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Air trattic collision avoidance protocol

Minimum separation

The aircraft maintain a minimum
distance between them always

Jz —yll <p c=x+A=y+ e
lz —c|=vV3r (w?=]d]? 2°:=zx,d°:=d

x = (x1,T3): position of the airplane free

W = =k
collision detection
& negotiatio @

d = (dy,ds): velocity of the airplane

reach inner HQZ‘ — C” <r

Ty 001 0] [ . circle W= —w
. parallel to its
33.2 — 000 1 X2 initial directioy
dl 000 —w dl
i d2 _ _0 O w O _ i d2 _
w: the angular velocity w:=0 z+d=1"+\d




Correctness Specification: Safety

Every execution of the system is error free

* Air-tratfic control: collision avoidance
* Autonomous cars: vehicle always remains in the lane

* Multi-robot navigation: collision avoidance



Hybrid System Syntax and Semantics

+ Systems with mixed discrete and continuous behaviors

* Combine finite state automata and differential equations




Hybrid Automaton Model

A hybrid automaton H = (Q, X, Act, Prop, qo, Xo, F, I, E, Lab)
e () is a set of discrete location;

e X = R"™is a set of continuous state space;

e Actis a set of actions;

e Prop is a set of propositions:;

® qo € () is the initial location;

o Xy C X is a set of initial continuous states;

o [':() x X — X specifies the vector field for each location;
o /:(Q — 2% specifies the invariant for each location:

o [ C(Q x Act x 2X*% x (Q is a set of edges;

o Lab:Q — 2P is the labeling function.



‘Iwo vehicles at an intersection

(x1(t),y1(t)): vehicle 1 position at time ¢
(x2(t), ya(t): vehicle 2 position at time ¢

Vehicle 1 dynamics moving east Vehicle 1 dynamics moving north

T 1 — T T 1 — 0

y1 =0 Yypr =71

(Zo1, Yo1)e r o
(0,0)

Vehicle 2 dynamics moving north

r ro = ()

0 3)2 =T

(51302, yoz)



Hybrid Automaton Model

(North, North)
1 =0 29 =0

Y1 =71 Y2 =71

Locations ) = {(Fast, North), (North, North)}
Initial Location = (FEast, North)

Continuous statespace X = R*

Initial continuous states Xo = {(xo1, ¥o1, To2, Yo2) }
F((East, North), (x1,y1,22,y2)) = (r,0,0,7)
F((North, North), (x1,y1,T2,y2)) = (0,7,0,7)
I((North, North)) = I((North, North)) = R*
Edge E = {((Fast, North), J, (North, North))},

J = {((xhylaxZayQ)? ($17y17x27y2)) |3§'1 — O}



Hybrid Automaton Semantics

The semantics of a hybrid automaton H = (Q, X, Act, Prop, qo, Xo, F', I, J, Lab)
is the transition system Ty = (S, Sg, A, Prop,—, L), where:

o S5=0Q xX; Statespace
e So=1{q0} x Xo; Initial states
o A=FEUR>y; Actions

e — consists of continuous and discrete transitions:

— Continuous transition: (q,x) — N (¢',2"), t € R>p;

— Discrete transition: (¢,z) = (¢, '), e € E;

o [.:(Q) xX — Prop given by L(q,x) = Lab(q).

Labeling function




Contimuous transitions

¢ satisfies © = F'(q)(x) ,

Capture the state change I(q)

due to time evolution

XL

(¢,2) = (¢',2') if ¢ = ¢’ and there exists a function @ : [0,¢] — R™ such that

o & satisfies the differential equation corresponding to locationg

) = F)(@(1)

e ® evolves from x at time 0 to 2’ at time t

P0) =x,9(t) =2

e ® remains in the invariant of ¢ all along the evolution

®(t") e I(q),Vt' € 0,1



Continuous transition example

(North, North)
1 =0 29 =0

Y1 =71 Y2 =71

Let r = 2 and continuous state variables be (z1,y1,z2, y2)

((East, North), (—2,0,0,—4)) = ((East, North), (4,0,0,2))
1s a continuous transition, since

the function ®(t) = (=2 + 2t,0,0, —4 + 2t) satisfies:

o ©2(t)=(2,0,0,2) = F((East, North))(®(t))

o B(0) = (—2,0,0,—4), ®(3) = (4,0,0,2)

o O(t') = (—2+2t,0,0,—4 + 2t') € R* = I((East, North)) for all ¢ € [0, 3]

