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Air traffic collision avoidance protocol
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d = (d1, d2): velocity of the airplane

x = (x1, x2): position of the airplane

polytopes, ellipsoids and support functions. These techniques have been extended
to non-linear systems using Taylor models [4]. Another class of techniques for
computing the reach sets is based on hybridization [16, 3, 6], where the state-
space is partitioned into a finite number of regions and the continuous dynamics
in each of the regions is approximated by a simpler dynamics. For instance,
in [16], a hybridization technique which approximates non-linear dynamics by
rectangular dynamics is presented. Finally, deductive approaches for computing
invariants by solving for coe�cients of templates has been investigated [15, 18].

In this paper, we consider the problem of computing the reachable set of a
parameterized linear system, that is, ẋ(t) = Ax(t), where A 2 ⌦ is a square
matrix and ⌦ is a compact polyhedral set. Here, the matrix A is not fixed, but
takes values from a set ⌦, which can be interpreted as a set of perturbations
to which the system needs to be robust. This is an interesting class of systems,
which are useful, for instance, in modeling aircraft dynamics in air tra�c control
protocols. The following matrix from [13] captures the dynamics of an aircraft,
where x = (x1, x2) is the position of the aircraft in a two dimensional plane, and
d = (d1, d2) its velocity.
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Here, ! is the angular velocity, which is a parameter that changes depending on
the mode of the airplane. In particular, some complicated computation is used
to set its value during a mode change. Hence, the value of ! is not known a
priori, however, a bound on its value can be inferred.

Our broad technique for approximating the solution of ẋ(t) = Ax(t), where
A 2 ⌦, for a given set of initial states X0 and a time interval [0, T ], is as fol-
lows. We sample both the parameter space ⌦ and the time domain [0, T ] using
a sample interval �. We compute the solution �(A, t) of the di↵erential equation
at these sample points (A, t), and construct a piecewise continuous function ap-
proximating � by interpolating at the sample values. The approximate function
is a piecewise bilinear function which is piecewise linear in time t and matrix
parameters A. To summarize, given an error tolerance ✏ > 0, our methods com-
putes a sampling interval � > 0, such that the piecewise bilinear function �̂(A, t)
obtained by interpolating the value of � at the �-grid points of ⌦ and [0, T ] is
within ✏ of � at all points in ⌦⇥ [0, T ]. Note that we approximate the function,
rather than just over-approximating the reachable set. Hence, the relation be-
tween time and state is preserved in our construction, which makes it amenable
to compositional analysis.

2 Related work

The problem of reachable set computation of linear dynamical systems with un-
certain inputs ẋ = Ax + Bu, where the input u 2 U belongs to a compact set,
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ḋ1 = �!d2
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Figure 3: Hybrid automaton model of the aircraft collision avoidance protocol

Guard(circ, exit)(x,d,x0
,d0

,x0,d0,!1,!2, cs1, cs2, tsync

,

c, r) = (x0 + �1d0 = x+ �2d)

^(x = x0) ^ (d = d0) ^ (!2 = 0)

Next, we define a predicate which encodes an execution.
Note that the execution starts at free and could end in any
location. Hence, we add the constraints in the last 4 lines of
Exec, which capture the possibility of ending in any of the
four states. Also, we ensure that t

sync

is the same as the
time at which the first transition was taken.

Exec(x,d, t,x0
,d0

, cs1, cs2, tsync
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Next we encode the safety specification for two aircraft. We
want to ensure that any execution of the composed hybrid
automata for the two aircraft is (P, T, {1, 2})-safe, where
{1, 2} correspond to the position variables. We write below
the negation of safety:

Unsafe = Exec(x,d, t,x0
,d0

, cs1, cs2, tsync

, c, r)

^Exec(y,d, t, y0,d0
, cs1, cs2, tsync

, c, r)

^(kx0 � y0k  p)

We enforce that the executions synchronize by requiring cs1,
cs2, tsync

, c and r to be the same values in both the execu-
tions.

5. APPROXIMATION
In this section, we present the approximate dynamics and
guard functions which will capture the executions of an ap-
proximate hybrid automaton. Let us fix ✏ > 0 and a time

bound T . Then we construct d
Dyn(q) and \

Guard(q, q0) which
ensure that the executions resulting from their composition
follows the execution of Exec(H, ✏, T ), whereH is the hybrid
automaton for the protocol.

Approximating the continuous dynamics.
Let d

Dyn(q)(x1,d1,!, t,x
0
, d

0
) denote an approximate func-

tion for the dynamics. More precisely, d
Dyn(q)(x1,d1,!, t,x

0
,

d
0
) implies that there is a transition (q,x1,d1)

!,t�! (q0,x00
,d00)

inH such that k(x0
,d0)� (x00

,d00)k  ✏. To construct such a
result, we borrow the result from [9]. In [9], an algorithm for
constructing a piecewise a�ne function approximating a pa-
rameterized linear system is presented. The algorithm sam-
ples the time domain and the parameter-space at uniform
intervals and constructs a multi-a�ne function which inter-
polates the given function at these points. We implement
an algorithm which outputs an SMT formula corresponding
to this approximate function.

Approximating the discrete dynamics.
Next, we present the approximate guard predicates; they are
similar to the actual guard predicates except that auxiliary
variables x

a

,d
a

,x0
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a

are added to capture the actual tran-
sitions in the guard, where as the constraints kx� x
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account for the approximation error in the dynamics.
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Figure 1: An autonomous vehicle controller: A hybrid system

at all times and the values of u are
set without any delays; in any real im-
plementation, there are sensor errors
and delays due to which the controller
may receive a slightly di↵erent value
x̂ at time t + � for an actual value
x at time t. Similarly, there are de-
lays due to computation in the con-
troller and the communication of the
same to the vehicle. Also, the design
assumes a simplistic model of the ve-
hicle where it is modeled as a point,
however, a real vehicle occupies non-
zero space. Hence, the design needs to
be robust, that is, correct even in the
presence of the above deviations in the
model and the controller.

2 State-of-the-art and shortcomings

This proposal focuses on a class of cyber-physical systems corresponding to control software referred
to as hybrid (control) systems. The control software along with the physical system exhibits a hybrid
behavior (see Figure 1) — a mixture of discrete and continuous steps corresponding to software
execution and physical system evolution, respectively. In the context of mathematical techniques for
design of hybrid systems, there are two main lines of work which have explored robustness.

2.1 Control theory

Control theory deals with the design of control law for dynamical systems (systems which evolve
with time) such that the system when subjected to the control law satisfies certain objectives, such
as, tracking a reference signal or meeting a certain performance criterion [5]. Robustness has been
investigated in several contexts in the control system design.

⌅ Firstly, robustness is encoded in properties such as stability and input-to-state stability [35], which
are fundamental requirements of control system design and capture the resilience of a system to
perturbations in the initial state and input, respectively.

⌅ Secondly, there is the well-established sub-area of control theory, namely, robust control [22], which
deals with design principles in the presence of uncertainties in the system model.

