Verification of Cyber-Physical Systems

Pavithra Prabhakar

Kansas State University

Lecture 5 & 6: Hybrid System Safety Analysis

Global Initiative of Academic Networks
Indian Institute of Science

Air traffic collision avoidance protocol

 $\mathbf{x} = (x_1, x_2)$: position of the airplane $\mathbf{d} = (d_1, d_2)$: velocity of the airplane

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{d}_1 \\ \dot{d}_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -\omega \\ 0 & 0 & \omega & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ d_1 \\ d_2 \end{bmatrix}$$

 ω : the angular velocity

Minimum separation

The aircraft maintain a minimum distance between them always

$$||x - y|| \le p$$
 $c = x + \lambda d = y + \lambda e$
 $||x - c|| = \sqrt{3}r$ $(r\omega)^2 = ||d||^2$ $x^0 := x, d^0 := d$

$$\omega := 0 \quad x + \lambda_2 d = x^0 + \lambda_1 d^0$$

Correctness Specification: Safety

Every execution of the system is error free

- * Air-traffic control: collision avoidance
- * Autonomous cars: vehicle always remains in the lane
- Multi-robot navigation: collision avoidance

Hybrid System Syntax and Semantics

- * Systems with mixed discrete and continuous behaviors
- * Combine finite state automata and differential equations

Hybrid Automaton Model

A hybrid automaton $\mathcal{H} = (Q, X, Act, Prop, q_0, X_0, F, I, E, Lab)$

- Q is a set of discrete location;
- $X = \mathbb{R}^n$ is a set of continuous state space;
- Act is a set of actions;
- *Prop* is a set of propositions;
- $q_0 \in Q$ is the initial location;
- $X_0 \subseteq X$ is a set of initial continuous states;
- $F: Q \times X \to X$ specifies the vector field for each location;
- $I: Q \to 2^X$ specifies the invariant for each location;
- $E \subseteq Q \times Act \times 2^{X \times X} \times Q$ is a set of edges;
- $Lab: Q \to 2^{Prop}$ is the labeling function.

Two vehicles at an intersection

 $(x_1(t), y_1(t))$: vehicle 1 position at time t $(x_2(t), y_2(t))$: vehicle 2 position at time t

Vehicle 1 dynamics moving east

$$\dot{x}_1 = r$$

$$\dot{y}_1 = 0$$

Vehicle 1 dynamics moving north

$$\dot{x}_1 = 0$$

$$\dot{y}_1 = r$$

$$(x_{01}, y_{01}) \longrightarrow r$$

$$(0, 0)$$

Vehicle 2 dynamics moving north

$$\begin{vmatrix} r \\ 1 \end{vmatrix}$$
 $\dot{x}_2 = 0$ $\dot{y}_2 = 0$

Hybrid Automaton Model

```
Locations Q = \{(East, North), (North, North)\}
Initial Location = (East, North)
Continuous statespace X = \mathbb{R}^4
Initial continuous states X_0 = \{(x_{01}, y_{01}, x_{02}, y_{02})\}
F((East, North), (x_1, y_1, x_2, y_2)) = (r, 0, 0, r)
F((North, North), (x_1, y_1, x_2, y_2)) = (0, r, 0, r)
I((North, North)) = I((North, North)) = \mathbb{R}^4
Edge E = \{((East, North), J, (North, North))\},\
      J = \{((x_1, y_1, x_2, y_2), (x_1, y_1, x_2, y_2)) \mid x_1 = 0\}
```

Hybrid Automaton Semantics

The semantics of a hybrid automaton $\mathcal{H} = (Q, X, Act, Prop, q_0, X_0, F, I, J, Lab)$ is the transition system $\mathcal{T}_{\mathcal{H}} = (S, S_0, A, Prop, \rightarrow, L)$, where:

 $\bullet \ S = Q \times X;$

Statespace

• $S_0 = \{q_0\} \times X_0;$ ____

Initial states

 $\bullet \ A = E \cup \mathbb{R}_{\geq 0}; \quad _$

Actions

- \bullet \to consists of continuous and discrete transitions:
 - Continuous transition: $(q, x) \xrightarrow{t} (q', x'), t \in \mathbb{R}_{\geq 0};$
 - Discrete transition: $(q, x) \xrightarrow{e} (q', x'), e \in E;$
- $L: Q \times X \to Prop$ given by L(q, x) = Lab(q).

Labeling function

Continuous transitions

Capture the state change due to time evolution

 $(q,x) \xrightarrow{t} (q',x')$ if q=q' and there exists a function $\Phi:[0,t] \to \mathbb{R}^n$ such that

• Φ satisfies the differential equation corresponding to location q

$$\frac{d\Phi}{dt}(t) = F(q)(\Phi(t))$$

• Φ evolves from x at time 0 to x' at time t

$$\Phi(0) = x, \Phi(t) = x'$$

 \bullet The Temains in the invariant of q all along the evolution

$$\Phi(t') \in I(q), \forall t' \in [0, t]$$

Continuous transition example

Let r=2 and continuous state variables be (x_1,y_1,x_2,y_2)

((East, North), (-2,0,0,-4)) $\xrightarrow{3}$ ((East, North), (4,0,0,2)) is a continuous transition, since

the function $\Phi(t) = (-2 + 2t, 0, 0, -4 + 2t)$ satisfies:

