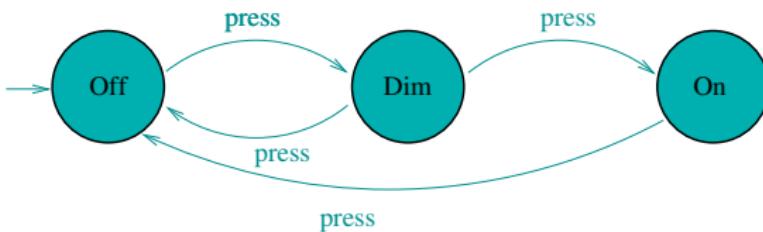


CTL Model-Checking

Deepak D'Souza

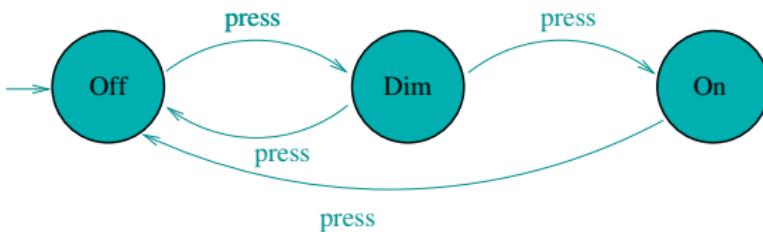

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

9 January 2018

Overview and Motivation

- Consider systems as **Transition Systems**
- Can specify **branching** properties of the system.
- Can check these properties **algorithmically** by “labelling” the states of the model.

Light Switch Model



There is a state from which both “Off” and “On” state are possible next states.

In CTL:

$$EF(EX \text{ Off} \wedge EX \text{ On})$$

Light Switch Model

There is a state from which both “Off” and “On” state are possible next states.

In CTL:

$$EF(EX\ Off \wedge EX\ On)$$

Does the model satisfy the property

$$AG(Off \implies AF\ On)?$$

Computational Tree Logic (CTL)

- **State** formulas f (evaluated at a **state** in the TS):

$$f ::= p \mid \neg f \mid f \vee g \mid f \wedge g \mid E g \mid A g$$

where p is a proposition, and g is a path formula.

- **Path** formulas g (evaluated along a **path** in the TS):

$$g ::= X f \mid F f \mid G f \mid f \sqcup f'$$

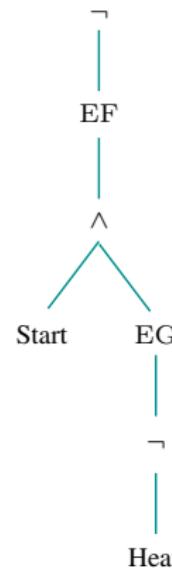
Examples:

- $AG(On \implies EX \text{ Off})$ is a CTL formula
- $AG(G F On)$ is *not* a CTL formula

Exercise

Give a transition system M with states s and s' in M , where the following CTL formulas are satisfied at s but not at s' :

- ① $\text{EFAX}p$


Exercise

Give a transition system M with states s and s' in M , where the following CTL formulas are satisfied at s but not at s' :

- ① $\text{EFAX}p$
- ② $\text{AFE}(p \cup q)$

CTL model-checking algorithm

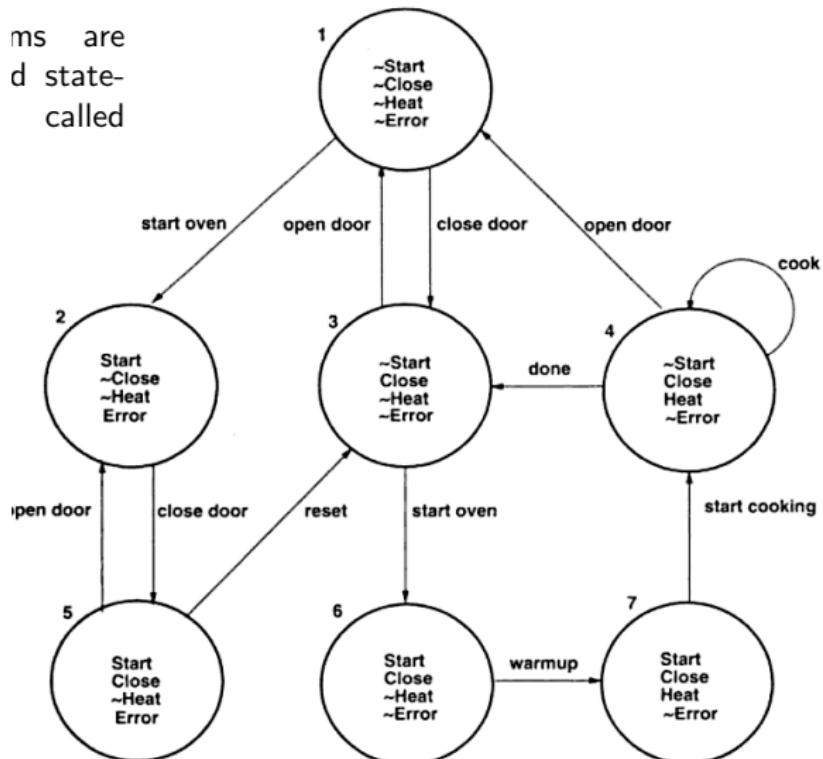
- Label each state with the sub-formulas of given formula f (bottom-up)
- States are labelled f are the ones that satisfy the formula.