⌅ Thirdly, the area of digital control design [24] deals with issues regarding the digital implementation
of a continuous controller which involves quantization, sampling and delays.

Traditionally, the focus of control systems theory has been on the design of control for continuous
dynamical systems, represented using di↵erential equations ẋ = f(x, u). While there is a rich theory
and a wide range of techniques for analysing continuous dynamical systems, there is a large gap in
the current theory and techniques for the design and analysis of hybrid systems.

S1: Lack of a unified theory for computational methods: While there is an advanced the-
ory for computational techniques for robust analysis of purely continuous time models,
interactions with discrete components is not well understood.

Firstly, several techniques do not extend in a straightforward manner from the continuous to the
hybrid setting. Consider, for example, the problem of stability analysis. It is well known that the
stability of a linear dynamical system can be characterized completely by the eigen values of the matrix
representing it. However, by switching between two stable linear dynamical systems appropriately,
one can produce an unstable hybrid system as well as a stable hybrid system [13]. This implies that
the stability of hybrid systems with linear dynamics can no more be deduced from the eigen value
analysis of the component linear dynamical systems.

2

Correctness Specification: Safety

Every execution of the system is error free

✤ Air-traffic control: collision avoidance
✤ Autonomous cars: vehicle always remains in the lane
✤ Multi-robot navigation: collision avoidance

3
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Hybrid System Syntax and Semantics    

✤ Systems with mixed discrete and continuous behaviors
✤ Combine finite state automata and differential equations



Hybrid Automaton Model
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A hybrid automaton H = (Q,X,Act,Prop, q0, X0, F, I, E,Lab)

• Q is a set of discrete location;

• X = Rn
is a set of continuous state space;

• Act is a set of actions;

• Prop is a set of propositions;

• q0 2 Q is the initial location;

• X0 ✓ X is a set of initial continuous states;

• F : Q⇥X ! X specifies the vector field for each location;

• I : Q ! 2

X
specifies the invariant for each location;

• E ✓ Q⇥ Act⇥ 2

X⇥X ⇥Q is a set of edges;

• Lab : Q ! 2

Prop

is the labeling function.



Two vehicles at an intersection
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(x01, y01)

(x02, y02)

r

r

(0, 0)

(x1(t), y1(t)): vehicle 1 position at time t

ẋ1 = r

ẏ1 = 0

Vehicle 1 dynamics moving east Vehicle 1 dynamics moving north

ẏ1 = r
ẋ1 = 0

Vehicle 2 dynamics moving north

ẋ2 = 0
ẏ2 = r

(x2(t), y2(t): vehicle 2 position at time t



Hybrid Automaton Model
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(East, North)

ẏ1 = 0

ẋ1 = r

ẋ2 = 0

ẏ2 = r

x1 = x01
y1 = y01

x2 = x02

y2 = y02

(North, North)
ẋ2 = 0
ẏ2 = rẏ1 = r

ẋ1 = 0x1 = 0

Locations Q = {(East, North), (North, North)}
Initial Location = (East, North)

Continuous statespace X = R4

Initial continuous states X0 = {(x01, y01, x02, y02)}

Edge E = {((East, North), J, (North, North))},
J = {((x1, y1, x2, y2), (x1, y1, x2, y2)) |x1 = 0}

F ((East, North), (x1, y1, x2, y2)) = (r, 0, 0, r)

F ((North, North), (x1, y1, x2, y2)) = (0, r, 0, r)

I((North, North)) = I((North, North)) = R4



Hybrid Automaton Semantics
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Statespace

Initial states

Actions

The semantics of a hybrid automaton H = (Q,X,Act,Prop, q0, X0, F, I, J,Lab)

is the transition system TH = (S, S0, A,Prop,!, L), where:

• S = Q⇥X;

• S0 = {q0}⇥X0;

• A = E [ R�0;

• ! consists of continuous and discrete transitions:

– Continuous transition: (q, x)

t! (q

0
, x

0
), t 2 R�0;

– Discrete transition: (q, x)

e! (q

0
, x

0
), e 2 E;

• L : Q⇥X ! Prop given by L(q, x) = Lab(q).

Labeling function



Continuous transitions
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x

x

0

I(q)

� satisfies ẋ = F (q)(x)
Capture the state change 

due to time evolution 

(q, x)

t! (q

0
, x

0
) if q = q

0
and there exists a function � : [0, t] ! Rn

such that

• � satisfies the di↵erential equation corresponding to locationq

d�

dt

(t) = F (q)(�(t))

• � evolves from x at time 0 to x

0
at time t

�(0) = x,�(t) = x

0

• � remains in the invariant of q all along the evolution

�(t

0
) 2 I(q), 8t0 2 [0, t]



Continuous transition example
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(East, North)

ẏ1 = 0

ẋ1 = r

ẋ2 = 0

ẏ2 = r

x1 = x01
y1 = y01

x2 = x02

y2 = y02

(North, North)
ẋ2 = 0
ẏ2 = rẏ1 = r

ẋ1 = 0x1 = 0

Let r = 2 and continuous state variables be (x1, y1, x2, y2)

((East, North), (�2, 0, 0,�4))

3! ((East, North), (4, 0, 0, 2))
is a continuous transition, since

the function �(t) = (�2 + 2t, 0, 0,�4 + 2t) satisfies:

• d�
dt (t) = (2, 0, 0, 2) = F((East, North))(�(t))

• �(0) = (�2, 0, 0,�4), �(3) = (4, 0, 0, 2)

• �(t0) = (�2 + 2t0, 0, 0,�4 + 2t0) 2 R4
= I((East, North)) for all t0 2 [0, 3]



Discrete transitions
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Capture the state change 
due to a mode change

q q0

Jx

x

0

(q, x)
e! (q0, x0) if e = (q, J, q0) 2 E and (x, x0) 2 J

(East, North)

ẏ1 = 0

ẋ1 = r ẋ2 = 0
ẏ2 = r

x1 = x01
y1 = y01

x2 = x02

y2 = y02

(North, North)
ẋ2 = 0
ẏ2 = rẏ1 = r

ẋ1 = 0x1 = 0

e

((East, North), (0, 0, 0,�2))

e! ((North, North), (0, 0, 0,�2))

((East, North), (4, 0, 0, 2))
e! ((North, North), (4, 0, 0, 2))

Yes

No



Executions
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Captures the state evolution of a hybrid system through time elapse and mode changes.

An execution of the hybrid system is a (finite or infinite) path in its transition system.

where each of the transitions is either discrete or continuous.

� = (q0, x0)
a1! (q1, x1)

a2! (q2, x2)
a3! (q3, x3) . . .

(East, North)

ẏ1 = 0

ẋ1 = r ẋ2 = 0
ẏ2 = r

x1 = x01
y1 = y01

x2 = x02

y2 = y02

(North, North)
ẋ2 = 0
ẏ2 = rẏ1 = r

ẋ1 = 0x1 = 0

e

((East, North), (�2, 0, 0,�4))

1! ((East, North), (0, 0, 0,�2))

e! ((North, North), (0, 0, 0,�2))

2! ((North, North), (0, 2, 0, 0))



Executions
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Off Dim On
press?

press?

press?

press?