- $\frac{d\Phi}{dt}(t) = (2, 0, 0, 2) = F((East, North))(\Phi(t))$
- $\Phi(0) = (-2, 0, 0, -4), \ \Phi(3) = (4, 0, 0, 2)$
- $\Phi(t') = (-2 + 2t', 0, 0, -4 + 2t') \in \mathbb{R}^4 = I((\text{East, North})) \text{ for all } t' \in [0, 3]$

Discrete transitions

Capture the state change due to a mode change

$$(q,x) \stackrel{e}{\rightarrow} (q',x')$$
 if $e = (q,J,q') \in E$ and $(x,x') \in J$

$$\begin{array}{c} x_1 = x_{01} \\ y_1 = y_{01} \\ \hline \\ x_2 = x_{02} \\ y_2 = y_{02} \end{array} \begin{array}{c} \text{(East, North)} \\ \dot{x}_1 = r \quad \dot{x}_2 = 0 \\ \dot{y}_1 = 0 \quad \dot{y}_2 = r \end{array} \begin{array}{c} x_1 = 0 \\ \dot{x}_1 = 0 \quad \dot{x}_2 = 0 \\ \dot{y}_1 = r \quad \dot{y}_2 = r \end{array}$$

((East, North), (0,0,0,-2)) $\stackrel{e}{\rightarrow}$ ((North, North), (0,0,0,-2)) Yes ((East, North), (4,0,0,2)) $\stackrel{e}{\rightarrow}$ ((North, North), (4,0,0,2)) No

Executions

Captures the state evolution of a hybrid system through time elapse and mode changes.

An **execution** of the hybrid system is a (finite or infinite) path in its transition system.

$$\sigma = (q_0, x_0) \stackrel{a_1}{\to} (q_1, x_1) \stackrel{a_2}{\to} (q_2, x_2) \stackrel{a_3}{\to} (q_3, x_3) \dots$$

where each of the transitions is either discrete or continuous.

$$\begin{array}{c} x_1 = x_{01} \\ y_1 = y_{01} \\ \hline \\ x_2 = x_{02} \\ y_2 = y_{02} \end{array} \begin{array}{c} \text{(East, North)} \\ \dot{x}_1 = r & \dot{x}_2 = 0 \\ \dot{y}_1 = 0 & \dot{y}_2 = r \end{array} \begin{array}{c} x_1 = 0 \\ \dot{x}_1 = 0 & \dot{x}_2 = 0 \\ \dot{y}_1 = r & \dot{y}_2 = r \end{array} \\ \begin{array}{c} \dot{y}_1 = r & \dot{y}_2 = r \\ \end{array}$$

((East, North),
$$(-2, 0, 0, -4)$$
) $\xrightarrow{1}$ ((East, North), $(0, 0, 0, -2)$) \xrightarrow{e} ((North, North), $(0, 0, 0, -2)$) $\xrightarrow{2}$ ((North, North), $(0, 2, 0, 0)$)

Executions

Off
$$x := 0$$
 Dim press? On $x := 1$ $x < 10$ $x = 1$ $x < 10$ $x = 1$ $x > 10$ $x < 10$ $x > 10$ $x >$

Reachability

- A state (q', x') is reachable from a state (q, x) in a hybrid system \mathcal{H} , if there is an execution of \mathcal{H} that starts at (q, x) and reaches (q', x'), that is, $(q, x) = (q_0, x_0) \stackrel{a_0}{\to} (q_1, x_1) \stackrel{a_1}{\to} \dots (q_n, x_n) = (q', x')$ is an execution of \mathcal{H} .
- Given a set of states S_0 of \mathcal{H} , $Reach_{\mathcal{H}}(S_0)$ is the set of all states reachable from some state in S_0 .
- The time elapsed during the execution (duration) is the sum of all a_i s which correspond to continuous transitions.
- The number of (discrete) steps of the execution is the number of a_i s which correspond to discrete transitions.

((East, North),
$$(-2, 0, 0, -4)$$
) $\xrightarrow{1}$ ((East, North), $(0, 0, 0, -2)$) \xrightarrow{e} ((North, North), $(0, 0, 0, -2)$) $\xrightarrow{2}$ ((North, North), $(0, 2, 0, 0)$)

The duration of the above execution is 3 and the number of discrete steps is 1.

Trajectories

Need the value of continuous state at all time Consider systems where continuous state remains same during mode switch

- An trajectory is a function $\tau:[0,\infty)\to\mathbb{R}^n$.
- A trajectory τ of a hybrid system captures the continuous states along an execution.
- More precisely, τ corresponding to an execution σ is such that $\tau(t)$ captures the value of the continuous state in σ reached after total time t elapse.

We will use trajectories and executions as well as symbols representing them interchangeably

Trajectories

Execution:

((East, North),
$$(-2, 0, 0, -4)$$
) $\xrightarrow{1}$ ((East, North), $(0, 0, 0, -2)$) \xrightarrow{e} ((North, North), $(0, 0, 0, -2)$) $\xrightarrow{2}$ ((North, North), $(0, 2, 0, 0)$)

Trajectory:

$$\sigma(t) = \begin{cases} (-2+2t, & 0, & 0, & -4+2t) & \text{for } t \in [0,1] \\ (0, & 2(t-1), & 0, & -2+2(t-1)) & \text{for } t \in [1,3] \end{cases}$$

Safety Problem

Two vehicles at an intersection

 $(x_1(t),y_1(t))$: vehicle 1 position at time t

 $(x_2(t), y_2(t))$: vehicle 2 position at time t

Vehicle 1 dynamics

$$\dot{x}_1 = r$$

$$\dot{y}_1 = 0$$

(0,0)

Vehicle 1 dynamics moving

$$\dot{x}_1 = 0$$

$$\dot{y}_1 = r$$

 $(x_{01},y_{01}) \longrightarrow r$

Vehicle 2 dynamics moving

$$\dot{x}_2 = 0$$

$$\dot{y}_2 = r$$

Do the two vehicles collide?