10



Discrete transitions

/
Capture the state change q / q
due to a mode change T J T

(q, ) N (¢',x")ife=1(q,J,q¢") € E and (z,2') € J

L1 — X1

(North, North)

Y1 = Yo1

1 =0 x29=0
T2 = Zo2 = =71
Y2 = Yo2

((East, North), (0,0,0,—2)) — ((North, North), (0,0,0, —2JJ]

Yes

N
((East, North), (4,0,0,2)) = ((North, North), (4,0,0,2))—

No

11



Executions

Captures the state evolution of a hybrid system through time elapse and mode changes.

An execution of the hybrid system is a (finite or infinite) path in its transition system.

0 = (QO7ZEO) o (C]1,$1) = (Q%CBZ) = (Clsail?s) e

where each of the transitions is either discrete or continuous.

L1 — X1

Y1 = Yo1 (East, North)

(North, North)
1 =0 x29=0

j31:7“ .CUQZO
L2 = X2 3)1:0 Yo = ¥

Y2 = Yo2

& Y1 =1 Y2 =1

((East, North), (—2,0,0,—4))
N ((North, North), (0,0,0,—2))

((East, North), (0,0,0,—2))

N
2 ((North, North), (0,2,0,0))
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Executions

(Dzm 5)

press?
v o= press?
x < 10
press?
x >= 10
press‘?
o = (Off,0) % <0ﬁ, 5) "S5 (Dim, 0) >
press? (On 5) (OTL 7)press (Oﬂ; ) (O]’j[, 12)
pT’EiSS? (DZ’N’L O) 1 (DZ’H’L 12) 7’688

(Off,12) ..
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Reachability

e A state (¢',z’) is reachable from a state (¢,x) in a hybrid system H, if
there is an execution of H that starts at (¢, z) and reaches (¢’, z’), that is,

(¢, ) = (qo, o) B (q1, 1) o .. (qn,zn) = (¢, 2") is an execution of H.

e Given a set of states Sy of H, Reachy(So) is the set of all states reachable
from some state in 9.

e The time elapsed during the execution (duration) is the sum of all a;s
which correspond to continuous transitions.

e The number of (discrete) steps of the execution is the number of a;s which
correspond to discrete transitions.

((East, North), (—2,0,0, —4))
N ((North, North), (0,0,0,—2))

RN ((East, North), (0,0,0,—2))
2 ((North, North), (0,2,0,0))
The duration of the above execution is 3 and the number of discrete steps is 1.

14



Traj ectories

Need the value of continuous state at all time
Consider systems where continuous state remains same during mode switch

e An trajectory is a function 7 : |0, 00) — R".

e A trajectory 7 of a hybrid system captures the continuous states along an
execution.

e More precisely, 7 corresponding to an execution o is such that 7(¢) cap-
tures the value of the continuous state in o reached after total time ¢
elapse.

We will use trajectories and executions as well as symbols representing them
interchangeably

15




Traj ectories

(North, North)

Y1 =1 Y2 =71

Execution:

((East, North), (—2,0,0,—4))
= ((North, North), (0,0,0, —2))

N ((East, North), (0,0,0,—2))
2 ((North, North), (0,2,0,0))

Trajectory:

|

(—2+2t, 0, 0, —4+21) for ¢ € 0,1
1,3]

U(t):{ (0, 2(t—1), 0, —242(t—-1)) fortell,

16



Satety Problem

17



‘Iwo vehicles at an intersection

(x1(t),y1(t)): vehicle 1 position at time ¢

(x2(t), y2(t): vehicle 2 position at time ¢

Vehicle 1 dvnamics
a'cl — T
y1 =0

Vehicle 1 dvnamics moving
1 =0

T Y1 =7

(55017 y01)-—>7“

Vehicle 2 dvnamics moving
r To =0

I y'2 =T

(33'02, yoz)

Do the two vehicles collide?

18



Satety Problem

Given a hybrid automaton H, and a set of unsafe states U,

is any state of U reachable from Sy, the initial states of H?7

Executions of the hybrid systems

o
@

Equivalently, is Reachy (So) "U # ()7

19



Bounded Safety Problem

Given a hybrid automaton H, a set of unsate states U,
a positive integer k and a positive real number 7', does

there exist an execution with at most &k discrete transitions
and duration at most 7', that reaches a state of U

starting from Sg?