ẋ = 1 ẋ = 1 ẋ = 1
x := 0

x < 10

x >= 10

� = (O↵, 0) 5! (O↵, 5)
press?! (Dim, 0)

5! (Dim, 5)

press?! (On, 5)
2! (On, 7)

press?! (O↵, 7)
5! (O↵, 12)

press?! (Dim, 0)
12! (Dim, 12)

press?! (O↵, 12) . . .



Reachability

14

((East, North), (�2, 0, 0,�4))

1! ((East, North), (0, 0, 0,�2))

e! ((North, North), (0, 0, 0,�2))

2! ((North, North), (0, 2, 0, 0))

The duration of the above execution is 3 and the number of discrete steps is 1.

• A state (q

0
, x

0
) is reachable from a state (q, x) in a hybrid system H, if

there is an execution of H that starts at (q, x) and reaches (q

0
, x

0
), that is,

(q, x) = (q0, x0)
a0! (q1, x1)

a1! . . . (qn, xn) = (q

0
, x

0
) is an execution of H.

• Given a set of states S0 of H, ReachH(S0) is the set of all states reachable

from some state in S0.

• The time elapsed during the execution (duration) is the sum of all ais

which correspond to continuous transitions.

• The number of (discrete) steps of the execution is the number of ais which

correspond to discrete transitions.



Trajectories
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Need the value of continuous state at all time
Consider systems where continuous state remains same during mode switch

• An trajectory is a function ⌧ : [0,1) ! Rn
.

• A trajectory ⌧ of a hybrid system captures the continuous states along an

execution.

• More precisely, ⌧ corresponding to an execution � is such that ⌧(t) cap-

tures the value of the continuous state in � reached after total time t
elapse.

We will use trajectories and executions as well as symbols representing them 
interchangeably



Trajectories
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((East, North), (�2, 0, 0,�4))

1! ((East, North), (0, 0, 0,�2))

e! ((North, North), (0, 0, 0,�2))

2! ((North, North), (0, 2, 0, 0))

(East, North)

ẏ1 = 0

ẋ1 = r ẋ2 = 0
ẏ2 = r

x1 = x01
y1 = y01

x2 = x02

y2 = y02

(North, North)
ẋ2 = 0
ẏ2 = rẏ1 = r

ẋ1 = 0x1 = 0

e

Execution:

Trajectory:

�(t) =
n

(�2 + 2t, 0, 0, �4 + 2t) for t 2 [0, 1]
(0, 2(t� 1), 0, �2 + 2(t� 1)) for t 2 [1, 3]



Safety Problem
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Two vehicles at an intersection
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Do the two vehicles collide?

(x01, y01)

(x02, y02)

r

r

(0, 0)

(x1(t), y1(t)): vehicle 1 position at time t

ẋ1 = r

ẏ1 = 0

Vehicle 1 dynamics Vehicle 1 dynamics moving 

ẏ1 = r
ẋ1 = 0

Vehicle 2 dynamics moving 
ẋ2 = 0

ẏ2 = r

(x2(t), y2(t): vehicle 2 position at time t



Safety Problem
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Given a hybrid automaton H, and a set of unsafe states U ,
is any state of U reachable from S0, the initial states of H?

S0

U

Equivalently, is ReachH(S0) \ U 6= ;?

Executions of the hybrid systems



Bounded Safety Problem

20

Given a hybrid automaton H, a set of unsafe states U ,
a positive integer k and a positive real number T , does

there exist an execution with at most k discrete transitions

starting from S0?

S0

U

and duration at most T , that reaches a state of U



Bounded Safety Analysis
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✤ We will encode the executions of bounded duration and bounded 
number of discrete transitions as an SMT formula

✤ Every satisfiable instance of the formula will correspond to an 
execution and vice versa

✤ The SMT formula along with the unsafe set is satisfiable if and only if 
the bounded safety is violated



Encoding executions — Components
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✤ Encode continuous and discrete transitions

'C(s, t, s0) if and only if s
t! s0

'D(s, s0) if and only if s
e! s0 for some e 2 E

Formula encoding continuous transitions

Formula encoding discrete transitions
✤ Encoding initial and unsafe states

'0(s) if and only if s 2 S0

'U (s) if and only if s 2 U



Encoding executions
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✤ To encode executions with k discrete transitions, create 2k + 2 
state variables and k+1 time variables to capture the states 
and time evolutions in an execution of length k

s1
t1! s01

a1! s2
t2! s02

a2! . . . sk
tk! s0k

ak! sk+1
tk+1! s0k+1

✤ The following formula encodes executions with k discrete 
transitions  and at most duration T

'k,T
� (s1, t1, s01, a1, s2, . . . , sk+1) := '0(s1) ^

Vk
i=1 'D(s0i, si+1)

^
Vk+1

i=1 'C(si, ti, s0i) ^ t1 + t2 + . . .+ tk  T



Encoding bounded safety problem
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✤ The following formula encodes executions with at most k 
discrete transitions  and at most duration T

'k,T
� (s1, t1, s01, a1, s2, . . . , sk+1) :=

Wk
j=0 '

j,T
� (s1, t1, s01, a1, s2, . . . , sj+1)

Executions with 0 transitions or 1 transition or 2 transitions …..

✤ Unsafe set is reachable in at most k discrete transitions and 
at most duration T if and only if the following formula is 
satisfiable:

Wk
j=0['

j,T
� (s1, t1, s01, a1, s2, . . . , sj+1) ^ 'U (sj+1)]



Bounded Safety Analysis: Illustration
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Two vehicles at an intersection

26

(x01, y01)

(x02, y02)

r

r

(0, 0)

(x1(t), y1(t)): vehicle 1 position at time t

ẋ1 = r

ẏ1 = 0

Vehicle 1 dynamics moving east Vehicle 1 dynamics moving north

ẏ1 = r
ẋ1 = 0

Vehicle 2 dynamics moving north

ẋ2 = 0

ẏ2 = r

(x2(t), y2(t): vehicle 2 position at time t



Encoding continuous transitions
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'C(l, x1, y1, x2, y2, t, l
0
, x

0
1, y

0
1, x

0
2, y

0
2) :=

[l = l

0 = 1 ^ x

0
1 = x1 + rt ^ y

0
1 = y1 ^ x

0
2 = x2 ^ y

0
2 = y2 + rt]

_[l = l

0 = 2 ^ x

0
1 = x1 ^ y

0
1 = y1 + rt ^ x

0
2 = x2 ^ y

0
2 = y2 + rt]

Encodes (East, North) dynamics 

Encodes (North, North) dynamics 

(East, North)

ẏ1 = 0

ẋ1 = r ẋ2 = 0
ẏ2 = r

x1 = x01
y1 = y01

x2 = x02

y2 = y02

(North, North)
ẋ2 = 0
ẏ2 = rẏ1 = r

ẋ1 = 0x1 = 0



Encoding discrete transitions
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'D(l, x1, y1, x2, y2, l
0
, x

0
1, y

0
1, x

0
2, y

0
2) :=

l = 1 ^ l

0 = 2 ^ x1 = 0 ^ x

0
1 = x1 ^ y

0
1 = y1 ^ x

0
2 = x2 ^ y

0
2 = y2

(East, North)

ẏ1 = 0

ẋ1 = r ẋ2 = 0
ẏ2 = r

x1 = x01
y1 = y01

x2 = x02

y2 = y02

(North, North)
ẋ2 = 0
ẏ2 = rẏ1 = r

ẋ1 = 0x1 = 0

The vehicles collide either
✤  before Vehicle 1 enters the intersection (0 discrete transitions), or
✤  after it turns at the intersection (1 discrete transition)

Let us say the vehicles start at (-5, 0) and (0, -4) with speed 1



Can the vehicles collide with 0 discrete 
transitions?