Safety Problem

Given a hybrid automaton \mathcal{H} , and a set of unsafe states \mathcal{U} , is any state of U reachable from S_0 , the initial states of \mathcal{H} ?

Equivalently, is $Reach_{\mathcal{H}}(S_0) \cap \mathcal{U} \neq \emptyset$?

Bounded Safety Problem

Given a hybrid automaton \mathcal{H} , a set of unsafe states \mathcal{U} , a positive integer k and a positive real number T, does there exist an execution with at most k discrete transitions and duration at most T, that reaches a state of \mathcal{U} starting from S_0 ?

Bounded Safety Analysis

- We will encode the executions of bounded duration and bounded number of discrete transitions as an SMT formula
- Every satisfiable instance of the formula will correspond to an execution and vice versa
- * The SMT formula along with the unsafe set is satisfiable if and only if the bounded safety is violated

Encoding executions — Components

* Encode continuous and discrete transitions

$$\varphi_C(s,t,s')$$
 if and only if $s \stackrel{t}{\to} s'$

Formula encoding continuous transitions

$$\varphi_D(s,s')$$
 if and only if $s \stackrel{e}{\to} s'$ for some $e \in E$

Formula encoding discrete transitions

* Encoding initial and unsafe states

$$\varphi_0(s)$$
 if and only if $s \in S_0$

$$\varphi_U(s)$$
 if and only if $s \in \mathcal{U}$

Encoding executions

* To encode executions with k discrete transitions, create 2k + 2 state variables and k+1 time variables to capture the states and time evolutions in an execution of length k

$$s_1 \xrightarrow{t_1} s_1' \xrightarrow{a_1} s_2 \xrightarrow{t_2} s_2' \xrightarrow{a_2} \dots s_k \xrightarrow{t_k} s_k' \xrightarrow{a_k} s_{k+1} \xrightarrow{t_{k+1}} s_{k+1}'$$

* The following formula encodes executions with k discrete transitions and at most duration T

$$\varphi_{\sigma}^{k,T}(s_1, t_1, s_1', a_1, s_2, \dots, s_{k+1}) := \varphi_0(s_1) \wedge \bigwedge_{i=1}^k \varphi_D(s_i', s_{i+1})$$
$$\wedge \bigwedge_{i=1}^{k+1} \varphi_C(s_i, t_i, s_i') \wedge t_1 + t_2 + \dots + t_k \leq T$$

Encoding bounded safety problem

* The following formula encodes executions with at most k discrete transitions and at most duration T

$$\varphi_{\overline{\sigma}}^{\leq k,T}(s_1,t_1,s_1',a_1,s_2,\ldots,s_{k+1}) := \bigvee_{j=0}^{k} \varphi_{\sigma}^{j,T}(s_1,t_1,s_1',a_1,s_2,\ldots,s_{j+1})$$

Executions with 0 transitions or 1 transition or 2 transitions

* Unsafe set is reachable in at most k discrete transitions and at most duration T if and only if the following formula is satisfiable:

$$\bigvee_{j=0}^{k} [\varphi_{\sigma}^{j,T}(s_1,t_1,s_1',a_1,s_2,\ldots,s_{j+1}) \wedge \varphi_U(s_{j+1})]$$

Bounded Safety Analysis: Illustration

Two vehicles at an intersection

 $(x_1(t),y_1(t))$: vehicle 1 position at time t

Vehicle 1 dynamics moving east

$$\dot{x}_1 = r$$

$$\dot{y}_1 = 0$$

Vehicle 1 dynamics moving north

$$\dot{x}_1 = 0$$

$$\dot{y}_1 = r$$

$$(x_{01},y_{01})$$
 r

Vehicle 2 dynamics moving north

$$\dot{x}_2 = 0$$

$$\dot{y}_2 = r$$

$$\dot{y}_2 = r$$

 (x_{02}, y_{02})

 $(x_2(t), y_2(t))$: vehicle 2 position at time t

Encoding continuous transitions

Encodes (East, North) dynamics

Encodes (North, North) dynamics
$$\varphi_C(l, x_1, y_1, x_2, y_2, t, l', x_1', y_1', x_2', y_2') := [l = l' = 1 \land x_1' = x_1 + rt) \land y_1' = y_1 \land x_2' = x_2 \land y_2' = y_2 + rt]$$

$$\lor [l = l' = 2 \land x_1' = x_1 \land y_1' = y_1 + rt \land x_2' = x_2 \land y_2' = y_2 + rt]$$

Encoding discrete transitions

$$\varphi_D(l, x_1, y_1, x_2, y_2, l', x_1', y_1', x_2', y_2') :=$$

$$l = 1 \land l' = 2 \land x_1 = 0 \land x_1' = x_1 \land y_1' = y_1 \land x_2' = x_2 \land y_2' = y_2$$

The vehicles collide either

- before Vehicle 1 enters the intersection (0 discrete transitions), or
- after it turns at the intersection (1 discrete transition)

Let us say the vehicles start at (-5, 0) and (0, -4) with speed 1

Can the vehicles collide with 0 discrete transitions?