ﬂ.

20



Bounded Safety Analysis

+ We will encode the executions of bounded duration and bounded
number of discrete transitions as an SMT formula

+ Every satisfiable instance of the formula will correspond to an
execution and vice versa

* The SMT formula along with the unsafe set is satisfiable if and only if
the bounded safety is violated

21



Encoding executions — Components

+ Encode continuous and discrete transitions

oo (s,t,s") if and only if s = &
\

{ Formula encoding continuous transitions }

©p(s,s') if and only if s = s’ for some e € E

A

{ Formula encoding discrete transitions }

* Encoding initial and unsafe states
©po(s) if and only if s € S

oy (s) if and only if s € U

22



Kncoding executions

+ To encode executions with k discrete transitions, create 2k + 2
state variables and k+1 time variables to capture the states
and time evolutions in an execution of length k

t ( ¢ [
8143’1&43243’23...%432%3;{“ = Skt 1

* The following formula encodes executions with k discrete
transitions and at most duration T

k
Pl (s1,t1, 87, a1, 82, .., Sk+1) = @o(s1) A Nj—i oD (85, Sit1)

/\/\,i:_ll gﬁc(Si,ti,SfL-) ANt1+to+ ...+t <T

23



Encoding bounded safety problem

* The following formula encodes executions with at most k
discrete transitions and at most duration T

o (81’t17817a17827"'7Sk:—|—1) e
k ]7T t / .
\/j:() SOO' (817 17817a17827...783+1)

A

{ Executions with O transitions or 1 transition or 2 transitions .....

+ Unsafe set is reachable in at most k discrete transitions and
at most duration T if and only if the following formula is
satisfiable:

k: .
\/j:o[SO?;’T(Slytl, S1,01,82, -+, 8j+1) N pu(Sj+1)]

24



Bounded Safety Analysis: [llustration

25



‘Iwo vehicles at an intersection

(x1(t),y1(t)): vehicle 1 position at time ¢

Vehicle 1 dynamics moving east Vehicle 1 dynamics moving north
T 1 — T .Ci?l =
(To1, Yo1) e r o
(0,0)

Vehicle 2 dynamics moving north

r ro = ()

0 @)2 —= T

(Zo2, Yoz)

(x2(t),y2(t): vehicle 2 position at time ¢

26



Encoding continuous transitions

X1 = X01
Y1 = Yo1

(North, North)
1 =0 x9=0

Y1 =1 Y2 =171

L1 — 0

Y2 = Yo2

{ Encodes (East, North) dynamics }

{ Encodes (North, North) dynamics }

¢0(17$17y17m27y27t7 l/7$,17y,1733/27yé) - =

1= ¥ LA = R = = oK = )

VIi=U'=2Nz2\ =21 ANy =1 +rt ANxh, =20 ANy, = yo + 1t

27



Encoding discrete transitions

(North, North)
1 =0 x9=0

Yr =17 Y2 =71

/ / / / / .-
@D(la'xlvylax%y%l 73317y17x27y2) T

[=1AU =2 A2 =0AZ =21 Ay, =y1 Azh =22 AYh = yo

The vehicles collide either
+  before Vehicle 1 enters the intersection (0 discrete transitions), or

* after it turns at the intersection (1 discrete transition)

Let us say the vehicles start at (-5, 0) and (0, -4) with speed 1

28



Can the vehicles collide with O discrete

transitions’
{ Initial condition g

P=1A21=-5Ay; =0Ax3=0Ays =—4

{ Continuous transition KN
1 1
[l = [’ —1/\5’71—% /\91—91 /2—5’32/\92—92"‘t]

{ rUmsaf;z set (colhsmn)

LZ—Z—J_/\Ubl—.,b t/\]_yl yl/\xlz—aj‘z/\yQ—yz_'_Tt]

/ /

VI =1 :2/\x1—x1/\y’17:3y1 frt%% = To A\ Yy = Yo + 1]

{ Can these constraints be satisfied simultaneously? ]

29



Can the vehicles collide with O discrete
transitions?

=1
=1t =1
71 /1

—5—|-t:a?%—|—t::c1:a:2 :.CB%:O:Mf:E)
|

Vehicle 1 reaches the intersection att =5

Vehicle 2 reaches the intersection at t = 4

The two vehicles do not collide!