29

l

1 = 1 ^ x

1
1 = �5 ^ y

1
1 = 0 ^ x

1
2 = 0 ^ y

1
2 = �4

Initial condition

[l = l

0 = 1 ^ x

0
1 = x1 + rt ^ y

0
1 = y1 ^ x

0
2 = x2 ^ y

0
2 = y2 + rt]

_[l = l

0 = 2 ^ x

0
1 = x1 ^ y

0
1 = y1 + rt ^ x

0
2 = x2 ^ y

0
2 = y2 + rt]

Continuous transition

[l1 = l

01 = 1 ^ x

01
1 = x

1
1 + t ^ y

01
1 = y

1
1 ^ x

01
2 = x

1
2 ^ y

01
2 = y

1
2 + t]

x

01
1 = x

01
2 ^ y

01
1 = y

01
2

Unsafe set (collision)

Can these constraints be satisfied simultaneously?



Can the vehicles collide with 0 discrete 
transitions?

30

l

1 = 1 ^ x

1
1 = �5 ^ y

1
1 = 0 ^ x

1
2 = 0 ^ y

1
2 = �4

[l1 = l

01 = 1 ^ x

01
1 = x

1
1 + t ^ y

01
1 = y

1
1 ^ x

01
2 = x

1
2 ^ y

01
2 = y

1
2 + t]

x

01
1 = x

01
2 ^ y

01
1 = y

01
2

x

01
1 = x

01
2 = x

1
2 = 0x

1
1 + t =�5 + t = ) t = 5

Vehicle 1 reaches the intersection at t = 5 

Vehicle 2 reaches the intersection at t = 4 

The two vehicles do not collide!

If Vehicle 2 starts at (-5, 0), it will collide with Vehicle 1



Can the vehicles collide with 0 discrete 
transitions?

31

l

1 = 1 ^ x

1
1 = �5 ^ y

1
1 = 0 ^ x

1
2 = 0 ^ y

1
2 = �4

[l1 = l

01 = 1 ^ x

01
1 = x

1
1 + t ^ y

01
1 = y

1
1 ^ x

01
2 = x

1
2 ^ y

01
2 = y

1
2 + t]

x

01
1 = x

01
2 ^ y

01
1 = y

01
2

x

01
1 = x

01
2 = x

1
2 = 0x

1
1 + t =�5 + t = ) t = 5

Vehicle 1 reaches the intersection at t = 5 

Vehicle 2 reaches the intersection at t = 4 

If Vehicles are not points, we say they collide if they are, say, within 
distance 1 of each other. In this case, the two vehicles collide. 



Can the vehicles collide with 1 discrete 
transition?
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l

1 = 1 ^ x

1
1 = �5 ^ y

1
1 = 0 ^ x

1
2 = 0 ^ y

1
2 = �4

[l1 = l

01 = 1 ^ x

01
1 = x

1
1 + t ^ y

01
1 = y

1
1 ^ x

01
2 = x

1
2 ^ y

01
2 = y

1
2 + t]

l

01 = 1 ^ l

2 = 2 ^ x

2
1 = 0 ^ x

2
1 = x

01
1 ^ y

2
1 = y

01
1 ^ x

2
2 = x

01
2 ^ y

2
2 = y

01
2

First discrete transition

Second continuous transition

[l2 = l

02 = 1 ^ x

02
1 = x

2
1 ^ y

02
1 = y

2
1 + t ^ x

02
2 = x

2
2 ^ y

02
2 = y

2
2 + t]

Collision if they are within distance 1

�1  x

02
1 � x

02
2  1 ^ �1  y

02
1 � y

02
2  1

Initial state and first continuous transition



Satisfiability Module Theory Solvers

✤ The constraints can be solved using SMT solvers

✤ Input is a quantifier free first order logic formulas 

✤ Check if there exists an assignments for the variables that satisfies the 
formula

✤ The formula essentially consists of constraints (linear arithmetic, 
non-linear arithmetic) that are combined using boolean operators

33



SMT solving examples

34

x � 0 ^ x < 1 in the theory (R,�)

x > 0 ^ x < 1 in the theory (Z,�)

x > 2 _ (x+ 2y  2) in the theory (R,�,+)

x+ y · t < 3 ^ t � 0 in the theory (R,�,+, ·)

Linear real arithmetic formula, satisfiable

Linear integer arithmetic formula, unsatisfiable

Linear real arithmetic formula, satisfiable

Non-linear real arithmetic formula, satisfiable



SMT solvers

✤ Linear arithmetic - Z3 (rise4fun.com), Yices

✤ Non-linear arithmetic - iSAT, MiniSmt

35

http://rise4fun.com


Z3 SMT

36

(declare-fun x () Real)
(assert (> x 0))
(assert (< x 1))
(check-sat)
(get-model)

sat 
(model  
  (define-fun x () Real 
    (/ 1.0 2.0)) 
)

(declare-fun x () Int)
(assert (> x 0))
(assert (< x 1))
(check-sat)
(get-model)

unsat 
Z3(5, 10): ERROR: model is not available

x > 0 ^ x < 1 in the theory (R,�)

x > 0 ^ x < 1 in the theory (Z,�)



Bounded Safety Analysis: Approximation
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Two vehicles at an intersection

38

(x01, y01)

(x02, y02)

r

r

(0, 0)

(x1(t), y1(t)): vehicle 1 position at time t

ẋ1 = r

ẏ1 = 0

Vehicle 1 dynamics moving east Vehicle 1 dynamics moving north

ẏ1 = r
ẋ1 = 0

Vehicle 2 dynamics moving north

ẋ2 = 0

ẏ2 = r

(x2(t), y2(t): vehicle 2 position at time t

Vehicle 1 dynamics 
at the intersection?



Dubin’s car dynamics

39

(x(t), y(t)): Position of the Vehicle at time t

(v

x

(t), v

y

(t)): Velocity of the Vehicle at time t

ẋ = v

x

ẏ = v

y

v̇

x = �!v

y

v̇

y = !v

x

Represent succinctly as ḋ = A(!)d, where d = (x, y, vx, vy) and

A(!) =

0

BB@

0 0 1 0
0 0 0 1
0 0 0 �!