Initial condition

$$l^1 = 1 \land x_1^1 = -5 \land y_1^1 = 0 \land x_2^1 = 0 \land y_2^1 = -4$$

Continuous transition

$$[l^1 = l'^1 = 1 \land x'_1^1 = x_1^1 + t \land y'_1^1 = y_1^1 \land x'_2^1 = x_2^1 \land y'_2^1 = y_2^1 + t]$$

Can these constraints be satisfied simultaneously?

Can the vehicles collide with 0 discrete transitions?

$$l^{1} = 1 \wedge x_{1}^{1} = -5 \wedge y_{1}^{1} = 0 \wedge x_{2}^{1} = 0 \wedge y_{2}^{1} = -4$$

$$[l^{1} = l'^{1} = 1 \wedge x'_{1}^{1} = x_{1}^{1} + t \wedge y'_{1}^{1} = y_{1}^{1} \wedge x'_{2}^{1} = x_{2}^{1} \wedge y'_{2}^{1} = y_{2}^{1} + t]$$

$$x'_{1}^{1} = x'_{2}^{1} \wedge y'_{1}^{1} = y'_{2}^{1}$$

$$-5 + t = x_1^1 + t = x_1'^1 = x_2'^1 = x_2^1 = 0 \Rightarrow t = 5$$

Vehicle 1 reaches the intersection at t = 5

Vehicle 2 reaches the intersection at t = 4

The two vehicles do not collide!

If Vehicle 2 starts at (-5, 0), it will collide with Vehicle 1

Can the vehicles collide with 0 discrete transitions?

$$l^{1} = 1 \wedge x_{1}^{1} = -5 \wedge y_{1}^{1} = 0 \wedge x_{2}^{1} = 0 \wedge y_{2}^{1} = -4$$

$$[l^{1} = l'^{1} = 1 \wedge x'_{1}^{1} = x_{1}^{1} + t \wedge y'_{1}^{1} = y_{1}^{1} \wedge x'_{2}^{1} = x_{2}^{1} \wedge y'_{2}^{1} = y_{2}^{1} + t]$$

$$x'_{1}^{1} = x'_{2}^{1} \wedge y'_{1}^{1} = y'_{2}^{1}$$

$$-5 + t = x_1^1 + t = x_1'^1 = x_2'^1 = x_2^1 = 0 \Rightarrow t = 5$$

Vehicle 1 reaches the intersection at t = 5

Vehicle 2 reaches the intersection at t = 4

If Vehicles are not points, we say they collide if they are, say, within distance 1 of each other. In this case, the two vehicles collide.

Can the vehicles collide with 1 discrete transition?

$$l^{1} = 1 \wedge x_{1}^{1} = -5 \wedge y_{1}^{1} = 0 \wedge x_{2}^{1} = 0 \wedge y_{2}^{1} = -4$$
$$[l^{1} = l'^{1} = 1 \wedge x'_{1}^{1} = x_{1}^{1} + t \wedge y'_{1}^{1} = y_{1}^{1} \wedge x'_{2}^{1} = x_{2}^{1} \wedge y'_{2}^{1} = y_{2}^{1} + t]$$

Initial state and first continuous transition

First discrete transition

$${l'}^1 = 1 \wedge l^2 = 2 \wedge x_1^2 = 0 \wedge x_1^2 = {x'}_1^1 \wedge y_1^2 = {y'}_1^1 \wedge x_2^2 = {x'}_2^1 \wedge y_2^2 = {y'}_2^1$$

Second continuous transition

$$[l^2 = l'^2 = 1 \land x'_1^2 = x_1^2 \land y'_1^2 = y_1^2 + t \land x'_2^2 = x_2^2 \land y'_2^2 = y_2^2 + t]$$

Collision if they are within distance 1

$$-1 \le {x'}_1^2 - {x'}_2^2 \le 1 \land -1 \le {y'}_1^2 - {y'}_2^2 \le 1$$

Satisfiability Module Theory Solvers

- The constraints can be solved using SMT solvers
- Input is a quantifier free first order logic formulas
- Check if there exists an assignments for the variables that satisfies the formula
- The formula essentially consists of constraints (linear arithmetic, non-linear arithmetic) that are combined using boolean operators

SMT solving examples

 $x \ge 0 \land x < 1$ in the theory (\mathbb{R}, \ge)

Linear real arithmetic formula, satisfiable

 $x > 0 \land x < 1$ in the theory (\mathbb{Z}, \geq)

Linear integer arithmetic formula, unsatisfiable

 $x > 2 \lor (x + 2y \le 2)$ in the theory $(\mathbb{R}, \ge, +)$

Linear real arithmetic formula, satisfiable

 $x + y \cdot t < 3 \land t \ge 0$ in the theory $(\mathbb{R}, \ge, +, \cdot)$

Non-linear real arithmetic formula, satisfiable

SMT solvers

- * Linear arithmetic Z3 (<u>rise4fun.com</u>), Yices
- Non-linear arithmetic iSAT, MiniSmt