Example: $\neg EF(Start \wedge EG \neg Heat)$

CTL model-checking algo

- All formulas can be reduced to modalities EX , EG , EU .
- To check $f = EXp$, label all states s with f iff from s there is a transition to a state s' labelled p .
- To check $f = EGp$, label all states s with f iff from s there is a path to a non-trivial strongly connected component, in the subgraph of states labelled p .
- To check $f = E(pUq)$, label all states s with f iff from s there is a path of p -labelled states to a state labelled q .

CTL model-checking algo by example: Microwave model

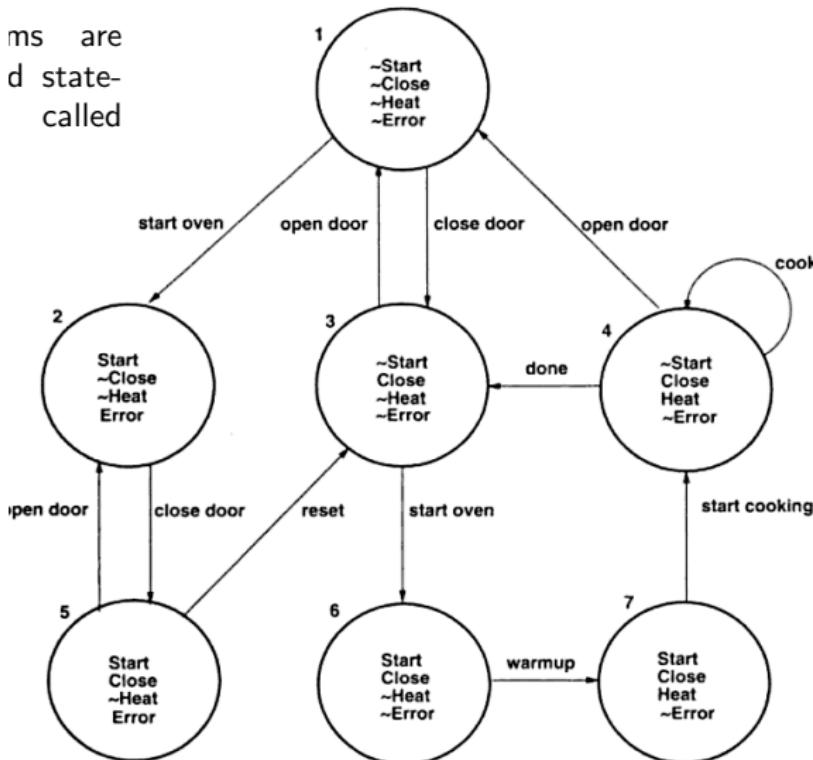

$$AG(Start \implies AFHeat)$$

Equivalently:

$$\neg EF(Start \wedge EG \neg Heat)$$

$$\begin{array}{c} \neg \\ \text{EF} \\ \wedge \\ \text{Start} \quad \text{EG} \\ \neg \\ \text{Heat} \end{array}$$

ms
d
state-
called



Exercise

Does the microwave model satisfy:
 $AG(Error \implies AF \neg Error)$?

Run the CTL
model-checking algo to find
out.

ms are
d state-
called

Resources

- Clarke, Grumberg and Peled: Model Checking, MIT Press, 1999.
- Tools: Sal (SRI), NuSMV