b) · u, if p w−→ q in A, then

A.4. Sufficient refinement condition 145

and

and

q′p′ q′p′

p q

(init)
=⇒

∀ p ∈ Q, ∀ p′ ∈ Q′ : opinit(p, a) 6= {(E, e)} =⇒ opinit(p′, a) 6= {(E, e)}

(init, a, b) (init, a, b)

(init, a, b)

(sim)

∀ p ∈ Q, ∀ p′ ∈ Q′ with (p′, p) ∈ ρ : opn(p, a) 6= {(E, e)} =⇒ opn(p′, a) 6= {(E, e)}

=⇒

q′p′ (n, a, b) q′p′

p q

(n, a, b)

(n, a, b)p

Figure A.4: Illustrating the sufficient condition (NRC) for refinement.

1. there exists a state q ′ in Q′ such that p′ w−→ q ′ in A′ and (q ′, q) ∈ ρ or

2. w = v · (n, a, b) · x such that v · (n, a, b) not in L(A′), p v−→ r in A, p v−→ r ′

in A′, (r ′, r) ∈ ρ, and there exists a b′ in On such that r (n,a,b′)→ q in A,
r ′ (n,a,b

′)→ q ′ in A′ and (q ′, q) ∈ ρ.

Proof. We prove this claim by induction on the length of u.

(Base) Let |u|= 0. Then w = (init, a, b), where a ∈ Iinit and b ∈ Oinit. Now by
(init) of condition (NRC), there exists a b′ in Oinit such that: p′ (init,a,b′)→ q ′

in A′, p (init,a,b′)→ q in A and (q ′, q) ∈ ρ. Thus either condition 1 or
condition 2 of the claim is true and hence we are done.

(Step) Let |u|= k + 1. Then w is of the form: (init, a, b) · v · (n, an, bn), where
|v|= k, n ∈ N , an ∈ In, bn ∈ On and let p (init,a,b)·v−−−−−−→ r (n,an ,bn)→ q be a trace
corresponding to w in A. It follows from the induction hypothesis that:

(a) there exists a state r ′ ∈ Q′ such that p′ (init,a,b)·v−−−−−−→ r ′ and (r ′, r) ∈ ρ
or

(b) w = x · (n, a, b) · y such that x · (n, a, b) not in L(A′), p x−→ t in
A, p x−→ t ′ in A′, (t ′, t) ∈ ρ, and there exists a b′ in On such that
t (n,a,b′)→ q in A, t ′ (n,a,b

′)→ q ′ in A′ and (q ′, q) ∈ ρ.

Either the condition 1 or the condition 2 of Claim A.1 follows from the
condition (a) above and from the condition (sim) of (NRC). Also the

146 Appendix A. Non-deterministic ADTs

condition 2 of Claim A.1 follows immediately from the condition (b)
above. Thus one of the conditions in Claim A.1 is always satisfied and
hence we are done.

Let A and A′ be two ADTs satisfying condition (NRC) wrt an abstraction
relation ρ and w is an exception free sequence of operations in Linit(A). Then
it follows from Claim A.1 that either w is in Linit(A′) or w = u ·(n, a, b) ·v such
that u · (n, a, b) not in Linit(A′), and there exists a b′ in On with u · (n, a, b′) in
Linit(A) and u · (n, a, b′) in Linit(A′). Thus we proved that A′ refines A, when
A′ and A satisfies the condition (NRC).

A.5 Checking refinement condition
We show in this section a way of writing the sufficient condition (NRC) for re-
finement between Z models of NADTs as a logical formula that can be checked
using off-the-shelf theorem provers.

Let A and B be two Z models specifying NADTs and VarA and VarB
respectively represents the set of variables in the modelsA and B (see Sec. 4.1.3
for details). Then we can phrase the sufficient condition (NRC) of Sec. A.4 for
A and B logically as follows:

• OpA = OpB, and input/output types for each n ∈ OpA match (i.e.
XBn = XAn and Y Bn = YAn .)

• There exists a predicate ρ on VarB ∪ VarA that satisfies the following
conditions:

(init) • For each a ∈ XAinit, for each q ∈ QA and b ∈ YAinit with b 6= e:
BAPAinit(a, q, b) =⇒ ∃ q ′ ∈ QB, b′ ∈ YAinit | BAPBinit(a, q ′, b′) ∧ ρ(q ′, q),

• For each a ∈ XAinit, for each q ′ ∈ QB and b ∈ YAinit with b 6= e:
BAPBinit(a, q ′, b) =⇒ ∃ q ∈ QA | BAPBinit(a, q, b) ∧ ρ(q ′, q),

(sim) • for each n ∈ OpA, for each a ∈ XAn , for each p, q ∈ QA, b ∈ YMn , and
p′ ∈ QB:
BAPAn (p, a, q, b)∧ρ(p′, p) =⇒ ∃ q ′ ∈ QB, b′ ∈ YAn | BAPAn (p′, a, q ′, b′)∧
ρ(q ′, q),

• for each n ∈ OpA, for each a ∈ XAn , for each p′, q ′ ∈ QB, b ∈ YMn , and
p ∈ QA:
BAPBn (p′, a, q ′, b) ∧ ρ(p′, p) =⇒ ∃ q ∈ QA | BAPAn (p, a, q, b) ∧ ρ(q ′, q),

We proposed a theory and a framework for proving the functional correct-
ness of an imperative language implementation of an ADT implementation.
Since we consider only deterministic implementations of ADTs, we assume
that the user will determinize the Z model using a sequence of successive re-
finements before she proceeds to prove that the imperative implementation

A.5. Checking refinement condition 147

is a refinement of a declarative model in Z. Hence we consider checking the
condition (NRC) only between Z models. We have given above a technique for
formulating the refinement condition (NRC) between two Z models. Such a
condition can be checked in a theorem prover for Z like Z/Eves [44], or Rodin
[4], or even by a suitable translation into a code verifier like VCC [15].