Z3 SMT

```
x > 0 \land x < 1 in the theory (\mathbb{R}, \geq)
(declare-fun x () Real)
                                      sat
(assert (> x 0))
                                      (model
                                         (define-fun x () Real
(assert (< x 1))
                                           (/1.02.0)
(check-sat)
(get-model)
x > 0 \land x < 1 in the theory (\mathbb{Z}, \geq)
(declare-fun x () Int)
(assert (> x 0))
                             unsat
(assert (< x 1))
                             Z3(5, 10): ERROR: model is not available
(check-sat)
(get-model)
```

Bounded Safety Analysis: Approximation

Two vehicles at an intersection

 $(x_1(t), y_1(t))$: vehicle 1 position at time t

Vehicle 1 dynamics moving east

$$\dot{x}_1 = r$$

$$\dot{y}_1 = 0$$

Vehicle 1 dynamics moving north

$$\dot{x}_1 = 0$$

$$\dot{y}_1 = r$$

$$(x_{01},y_{01}) \longrightarrow r$$

Vehicle 1 dynamics at the intersection?

Vehicle 2 dynamics moving north

$$\dot{x}_2 = 0$$

$$\dot{y}_2 = r$$

 (x_{02}, y_{02})

(0,0)

 $(x_2(t), y_2(t))$: vehicle 2 position at time t

Dubin's car dynamics

(x(t), y(t)): Position of the Vehicle at time t $(v^x(t), v^y(t))$: Velocity of the Vehicle at time t

$$\dot{x} = v^{x}$$

$$\dot{y} = v^{y}$$

$$\dot{v}^{x} = -\omega v^{y}$$

$$\dot{v}^{y} = \omega v^{x}$$

Represent succinctly as $\dot{d} = A(\omega)d$, where $d = (x, y, v^x, v^y)$ and

$$A(\omega) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -\omega \\ 0 & 0 & \omega & 0 \end{pmatrix}$$

Two vehicles at an intersection

 $d_1(t), d_2(t)$: the state of vehicle 1 and 2, respectively at time t

Vehicle 1 dynamics moving east

$$\dot{d}_1 = A(0)d_1$$

Vehicle 1 dynamics moving north $\dot{d}_1 = A(0)d_1$

$$\dot{d}_1 = A(0)d_1$$

$$(x_{01}, y_{01}, r, 0) \longrightarrow r$$

Vehicle 1 dynamics at the intersection

$$\dot{d}_1 = A(\omega)d_1$$

(0, 0)

Vehicle 2 dynamics moving north

$$\dot{d}_2 = A(0)d_2$$

$$(x_{02}, y_{02}, 0, r)$$

Two vehicles at an intersection

 $d_1(t), d_2(t)$: the state of vehicle 1 and 2, respectively at time t

Bounded Safety Analysis

- Broad approach Encode executions as SMT formulas, solve the formulas for satisfiability
- * Satisfiability of SMT formulas is decidable only when the constraints are in a certain theory linear, nonlinear (polynomial constraints)
- However, continuous transitions of complex dynamics cannot be encoded in these theories.

Linear dynamical systems

Linear Dynamical System $\dot{x}(t) = ax(t)$

Closed form solution

$$x(t) = e^{at}x(0)$$

$$\frac{d}{dt}x(t) = ae^{at}x(0) = ax(t)$$

Linear Dynamical System

$$\dot{\bar{x}}(t) = A\bar{x}(t), \bar{x}_0 \in X \subseteq \mathbb{R}^n$$

Closed form solution

$$\bar{x}(t) = e^{At}\bar{x}(0)$$

$$e^y = 1 + y + \frac{y^2}{2!} + \frac{y^3}{3!} + \cdots$$

$$e^B = 1 + B + \frac{B^2}{2!} + \frac{B^3}{3!} + \cdots$$

Continuous transitions

Linear Dynamical System $\dot{x}(t) = ax(t)$

Closed form solution $x(t) = e^{at}x(0)$

$$t$$
 a t a t

 $x_1 \stackrel{t}{\rightarrow} x_2 \text{ iff } x_2 = e^{at}x_{-}$ Not a polynomial constraint

The decidability of the theory of reals with exponential functions is an open problem

We cannot directly encode the continuous transition, we will approximate!

* Approximate the exponential function that arises as the solution of a linear dynamical system by a piecewise linear curve

$$\varphi_C(x_1, t, x_2) := x_2 = e^{at} x_1$$

Formula for the actual continuous transition

Let $y_i = e^{i\Delta}x_1$ be the *i*-th sample point

Computed function values at sample point

Formula for the approximate continuous transition

First piece

$$\hat{\varphi}_C(x_1,t,x_2) := [0 \le t \le \Delta \implies x_2 = y_0 + \frac{y_1 - y_0}{\Delta}t] \text{Second piece}$$

$$\wedge [\Delta \le t \le 2\Delta \implies x_2 = y_1 + \frac{y_2 - y_1}{\Delta}t]$$

$$\vdots$$

$$\wedge [(k-1)\Delta \le t \le k\Delta \implies x_2 = y_{k-1} + \frac{y_k - y_{k-1}}{\Delta}t]$$

$$\hat{\varphi}_C(x_1, t, x_2) := [0 \le t \le \Delta \implies x_2 = y_0 + \frac{y_1 - y_0}{\Delta}t]$$

$$\wedge [\Delta \le t \le 2\Delta \implies x_2 = y_1 + \frac{y_2 - y_1}{\Delta}t]$$

$$\vdots$$

$$\wedge [(k-1)\Delta \le t \le k\Delta \implies x_2 = y_{k-1} + \frac{y_k - y_{k-1}}{\Delta}t]$$