/\

If Vehicle 2 starts at (-5, 0), it will collide with Vehicle 1

30




Can the vehicles collide with O discrete
transitions?

' — 1 Xal = —5 Xyl = 0ah = 0 AgE = —4

=1 = 1AL = et A Ay =yl Ay = el Ay =y + 1P
Ayt =y

—5—|-t:x%—|—t::c’}:a:’% :.CB%:O:Mf:E)
A

Vehicle 1 reaches the intersection att =5

Vehicle 2 reaches the intersection at t = 4

/\

distance 1 of each other. In this case, the two vehicles collide.

If Vehicles are not points, we say they collide if they are, say, within

31



Can the vehicles collide with 1 discrete
transition?

11:1/\1{:—5/\%:O/\x%:O/\y%:—él
L =r'=1n2] %1+t/\y1:y1/\az2:x2/\y = 15 + ]

{Initial state and first continuous transmon} { First discrete transition }

i

P A2 =282 = 0N = AR =y Aa2 = A2 =y

{ Second continuous transition }

V

P=1"=1na" =23 Ay =y} +tAa/s=adNy;=y3 +1]

{ Collision if they are within distance 1 }

\/

—1<x1—x2<1/\ 1<y —yo <1

32



Satisfiability Module Theory Solvers

The constraints can be solved using SMT solvers
Input is a quantifier free first order logic formulas

Check if there exists an assignments for the variables that satisfies the
formula

The formula essentially consists of constraints (linear arithmetic,
non-linear arithmetic) that are combined using boolean operators

33



SMT solving examples

r > 0Ax <1 in the theory (R, >)

|

[ Linear real arithmetic formula, satisfiable ]
r > 0Ax <1 in the theory (Z, >)

|

[ Linear integer arithmetic formula, unsatisfiable }
r>2V(r+ 2y <2)in the theory (R, >, +)

|

[ Linear real arithmetic formula, satisfiable }
r+y-t<3At>0in the theory (R, >, +,-)

|

[ Non-linear real arithmetic formula, satisfiable }

34



SM'1" solvers

* Linear arithmetic - Z3 (rise4fun.com), Yices

* Non-linear arithmetic - iSAT, MiniSmt

35


http://rise4fun.com

/.3 SMT

r > 0Ax <1 in the theory (R, >)

(declare-fun x () Real) sat

(assert (> x 0)) (model

(assert (< x 1)) (define—-fun x () Real
(check-sat) (/ 1.0 2.0))
(get-model) )

r > 0Ax <1 in the theory (Z, >)

(declare-fun x () Int)
(assert (> x 0))
unsat
Egﬁ:ilr(t ;t))( 1)) Z3(5, 10): ERROR: model is not available
(get-model)

36



Bounded Safety Analysis: Approximation

37



‘Iwo vehicles at an intersection

(x1(t),y1(t)): vehicle 1 position at time ¢

Vehicle 1 dynamics moving east Vehicle 1 dynamics moving north
T 1 — T .Ci?l =
y1 =0 Yypr =71
(To1, Yo1) e r o
(0,0)

Vehicle 1 dynamics Vehicle 2 dynamics moving north

at the intersection? :
r Lo — 0

0 @)2 —= T
(Zo2, Yoz)
(x2(t),y2(t): vehicle 2 position at time ¢

38



Dubin’s car dynamics

(x(t),y(t)): Position of the Vehicle at time ¢
(v (t),v¥(t)): Velocity of the Vehicle at time ¢
T = v’
y = v’
VY = —wv?
vY = wo”

Represent succinctly as d = A(w)d, where d = (z,y,v",vY) and
O 0 1 O

0 0 0 1
0 0 0 —w
0 0 w O

Alw) =

39



‘Iwo vehicles at an intersection

dq(t), d2(t): the state of vehicle 1 and 2, respectively at time ¢

Vehicle 1 dynamics moving east Vehicle 1 dynamics moving north
d, = A(0)d, d1 = A(0)d;
(zo1,Y01,7,0) e r ((),.())
Vehicle 1 dynamics Vehicle 2 dynamics moving north
at the intersection r .
, do = A(0)ds
dl — A(w)dl Il

(202, Yo2,0,7)

40



‘Iwo vehicles at an intersection

dq(t), d2(t): the state of vehicle 1 and 2, respectively at time ¢

(North, North)
d, = A(0)d,
dy = A(0)d,

(201, Y01,7,0)
(202, Yo2,0,7)

(Turn, North)

dl — A(w)d1
dy = A(0)d,

41



Bounded Safety Analysis

* Broad approach — Encode executions as SMT formulas, solve the
formulas for satisfiability

* Satisfiability of SMT formulas is decidable only when the
constraints are in a certain theory — linear, nonlinear (polynomial
constraints)

* However, continuous transitions of complex dynamics cannot be
encoded in these theories.