148 Appendix A. Non-deterministic ADTs

Index

(fn, gn)-equivalent (
(fn ,gn)≡), 80

σ′-equivalent (σ
′

≡), 85
Conformal ADTs, 77

abstraction relation, 24
ADT, 3, 19
ADT transition system, 34
ADT type, 19
ADT-TS to ADT, 36
ADTs in VCC, 53
ADTs in Z, 46

BAP, 3
bisimulation relation, 24, 83
bugs in FreeRTOS, 115, 118

C implementation to ADT, 55
client ADT-TS, 40
client transition system, 20
client TS with ADT, 22
clients with conformal ADTs, 81
closed, 18
combined approach, 72
complete, 21
complete state, 34

data-schema, 47
data-structures in FreeRTOS, 97
deterministic, 18
deterministic Z model, 51
direct-import approach, 71
direct-import approach with quan-

tifier elimination, 72
directed refinement methodology,

57

effectively functional, 75
ensures annotation, 4

exception-free, 7, 9, 23
exception-free path, 36
exceptional state, 4
exceptional value, 4, 19

finite path, 18
FreeRTOS, 93
FreeRTOS application, 94
function contracts, 4
functional correctness, 2
functionally correct, 4

ghost language, 52
ghost methods, 54

human effort, 131

initial path, 18
initialization operation, 19

language, 18, 22
legal state, 47, 54
local LT property, 27
locally-equivalent (l≡), 26
LT property, 26

mathematical specification, 3

NADT, 141
non-deterministic ADTs, 141

operation call labels, 20
operation-schema, 47

path, 17
phrasing refinement conditions, 59,

88
precondition, 4, 51, 56
priority inheritance, 119
program verification, 1

149

150 INDEX

properties preserved, 27, 37, 85
proving refinement in VCC, 70, 90
proving termination, 74

refinement, 5, 23, 80, 142
refinement condition (CRC), 86
refinement condition (NRC), 144
refinement condition (RC), 28
refinement condition (RC-TS), 37
requires annotation, 4

schema language, 45
shared data, 75
state-invariant, 47
state-structure, 53
substitutive, 41
substitutivity, 42

trace, 18

transition system, 17
transitivity, 23
translation pair, 80
two-step approach, 125

verification details, 104
verification effort, 117
verification guarantee, 23, 82, 143
verification guarantees, 120
verification overview, 100

word, 18
wrapper function, 81

xList, 98

Z language, 45
Z model to ADT, 49
Z models, 105
Z-to-VCC, 64

	Acknowledgements
	Abstract
	Contributions to literature
	Introduction
	Background and motivation
	Techniques for proving functional correctness
	Advantages of refinement-based approaches
	Selecting a notion of refinement
	The notion of refinement we use and its theory
	Methodology for proving functional correctness
	Verifying FreeRTOS: a case-study
	Checking refinement conditions efficiently
	Outline

	Abstract Data Types and Refinement
	Preliminaries
	Abstract data types
	Client transition systems
	Refinement between ADTs
	Verification guarantee
	Equivalent refinement condition
	Related work

	ADT Transition Systems
	ADT transition system
	Refinement between ADT transition systems
	Equivalent refinement condition
	Client ADT transition systems
	Compositionality of refinement
	Related work

	ADTs in Different Modeling Languages
	ADTs in the Z language
	About the Z language
	Specifying ADTs in Z
	Viewing Z models as ADTs

	ADTs in the ghost language of VCC
	VCC's ghost language
	Modeling ADTs in the ghost language

	Viewing C implementations as ADTs

	Methodology for Proving Functional Correctness
	Directed refinement methodology
	Phrasing refinement conditions
	Refinement between Z models
	Refinement between Z and C models
	Z-to-VCC translation
	Refinement between ghost models
	Refinement between ghost and C models
	Refinement between C models

	Proving refinement conditions in VCC
	Direct-import approach
	Combined approach

	Proving termination in VCC
	Handling shared data

	Conformal ADTs and Refinement
	Conformal ADTs
	Refinement between conformal ADTs
	Clients with conformal ADTs
	Verification guarantee
	Equivalent refinement condition
	Phrasing and verifying refinement conditions

	FreeRTOS Case-Study
	About FreeRTOS
	How FreeRTOS works
	Data-structures maintained by FreeRTOS
	Overview of FreeRTOS verification
	Details of steps in FreeRTOS verification
	Z models
	Checking refinement between Z models
	Verifying that P1 refines M1
	Verifying that xList refines xListMap
	Handling shared data and proving termination
	Verification effort involved

	Bugs found
	Verifying FreeRTOS application
	Related work

	Checking Refinement Conditions Efficiently
	Motivation
	Proposed efficient approach
	Case-study: Simp-Sched
	Proving the functional correctness of Simp-Sched
	Code metrics and human effort involved
	Performance comparison

	Conclusion and Future Work
	Future work

	Bibliography
	Non-deterministic ADTs and Refinement
	Non-deterministic ADTs
	Refinement between NADTs
	Verification guarantee
	Sufficient refinement condition
	Checking refinement condition

	Index