Note that all constraints are linear (t is multiplied by a constant)

Bounded error approximation

$$\hat{\varphi}_C(x_1, t, x_2) := [0 \le t \le \Delta \implies x_2 = y_0 + \frac{y_1 - y_0}{\Delta}t]$$

$$\wedge [\Delta \le t \le 2\Delta \implies x_2 = y_1 + \frac{y_2 - y_1}{\Delta}t]$$

$$\vdots$$

$$\wedge [(k-1)\Delta \le t \le k\Delta \implies x_2 = y_{k-1} + \frac{y_k - y_{k-1}}{\Delta}t]$$

Let ϵ be an error bound

$$\hat{\varphi}_C^{\epsilon}(x,t,x') := \hat{\varphi}_C(x,t,x'') \land -\epsilon \le x'' - x' \le \epsilon$$

Bloated reach tube

All points close to the points in the approximate trajectory

Bounded Safety Analysis using Bloated Reach Tubes

- Note that if the bloated reach tube does not intersect an unsafe set,
 then the original trajectory also does not intersect the unsafe set
- If the bloated reach tube intersects the unsafe set, then
 - either the actual trajectory reaches the unsafe set, or
 - the precision of approximation is too coarse

Bounded Safety Analysis using Bloated Reach Tubes

- 1. Safe: Bloated reach tube does not reach
- 2. Unsafe: Actual trajectory reaches

Case 2 & 3: Reduce the approximation error

Bounded Safety Analysis using Bloated Reach Tubes

- Note that if the bloated reach tube does not intersect an unsafe set,
 then the original trajectory also does not intersect the unsafe set
- If the bloated reach tube intersects the unsafe set, then
 - either the actual trajectory reaches the unsafe set, or
 - the precision of approximation is too coarse
- We iteratively reduce the approximation error
- * If the bloated reach tube does not intersect the unsafe set, we can conclude safety
- However, we will not be able to conclude that the system is unsafe
- Need to under-approximate (very hard in general)

Bounded Safety Analysis: Approximation based Approach Illustration

Air traffic collision avoidance protocol

 $\mathbf{x} = (x_1, x_2)$: position of the airplane $\mathbf{d} = (d_1, d_2)$: velocity of the airplane

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{d}_1 \\ \dot{d}_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -\omega \\ 0 & 0 & \omega & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ d_1 \\ d_2 \end{bmatrix}$$

 ω : the angular velocity

Minimum separation

The aircraft maintain a minimum distance between them always

$$||x - y|| \le p$$
 $c = x + \lambda d = y + \lambda e$ $||x - c|| = \sqrt{3}r$ $(r\omega)^2 = ||d||^2$ $x^0 := x, d^0 := d$

$$\omega := 0 \quad x + \lambda_2 d = x^0 + \lambda_1 d^0$$

Parameterized linear systems

Parameterized linear system

$$\dot{x} = Ax$$

$$x_0 \in X_0, t \in [0, T]$$

$$A \in \Omega$$

Related work:

Approximate the state transition matrices [Althoff et al]:

$$\mathcal{M}(\delta) = \{ e^{A\delta} \mid A \in \Omega \}$$

Not straightforward to compute the sampling interval for a given error tolerance

Main idea:

- Sample both the parameter space and the time domain
- * Construct a piecewise bilinear function interpolating the values at the sample points

Parameterized linear systems

Main idea:

- Sample both the parameter space and the time domain
- * Construct a piecewise bilinear function interpolating the values at the sample points

For
$$\omega \in [\omega_1, \omega_2]$$
 and $t \in [t_1, t_2]$,

$$\hat{\Phi}(x_0, \omega, t) = \left[\beta \left\{\alpha e^{\omega_1 t_1} + (1 - \alpha)e^{\omega_1 t_2}\right\} + (1 - \beta)\left\{\alpha e^{\omega_2 t_1} + (1 - \alpha)e^{\omega_2 t_2}\right\}\right] x_0$$
where $\alpha = \frac{t - t_2}{t_1 - t_2}$ and $\beta = \frac{\omega - \omega_1}{\omega_1 - \omega_2}$

$$\Phi(x_0, \omega, t) = e^{\omega t} x_0$$

Bound the precision of approximation:

* Finding the δ corresponding to an ϵ

$$\max\{\delta\|\Omega\|e^{\delta\|\Omega\|}, \delta T e^{\delta T}\} \le \frac{\epsilon}{4e^{\|\Omega\|T}}$$

BEAVER: Bounded Error Approximation based VERification

$$\varphi_{exec}^{i,\epsilon}(\mathbf{x}_{i},t_{i}) = \varphi_{free}^{i,\epsilon} \wedge \varphi_{entry}^{i,\epsilon} \wedge \varphi_{circ}^{i,\epsilon} \wedge \varphi_{exit}^{i,\epsilon}$$

$$\varphi_{safe}^{\epsilon} = \neg \exists t \left[\varphi_{exec}^{1,\epsilon}(\mathbf{x}_{1},t) \wedge \varphi_{exec}^{2,\epsilon}(\mathbf{x}_{2},t) \wedge \|\mathbf{x}_{1} - \mathbf{x}_{2}\| \leq d_{sep} + 2\epsilon \right]$$