0 0 ! 0

1

CCA



Two vehicles at an intersection

40

r

r

(0, 0)

Vehicle 1 dynamics moving east Vehicle 1 dynamics moving north

Vehicle 2 dynamics moving northVehicle 1 dynamics 
at the intersection

d1(t), d2(t): the state of vehicle 1 and 2, respectively at time t

ḋ1 = A(0)d1 ḋ1 = A(0)d1

ḋ1 = A(!)d1
ḋ2 = A(0)d2

(x01, y01, r, 0)

(x02, y02, 0, r)



Two vehicles at an intersection

41

d1(t), d2(t): the state of vehicle 1 and 2, respectively at time t

ḋ1 = A(0)d1

ḋ2 = A(0)d2

(North, North)

ḋ1 = A(0)d1

ḋ2 = A(0)d2

(East, North)

ḋ2 = A(0)d2

(Turn, North)

(x01, y01, r, 0)

(x02, y02, 0, r)

ḋ1 = A(!)d1

�l � ✏  x1  l

�l � ✏  y1  l



Bounded Safety Analysis

✤ Broad approach — Encode executions as SMT formulas, solve the 
formulas for satisfiability

✤ Satisfiability of SMT formulas is decidable only when the 
constraints are in a certain theory — linear, nonlinear (polynomial 
constraints)

✤ However, continuous transitions of complex dynamics cannot be 
encoded in these theories.

42



Linear dynamical systems

43

d

dt

x(t) = ae

at
x(0) = ax(t)

x(t) = e

at
x(0)Closed form solution

ẋ(t) = ax(t)Linear Dynamical System

Linear Dynamical System
˙̄
x(t) = Ax̄(t), x̄0 2 X ✓ Rn

Closed form solution
x̄(t) = e

At
x̄(0)

eB = 1 +B +
B2

2!
+

B3

3!
+ · · ·ey = 1 + y +

y2

2!
+

y3

3!
+ · · ·



Continuous transitions

44

x(t) = e

at
x(0)Closed form solution

ẋ(t) = ax(t)Linear Dynamical System

x1
t! x2 i↵ x2 = e

at
x1 Not a polynomial constraint

The decidability of the theory of reals with exponential functions is 
an open problem 

We cannot directly encode the continuous transition, we will 
approximate!



Sampling based approximation

45

✤ Approximate the exponential function that arises as the solution of 
a linear dynamical system by a piecewise linear curve

� 2� 3� 4� 5�

f(t)

t

Actual Curve Piecewise linear approximation

Split into uniform time interval

Evaluate the function

y1

y2 y3
y4

y5

y0



Sampling based approximation
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'C(x1, t, x2) := x2 = e

at
x1

'̂C(x1, t, x2) :=

Formula for the actual continuous 
transition

Let yi = e

i�
x1 be the i-th sample point

Computed function values at 
sample point

[0  t  � =) x2 = y0 +
y1�y0

� t]

^[�  t  2� =) x2 = y1 +
y2�y1

� t]

^[(k � 1)�  t  k� =) x2 = yk�1 +
yk�yk�1

� t]

...

Formula for the approximate continuous transition First piece

Second piece



Sampling based approximation
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'̂C(x1, t, x2) := [0  t  � =) x2 = y0 +
y1�y0

� t]

^[�  t  2� =) x2 = y1 +
y2�y1

� t]

^[(k � 1)�  t  k� =) x2 = yk�1 +
yk�yk�1

� t]

...

Note that all constraints are linear (t is multiplied by a constant)



Bounded error approximation
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� 2� 3� 4� 5�

f(t)

t

y1

y2 y3
y4

y5

y0

Approximation error

Bloat the approximate 
curve by the error

Over approximates the 
reach tube



Sampling based approximation
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'̂C(x1, t, x2) := [0  t  � =) x2 = y0 +
y1�y0

� t]

^[�  t  2� =) x2 = y1 +
y2�y1

� t]

^[(k � 1)�  t  k� =) x2 = yk�1 +
yk�yk�1

� t]

...

Let ✏ be an error bound

'̂

✏
C(x, t, x

0) := '̂C(x, t, x00) ^ �✏  x

00 � x

0  ✏

Bloated reach tube
All points close to the points in the 

approximate trajectory 



Bounded Safety Analysis using Bloated Reach 
Tubes

50

✤ Note that if the bloated reach tube does not intersect an unsafe set, 
then the original trajectory also does not intersect the unsafe set

✤ If the bloated reach tube intersects the unsafe set, then

✤ either the actual trajectory reaches the unsafe set, or

✤ the precision of approximation is too coarse



Bounded Safety Analysis using Bloated Reach 
Tubes

51

U1

U2 U3

Actual trajectory

Bloated reach tube

1. Safe: Bloated reach tube does not reach 2. Unsafe: Actual trajectory 
reaches

3. Safe: Actual trajectory does not reach, but 
the bloated reach tube reaches

Case 2 & 3: Reduce the approximation error



Bounded Safety Analysis using Bloated Reach 
Tubes

52

✤ Note that if the bloated reach tube does not intersect an unsafe set, 
then the original trajectory also does not intersect the unsafe set

✤ If the bloated reach tube intersects the unsafe set, then

✤ either the actual trajectory reaches the unsafe set, or

✤ the precision of approximation is too coarse

✤ We iteratively reduce the approximation error

✤ If the bloated reach tube does not intersect the unsafe set, we can 
conclude safety

✤ However, we will not be able to conclude that the system is unsafe

✤ Need to under-approximate (very hard in general)



Bounded Safety Analysis: Approximation based 
Approach Illustration

53



Air traffic collision avoidance protocol

54

b

c

free entry

circexit

collision detection 
& negotiation

reach inner
circle

parallel to its 
initial direction

d = (d1, d2): velocity of the airplane

x = (x1, x2): position of the airplane

polytopes, ellipsoids and support functions. These techniques have been extended
to non-linear systems using Taylor models [4]. Another class of techniques for
computing the reach sets is based on hybridization [16, 3, 6], where the state-
space is partitioned into a finite number of regions and the continuous dynamics
in each of the regions is approximated by a simpler dynamics. For instance,
in [16], a hybridization technique which approximates non-linear dynamics by
rectangular dynamics is presented. Finally, deductive approaches for computing
invariants by solving for coe�cients of templates has been investigated [15, 18].

In this paper, we consider the problem of computing the reachable set of a
parameterized linear system, that is, ẋ(t) = Ax(t), where A 2 ⌦ is a square
matrix and ⌦ is a compact polyhedral set. Here, the matrix A is not fixed, but
takes values from a set ⌦, which can be interpreted as a set of perturbations
to which the system needs to be robust. This is an interesting class of systems,
which are useful, for instance, in modeling aircraft dynamics in air tra�c control
protocols. The following matrix from [13] captures the dynamics of an aircraft,
where x = (x1, x2) is the position of the aircraft in a two dimensional plane, and
d = (d1, d2) its velocity.