Main highlight of BEAVER — can perform compositional verification

Analysis results

#Aircraft	epsilon	Size of formula (Chars) (10^{+6})	Time Create SMT(10 ⁻¹)	Time Verify (in sec) (10 ⁺¹)	Total Time (in sec) (10 ⁺¹)	SMT result
2	2	0.072	2.084	0.035	0.056	Sat
2	1	2.09	5.066	0.301	0.351	Unsat
4	2	1.44	3.729	0.152	0.189	Sat
4	1	3.37	8.514	1.280	1.360	Unsat
6	2	1.81	4.764	0.384	0.431	Sat
6	1	3.92	9.731	4.310	4.410	Unsat
8	2	2.55	6.646	2.850	2.920	Sat
8	1	5.21	14.74	29.50	30.00	Unsat

Safety analysis of aircraft collision avoidance protocol for p=1, T=0.2

- We start from some reasonable value of error, and we reduce it gradually until we get safety
- * The size of formula increases slowly as we increase the number of aircraft
- * Total time for safety analysis grows slowly as we increase the number of aircraft

Overview of other safety analysis techniques

Safety Analysis

- * So far, we saw bounded safety analysis using bounded error approximation
- * How about unbounded safety?
- Two broad techniques based on state-space exploration
 - Symbolic reach set computation
 - Abstractions

State-space exploration

- Start with the initial set of states
- Iteratively compute the set of states reached by traversing a discrete or a continuous transition
- Until a fix point is reached

Discrete Post Operator

$$DPost(S) = \{s' \mid s \in S, e \in E, s \xrightarrow{e} s'\}$$

Continuous Post Operator

$$CPost(S) = \{s' \mid s \in S, t \in \mathbb{R}_{\geq 0}, s \xrightarrow{t} s'\}$$

Reach Set Computation

Compute $Reach(\mathcal{H}, I)$

- 1. Let $R_0 := I$
- 2. Compute $R_{i+1} := R_i \cup DPost(CPost(R_i))$
- 3. Stop when $R_{i+1} = R_i$

The reach sets computed are infinite sets, need efficient representation

The shape of the reach set and the appropriate representation depends on dynamics

- For constant dynamics, we can use polyhedral set
- In one dimension, a polyhedral set is an interval

$$(Dim, 0) = \{(Dim, 0)\}$$
 $(Off, \mathbb{R}_{\geq 0}) = \{(Off, x) \mid x \in \mathbb{R}_{\geq 0}\}$
 $(On, \{x < 10\}) = \{(On, x) \mid x < 10\}$

Symbolic state

Concrete state

$$\begin{array}{c} x_1 = x_{01} \\ y_1 = y_{01} \\ \hline \\ \dot{x}_1 = r \quad \dot{x}_2 = 0 \\ x_2 = x_{02} \\ y_2 = y_{02} \end{array} \qquad \begin{array}{c} \text{(North, North)} \\ \dot{x}_1 = r \quad \dot{x}_2 = 0 \\ \dot{y}_1 = 0 \quad \dot{y}_2 = r \\ \end{array} \qquad \begin{array}{c} x_1 = 0 \\ \dot{y}_1 = r \quad \dot{y}_2 = r \\ \end{array}$$

$$\{(-5,0)\} \overset{CPost}{\rightarrow} \{(x,0) \mid x \in (-5,\infty)\} \overset{DPost}{\rightarrow} \{(0,0)\} \overset{CPost}{\rightarrow} \{(0,y) \mid y \in (0,\infty)\}$$

- Each of the intermediate set of states can be represented as a polyhedron and the CPost and DPost as operations on polyhedra.
 - * For instance, DPost operation above corresponds to intersection with the y-axis (a polyhedron)

$$\begin{array}{c} x_1 = x_{01} \\ y_1 = y_{01} \\ \hline \\ x_2 = x_{02} \\ y_2 = y_{02} \end{array} \begin{array}{c} \text{(East, North)} \\ \dot{x}_1 = r \quad \dot{x}_2 = 0 \\ \dot{y}_1 = 0 \quad \dot{y}_2 = r \end{array} \begin{array}{c} x_1 = 0 \\ \dot{x}_1 = 0 \quad \dot{x}_2 = 0 \\ \dot{y}_1 = r \quad \dot{y}_2 = r \end{array}$$

$$\{(-5,0)\} \overset{CPost}{\rightarrow} \{(x,0) \,|\, x \in (-5,\infty)\} \overset{DPost}{\rightarrow} \{(0,0)\} \overset{CPost}{\rightarrow} \{(0,y) \,|\, y \in (0,\infty)\}$$

 Alternately, we can represent them as SMT formula and CPost and DPost operations would correspond to quantifier elimination

$$x = -5 \stackrel{CPost}{\to} \exists t, x, t \ge 0, x \ge -5, x' = x + 2t$$
$$\equiv x' \ge -5$$

Challenges in symbolic exploration

- * Symbolic computation relies on being able to represent the sets obtained by CPost and DPost
- * CPost can be a complex set, e.g., CPost for linear dynamics systems requires exponential functions
- * Again, we need to approximate the reach set by data structures for which operations such as intersection and emptiness checking are computationally possible

Challenge 1: Efficient data structures for representing and manipulating the intermediate reach sets or precise over approximations

Related work

- * Complexity of verification is affected by the number of sample points and the data structures used to represent the reach sets
- Data structure investigated Polyhedra [Dang, Maler],
 [Chutinan, Krogh], Ellipsoids [Kurzhanski, Varaiya], Zonotopes,
 Support functions [Girard, Guernic]
- * Previous work: a dynamic algorithm which samples nonuniformly, and provides an approximation with orders of magnitude smaller number of sample points, and takes orders of magnitude smaller time [Prabhakar, Viswanathan]

Challenges in symbolic exploration

Challenge 2: In practice, a straight forward state space exploration does not ensure fixpoint

 Alternate technique: Use abstractions to simplify the system, so that state space exploration terminates

Predicate Abstraction

- Construct a finite abstract system from a given concrete hybrid automaton such that if the abstract system is safe, we can conclude that the hybrid automaton is safe
- The safety verification of the finite abstract system is efficient
- However, finite abstract system does not provide a bound on the error of approximation
- Hence, abstractions are often coupled with a refinement loop to assist the safety proof search

Robot Navigation Protocol

Safety Problem

- * Can the robot reach the red region starting from the green region?
- * There is no bound on the number of cells the robot crosses unbounded safety analysis problem.

Abstraction

- * Construct a finite graph where the nodes correspond to cells and edges between them to trajectories between the corresponding cells
- Every trajectory corresponds to a path in the graph
- * Absence of a path from green to red node implies safety

Predicate Abstraction

- * A technique for constructing a finite state abstraction from a finite set of predicates [Graf & Saidi 97]
- The abstract system simulates the concrete system

- * Predicate $P \subseteq S$
- Fix a set of predicates

$$\Pi = \{P_1, \dots, P_k\}$$

Abstraction function

$$\alpha_{\Pi}: \mathcal{S} \to \{0,1\}^k$$

$$s \mapsto (P_1(s), \dots, P_k(s))$$

Concretization function

$$\gamma_{\Pi}: \{0,1\}^k \to 2^{\mathcal{S}}$$

$$(b_1,\ldots,b_k) \mapsto \bigcap_{i:b_i=1} P_i \cap \bigcap_{i:b_i=0} \mathcal{S} \setminus P_i$$

Predicate Abstraction

Set of Predicates

$$\Pi = \{P_1, \dots, P_k\}$$

Abstract state-space

$$\{0,1\}^k$$

Abstract transitions

$$b_1 \rightarrow_A b_2$$

$$\exists s_1 \in \gamma_{\Pi}(b_1), s_2 \in \gamma_{\Pi}(b_2) : s_1 \to_C s_2$$

Predicate Abstraction: Example

Predicates: $x \le 0, x \le 1, x \le 2, x \le 3, y \le 0, y \le 1, y \le 2, y \le 3$

Abstraction Function: $s \mapsto i$ if $s \in C_i$

Concretization Function: $i \mapsto C_i$

Abstraction

- The above system is safe
- * The abstract graph has a counter-example
- * Right abstractions are hard to find!

Refinement

- * Refine by analyzing the abstract counter-example
- * Check if counter-example corresponds to an actual trajectory
- * If yes, then the system is unsafe
- * Otherwise, it is a spurious counter-example and we use the knowledge from the analysis to refine the abstraction

Counter-example guided abstraction refinement

- * CEGAR for discrete systems [Kurshan et al. 93, Clarke et al. 00, Ball et al. 02]
- * **CEGAR for hybrid systems safety verification** [Alur et al 03, Clarke et al 03, Prabhakar et al 13]

Challenges with CEGAR

- Finite abstraction construction involves CPost computation
- Validation is a bounded model-checking problem and can only be performed exactly for limited dynamics (so there is no guarantee of exhibiting an unsafe trajectory even if the counterexample is valid)

Hybridization

$$\dot{x} = f(x)$$
$$x \in X_0 \subseteq \mathbb{R}^n$$

- Divide the state-space into a finite number of regions
- Approximate the dynamics on the right hand side by simple dynamics solving optimization problems
- * Hybridization techniques consider different simpler abstract dynamics including rectangular, linear [Puri, Borkar, Varaiya], [Asarin, Dang, Girard]

Hybridization — Rectangular Approximation

$$\dot{x}_1 = f_1(x_1, x_2)$$
 $\dot{x}_2 = f_2(x_1, x_2)$

Find a rectangular approximation of f(x) in each cell

Hybridization

- Can bound the error of approximation between the right hand sides of the differential equation
- However, it does not provide a global bound on the error between the solutions
- Abstraction construction is simpler
- Model-checking is more complex
- The problems with validation remain

Summary and Research Challenges

Verification technique	Problems that can be solved	Precision of abstraction	Computational challenges
SMT based verification	Bounded safety	Provide error bound	Need to solve differential equations
Flowpipe construction	Bounded safety (sometimes unbounded)	Provide error bound	Need to solve differential equations
Predicate abstraction	Unbounded safety	No error bound	Require (overapproximate) CPost computation
Hybridization	Unbounded safety	Provide error bound	Rely only on optimization

Summary and Research Challenges

Class of systems	Form of solutions	Bounded safety analysis	Unbounded safety
Timed/Rectangular	Solutions are linear	Decidable	Decidable under some constraints on the switching
Linear	Solutions are exponential	Not known (Bounded error approximations computable)	In general, undecidable
Nonlinear	Closed form solutions do not exist	Not known	In general, undecidable

Summary and Research Challenges

- How to compute approximations of CPost that are
 - Precise
 - Have efficient representation
 - Low computation overhead
- How to design an abstract refinement framework that provides
 - Abstractions that have efficient analysis algorithms
 - Abstractions that are efficiently computable
 - * Better refinement strategies for the guiding the proof search