2

664

ẋ1

ẋ2

ḋ1

ḋ2

3

775 =

2

664

0 0 1 0
0 0 0 1
0 0 0 �!

0 0 ! 0

3

775

2

664

x1

x2

d1

d2

3

775

Here, ! is the angular velocity, which is a parameter that changes depending on
the mode of the airplane. In particular, some complicated computation is used
to set its value during a mode change. Hence, the value of ! is not known a
priori, however, a bound on its value can be inferred.

Our broad technique for approximating the solution of ẋ(t) = Ax(t), where
A 2 ⌦, for a given set of initial states X0 and a time interval [0, T ], is as fol-
lows. We sample both the parameter space ⌦ and the time domain [0, T ] using
a sample interval �. We compute the solution �(A, t) of the di↵erential equation
at these sample points (A, t), and construct a piecewise continuous function ap-
proximating � by interpolating at the sample values. The approximate function
is a piecewise bilinear function which is piecewise linear in time t and matrix
parameters A. To summarize, given an error tolerance ✏ > 0, our methods com-
putes a sampling interval � > 0, such that the piecewise bilinear function �̂(A, t)
obtained by interpolating the value of � at the �-grid points of ⌦ and [0, T ] is
within ✏ of � at all points in ⌦⇥ [0, T ]. Note that we approximate the function,
rather than just over-approximating the reachable set. Hence, the relation be-
tween time and state is preserved in our construction, which makes it amenable
to compositional analysis.

2 Related work

The problem of reachable set computation of linear dynamical systems with un-
certain inputs ẋ = Ax + Bu, where the input u 2 U belongs to a compact set,

!: the angular velocity

! := ⇤ḋ2 = !d1

ḋ1 = �!d2

ẋ2 = d2

ẋ1 = d1

(! := ⇤)

(! := ⇤)
(y, e)

kx� yk  p

(r!)2 = kdk2

kx� ck =
p
3r

c := x+ �d = y + �e

(x0 := x, d

0 := d)

free

ḋ2 = !d1

ḋ1 = �!d2

ẋ2 = d2

ẋ1 = d1

circ

kx� ck  r

ḋ1 = !d2

ẋ2 = d2

ẋ1 = d1

ḋ2 = �!d1

entry

ḋ2 = 0

ḋ1 = 0

ẋ2 = d2

ẋ1 = d1

exit

x0 + �1d0 = x+ �2d

Figure 3: Hybrid automaton model of the aircraft collision avoidance protocol

Guard(circ, exit)(x,d,x0
,d0

,x0,d0,!1,!2, cs1, cs2, tsync

,

c, r) = (x0 + �1d0 = x+ �2d)

^(x = x0) ^ (d = d0) ^ (!2 = 0)

Next, we define a predicate which encodes an execution.
Note that the execution starts at free and could end in any
location. Hence, we add the constraints in the last 4 lines of
Exec, which capture the possibility of ending in any of the
four states. Also, we ensure that t

sync

is the same as the
time at which the first transition was taken.

Exec(x,d, t,x0
,d0

, cs1, cs2, tsync

, c, r) =

(Dyn(free)(x1,d1,!1, t1,x
0
1,d

0
1)

^Guard(free, entry)(x0
1,d

0
1,x2,d2,x0,d0,!1,!2, cs1, cs2,

t

sync

, c, r) ^Dyn(entry)(x2,d2,!2, t2,x
0
2,d

0
2)

^Guard(entry, circ)(x0
2,d

0
2,x3,d3,x0,d0,!2,!3, cs1, cs2,

t

sync

, c, r) ^Dyn(circ)(x3,d3,!3, t3,x
0
3,d

0
3)

^Guard(circ, exit)(x0
3,d

0
3,x4,d4,x0,d0,!3,!4, cs1, cs2,

t

sync

, c, r) ^Dyn(exit)(x4,d4,!4, t4,x
0
4,d

0
4))

^(t
sync

= t1)

^((x = x1,d = d1,x
0 = x0

1,d
0 = d0

1, t = t1)

_(x = x1,d = d1,x
0 = x0

2,d
0 = d0

2, t = t1 + t2)

_(x = x1,d = d1,x
0 = x0

3,d0 = d3
0
, t = t1 + t2 + t3)

_(x = x1,d = d1,x
0 = x0

4,d
0 = d0

4, t = t1 + t2 + t3 + t4))

Next we encode the safety specification for two aircraft. We
want to ensure that any execution of the composed hybrid
automata for the two aircraft is (P, T, {1, 2})-safe, where
{1, 2} correspond to the position variables. We write below
the negation of safety:

Unsafe = Exec(x,d, t,x0
,d0

, cs1, cs2, tsync

, c, r)

^Exec(y,d, t, y0,d0
, cs1, cs2, tsync

, c, r)

^(kx0 � y0k  p)

We enforce that the executions synchronize by requiring cs1,
cs2, tsync

, c and r to be the same values in both the execu-
tions.

5. APPROXIMATION
In this section, we present the approximate dynamics and
guard functions which will capture the executions of an ap-
proximate hybrid automaton. Let us fix ✏ > 0 and a time

bound T . Then we construct d
Dyn(q) and \

Guard(q, q0) which
ensure that the executions resulting from their composition
follows the execution of Exec(H, ✏, T ), whereH is the hybrid
automaton for the protocol.

Approximating the continuous dynamics.
Let d

Dyn(q)(x1,d1,!, t,x
0
, d

0
) denote an approximate func-

tion for the dynamics. More precisely, d
Dyn(q)(x1,d1,!, t,x

0
,

d
0
) implies that there is a transition (q,x1,d1)

!,t�! (q0,x00
,d00)

inH such that k(x0
,d0)� (x00

,d00)k  ✏. To construct such a
result, we borrow the result from [9]. In [9], an algorithm for
constructing a piecewise a�ne function approximating a pa-
rameterized linear system is presented. The algorithm sam-
ples the time domain and the parameter-space at uniform
intervals and constructs a multi-a�ne function which inter-
polates the given function at these points. We implement
an algorithm which outputs an SMT formula corresponding
to this approximate function.

Approximating the discrete dynamics.
Next, we present the approximate guard predicates; they are
similar to the actual guard predicates except that auxiliary
variables x

a

,d
a

,x0
a

,d0
a

are added to capture the actual tran-
sitions in the guard, where as the constraints kx� x

a

k  ✏

account for the approximation error in the dynamics.

\
Guard(free, entry)(x,d,x

a

,d
a

,x
0
,d

0
,x

b

,d
b

,x0,d0,!1,!2,

cs1, cs2, tsync

, c, r) = (k(cs1)x � (cs2)xk  p)

^((cs1)x + �(cs1)
d

= (cs2)x + �(cs2)
d

)

^(c = (cs1)x + �(cs1)
d

) ^ (k(cs1)x � ck =
p
3r)

^((r!2)
2 = k(cs1)

d

k2) ^ (kx� x
a

k  ✏)

^(kx0 � x
b

k  ✏) ^ (kd� d
a

k  ✏)

^(kd0 � d
b

k  ✏) ^ (x0 = x
a

,d0 = d
a

)

^(x
a

= x
b

,d
a

= d
b

, (cs1)x = x
a

, (cs1)
d

= d
a

)

c = x+ �d = y + �e

||x� c|| =
p
3r (r!)2 = ||d||2

x

0 := x, d0 := d

x+ �2d= x

0 + �1d
0! := 0

||x� c||  r

! := �!

The  aircraft  maintain  a  minimum 
distance between them always

Minimum separation

O

a
p
3r

r



Parameterized linear systems

Parameterized linear system

ẋ = Ax

A 2 ⌦

x0 2 X0, t 2 [0, T ]

Related work: 

Approximate the state transition matrices [Althoff et al]:

M(�) = {eA� |A 2 ⌦}

Not straightforward to compute the sampling interval for a 
given error tolerance

✤ Sample both the parameter space and the 
time domain

✤ Construct a piecewise bilinear function 
interpolating the values at the sample points

Main idea:

55

!

t

�(x0,!, t)



Parameterized linear systems

✤ Sample both the parameter space and the 
time domain

✤ Construct a piecewise bilinear function 
interpolating the values at the sample points

Main idea:

max{�||⌦||e�||⌦||, �Te�T }  ✏

4e||⌦||T
✤ Finding the     corresponding to an
Bound the precision of approximation:

� ✏
56

!

t

�(x0,!, t)

t1 t2
!2

!1

e!1t1 e!1t2

e!2t2
e!2t1

For ! 2 [!1,!2] and t 2 [t1, t2],

where ↵ = t�t2
t1�t2

and � = !�!1
!1�!2

�(x0,!, t) = e

!t
x0

(1� �) {↵e!2t1 + (1� ↵)e!2t2} ] x0

�̂(x0,!, t) = [� {↵e!1t1 + (1� ↵)e!1t2}+



BEAVER: Bounded Error Approximation based VERification

57

Bounded error 
approximation

Parameterized
Linear Hybrid 

Automaton

BEAVER

SMT formula 
construction

Bilinear 
expressions

SMT formula 
verification

SMT 
formulaSafety 

property

Yes/No

Main highlight of BEAVER — can perform compositional verification

'i,✏
exec

(xi, ti) = 'i,✏
free

^ 'i,✏
entry

^ 'i,✏
circ

^ 'i,✏
exit

'✏
safe

= ¬ 9t ['1,✏
exec

(x1, t) ^ '2,✏
exec

(x2, t) ^ ||x1 � x2||  d
sep

+ 2✏ ]

a

b

c

O

r



Analysis results

✤ We start from some reasonable value of error, and we reduce it gradually until 
we get safety

✤ The size of formula increases slowly as we increase the number of aircraft
✤ Total time for safety analysis grows slowly as we increase the number of aircraft
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#Aircraft epsilon Size of formula
(Chars) (         )

Time Create 
     SMT(         )

Time Verify (in 
  sec)   (         )

Total Time (in          
sec)    (        )

SMT result

2 2 0.072 2.084 0.035 0.056 Sat

2 1 2.09 5.066 0.301 0.351 Unsat

4 2 1.44 3.729 0.152 0.189 Sat

4 1 3.37 8.514 1.280 1.360 Unsat

6 2 1.81 4.764 0.384 0.431 Sat

6 1 3.92 9.731 4.310 4.410 Unsat

8 2 2.55 6.646 2.850 2.920 Sat

8 1 5.21 14.74 29.50 30.00 Unsat

Safety analysis of aircraft collision avoidance protocol for p=1, T=0.2

10+6 10�1 10+1 10+1



Overview of other safety analysis techniques
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Safety Analysis

✤ So far, we saw bounded safety analysis using bounded error approximation

✤ How about unbounded safety?

✤ Two broad techniques based on state-space exploration

✤ Symbolic reach set computation

✤ Abstractions
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State-space exploration

✤ Start with the initial set of states

✤ Iteratively compute the set of states reached by traversing a 
discrete or a continuous transition

✤ Until a fix point is reached
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DPost(S) = {s0 | s 2 S, e 2 E, s
e! s0}

CPost(S) = {s0 | s 2 S, t 2 R�0, s
t! s0}

Discrete Post Operator

Continuous Post Operator



Reach Set Computation
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The reach sets computed are infinite sets,
need efficient representation

The shape of the reach set and the appropriate 
representation depends on dynamics

Compute Reach(H, I)

1. Let R0 := I

2. Compute Ri+1 := Ri [DPost(CPost(Ri))

3. Stop when Ri+1 = Ri



Illustration of symbolic computation
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Off Dim On
press?

press?

press?

press?

ẋ = 1 ẋ = 1 ẋ = 1
x := 0

x < 10

x >= 10

✤ For constant dynamics, we can use polyhedral set

✤ In one dimension, a polyhedral set is an interval

(Dim, 0) = {(Dim, 0)}

(O↵,R�0) = {(O↵, x) |x 2 R�0}

(On, {x < 10}) = {(On, x) |x < 10}

Symbolic state Concrete state



Illustration of symbolic computation
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Off Dim On
press?

press?

press?

press?

ẋ = 1 ẋ = 1 ẋ = 1
x := 0

x < 10

x >= 10

Initial states

(O↵, 0) (O↵,R�0) (Dim, 0) (Dim,R�0)

(On, {x < 10})

(O↵, {x >= 10})

(O↵,R�0)

(On,R�0)

CPost CPost CPost

CPost

DPost

DPost

DPost

Reach Set

No more states added 
(Reached fixpoint)



Illustration of symbolic computation
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(East, North)

ẏ1 = 0

ẋ1 = r

ẋ2 = 0

ẏ2 = r

x1 = x01
y1 = y01

x2 = x02

y2 = y02

(North, North)
ẋ2 = 0
ẏ2 = rẏ1 = r

ẋ1 = 0x1 = 0

{(�5, 0)} CPost! DPost!{(x, 0) |x 2 (�5,1)} {(0, 0)}CPost! {(0, y) | y 2 (0,1)}

✤ Each of the intermediate set of states can be represented as a 
polyhedron and the CPost and DPost as operations on polyhedra.
✤ For instance, DPost operation above corresponds to intersection 

with the y-axis (a polyhedron)



Illustration of symbolic computation
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(East, North)

ẏ1 = 0

ẋ1 = r

ẋ2 = 0

ẏ2 = r

x1 = x01
y1 = y01

x2 = x02

y2 = y02

(North, North)
ẋ2 = 0
ẏ2 = rẏ1 = r

ẋ1 = 0x1 = 0

{(�5, 0)} CPost! DPost!{(x, 0) |x 2 (�5,1)} {(0, 0)}CPost! {(0, y) | y 2 (0,1)}

✤ Alternately, we can represent them as SMT formula and CPost and 
DPost operations would correspond to quantifier elimination

⌘ x

0 � �5

x = �5
CPost! 9t, x, t � 0, x � �5, x0 = x+ 2t



Challenges in symbolic exploration
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✤ Symbolic computation relies on being able to represent the sets 
obtained by CPost and DPost

✤ CPost can be a complex set, e.g., CPost for linear dynamics 
systems requires exponential functions

✤ Again, we need to approximate the reach set by data structures 
for which operations such as intersection and emptiness 
checking are computationally possible

Challenge 1: Efficient data structures for representing and 
manipulating the intermediate reach sets or precise over 

approximations



Related work
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✤ Complexity of verification is affected by the number of sample 
points and the data structures used to represent the reach sets

✤ Data structure investigated — Polyhedra [Dang,Maler], 
[Chutinan, Krogh], Ellipsoids [Kurzhanski, Varaiya], Zonotopes, 
Support functions [Girard, Guernic]

✤ Previous work: a dynamic algorithm which samples non-
uniformly, and provides an approximation with orders of 
magnitude smaller number of sample points, and takes orders of 
magnitude smaller time [Prabhakar, Viswanathan]



Challenges in symbolic exploration
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Challenge 2: In practice, a straight forward state space exploration 
does not ensure fixpoint

✤ Alternate technique: Use abstractions to simplify the system, so 
that state space exploration terminates



Predicate Abstraction

✤ Construct a finite abstract system from a given concrete hybrid 
automaton such that if the abstract system is safe, we can conclude 
that the hybrid automaton is safe

✤ The safety verification of the finite abstract system is efficient

✤ However, finite abstract system does not provide a bound on the 
error of approximation

✤ Hence, abstractions are often coupled with a refinement loop to assist 
the safety proof search
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Robot Navigation Protocol

21 3

4 5 6

7 8 9

71

Safety Problem

✤ Can the robot reach the red region starting from the green region?
✤ There is no bound on the number of cells the robot crosses — 

unbounded safety analysis problem.



Abstraction

21 3

4 5 6

7 8 9

21 3

4 5 6

7 8 9

72

✤ Construct a finite graph where the nodes correspond to cells and 
edges between them to trajectories between the corresponding cells

✤ Every trajectory corresponds to a path in the graph
✤ Absence of a path from green to red node implies safety



Predicate Abstraction

✤ A technique for constructing 
a finite state abstraction 
from a finite set of predicates 
[Graf & Saidi 97]

✤ The abstract system 
simulates the concrete 
system

⇧ = {P1, . . . , Pk}

P ✓ S

(b1, . . . , bk) 7!
T

i:bi=1 Pi \
T

i:bi=0 S\Pi

s 7! (P1(s), . . . , Pk(s))

↵⇧ : S ! {0, 1}k

✤ Predicate

✤ Fix a set of predicates

✤ Abstraction function

✤ Concretization function

�⇧ : {0, 1}k ! 2S



Predicate Abstraction

⇧ = {P1, . . . , Pk}

{0, 1}k

b1 !A b2

9s1 2 �⇧(b1), s2 2 �⇧(b2) : s1 !C s2

✤ Set of Predicates

✤ Abstract state-space

✤ Abstract transitions



Predicate Abstraction: Example

21 3

4 5 6

7 8 9

21 3

4 5 6

7 8 9

0,0

Concretization Function: i 7! Ci

Abstraction Function: s 7! i if s 2 Ci

Predicates: x  0, x  1, x  2, x  3, y  0, y  1, y  2, y  3



Abstraction

21 3

4 5 6

7 8 9

✤ The above system is safe
✤ The abstract graph has a counter-example

21 3

4 5 6

7 8 9

✤ Right abstractions are hard to find!
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Refinement

21 3

4 5 6

7 8 9

✤ Refine by analyzing the abstract counter-example
✤ Check if counter-example corresponds to an actual trajectory
✤ If yes, then the system is unsafe
✤ Otherwise, it is a spurious counter-example and we use the 

knowledge from the analysis to refine the abstraction

21 3

5 6

7 8 9

4
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Counter-example guided abstraction refinement

Property 
violated

Abstraction 
Relation

Analysis 
Results

Abstract  Counter-
example

Property
Abstract 
System

Concrete 
System

Abstract Model-Check

ValidateRefine

Yes

No

YesNo

Property 
satisfied

✤ CEGAR for discrete systems [Kurshan et al. 93, Clarke et al. 00, 
Ball et al. 02]

✤ CEGAR for hybrid systems safety verification [Alur et al 03, 
Clarke et al 03, Prabhakar et al 13]
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Challenges with CEGAR

✤ Finite abstraction construction involves CPost computation
✤ Validation is a bounded model-checking problem and can only 

be performed exactly for limited dynamics (so there is no 
guarantee of exhibiting an unsafe trajectory even if the counter-
example is valid)
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Property 
violated

Abstraction 
Relation

Analysis 
Results

Abstract  Counter-
example

Property
Abstract 
System

Concrete 
System

Abstract Model-Check

ValidateRefine

Yes

No

YesNo

Property 
satisfied



Hybridization
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ẋ = f(x)

x 2 X0 ✓ Rn

✤ Divide the state-space into a finite number of regions
✤ Approximate the dynamics on the right hand side by simple 

dynamics solving optimization problems 
✤ Hybridization techniques consider different simpler abstract 

dynamics including rectangular, linear [Puri, Borkar, Varaiya], 

[Asarin,Dang,Girard] 



Hybridization — Rectangular Approximation
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ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

Maximizef1(x1, x2)

a  x1  b

c  x2  d

(a, c)

(b, d)

Find a rectangular approximation 
of           in each cell

f(x)

ẋ1 2 [l1, u1]

ẋ2 2 [l2, u2]

Value of u1



Hybridization

✤ Can bound the error of approximation between the right hand 
sides of the differential equation

✤ However, it does not provide a global bound on the error 
between the solutions

✤ Abstraction construction is simpler

✤ Model-checking is more complex

✤ The problems with validation remain
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Summary and Research Challenges
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Verification technique Problems that can be 
solved Precision of abstraction Computational challenges

SMT based verification Bounded safety Provide error bound Need to solve differential 
equations

Flowpipe construction Bounded safety
(sometimes unbounded) Provide error bound Need to solve differential 

equations

Predicate abstraction Unbounded safety No error bound Require (overapproximate) 
CPost computation

Hybridization Unbounded safety Provide error bound Rely only on optimization



Summary and Research Challenges
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Class of systems Form of solutions Bounded safety analysis Unbounded safety

Timed/Rectangular Solutions are linear Decidable
Decidable under some 

constraints on the 
switching

Linear Solutions are 
exponential

Not known
(Bounded error 
approximations 

computable)

In general, undecidable

Nonlinear Closed form solutions 
do not exist Not known In general, undecidable



Summary and Research Challenges
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✤ How to compute approximations of CPost that are

✤ Precise

✤ Have efficient representation

✤ Low computation overhead

✤ How to design an abstract refinement framework that provides

✤ Abstractions that have efficient analysis algorithms

✤ Abstractions that are efficiently computable

✤ Better refinement strategies for the guiding the proof search 