42



Linear dynamical systems

Linear Dynamical System i(t) = ax(¢)

Closed form solution z(t) = e z(0)
©a(t) = ac2(0) = aa()
— X —= ae X =
dt
Linear Dynamical System Closed form solution
(1) = AZ(t), 2y € X C R" z(t) = e z(0)
2 3 2 3
=14y + T4 Bo14B+ o o g

20 3l

43



Contimuous transitions

t : : .
r1 — To it o = 6‘“51;1% Not a polynomial constraint

The decidability of the theory of reals with exponential functions is
an open problem

We cannot directly encode the continuous transition, we will
approximate!

44



Sampling based approximation

* Approximate the exponential function that arises as the solution of

a linear dynamical system by a piecewise linear curve

[ Actual Curve ] [ Piecewise linear approximation

:93 :y5

Ewvaluate the function ]

Yo

[ Split into uniform time interval ]
W ! >

A 9A 3a l4n sa ¢

45



Sampling based approximation

OO (:1:‘1, L, CL’Q) = T9 = 6at:€1 Formula for the actual continuous

—_

transition

Let y; = "2 be the i-th sample point

Computed function values at
sample point

Formula for the approximate continuous transition First piece

@C(ai‘l,t,xz) :Z[O <t<A = zo= Yo yl;y Z]Second piece
/\[AﬁtﬁZA :> L2 — UYq | yQ& 1t]

/\[(k — 1)A <t < kA — To = Yk—1 yk_gk_lt]



Sampling based approximation

SbC(wl?tva) = [OStSA —> X9 = Yo yl;yot]

/\[A S t S 2 — L2 — UYq yzxylt]

Yk —ik—l t]

/\[(k—l)A <t<EkEA — x5 = Yk—1

Note that all constraints are linear (t is multiplied by a Constant)]

47



Bounded error approximation

Over approximates the
reach tube

Approximation error

:y5

‘Bloat the approximate

curve by the error

>

A 2A 3A 4A  B5A U

48



Sampling based approximation

@C’(xlataxQ) L= [OStSA — T2 = Yo | yl;yot]

/\[AStSQA — L2 — Y1 | y2£y1t]

/\[(k — 1)A <t<kA — 29 = yp_1 1 yk_gk_lt]

Let € be an error bound

9560(37775733/) — @C(x,t,aﬁ") N—e<az’—a <e¢

. >

All points close to the points in the
Bloated reach tube approximate trajectory

49



Bounded Safety Analysis using Bloated Reach
Tubes

+ Note that if the bloated reach tube does not intersect an unsafe set,
then the original trajectory also does not intersect the unsafe set

* If the bloated reach tube intersects the unsafe set, then
+ either the actual trajectory reaches the unsafe set, or

* the precision of approximation is too coarse

50



Bounded Safety Analysis using Bloated Reach

Tubes

( Actual trajectory }

=

Bloated reach tube
3. Safe: Astual trajectory does not reach, but
the bldated reach tube reaches

AN

1. Safe: Bloated reach tube does not reach } 2. Unsafe: Actual trajectory

reaches

Case 2 & 3: Reduce the approximation error
51




Bounded Safety Analysis using Bloated Reach
Tubes

Note that if the bloated reach tube does not intersect an unsafe set,
then the original trajectory also does not intersect the unsafe set

If the bloated reach tube intersects the unsafe set, then
* either the actual trajectory reaches the unsafe set, or
* the precision of approximation is too coarse

We iteratively reduce the approximation error

If the bloated reach tube does not intersect the unsafe set, we can
conclude safety

However, we will not be able to conclude that the system is unsafe

Need to under-approximate (very hard in general)

52



Bounded Safety Analysis: Approximation based
Approach lllustration
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Air trattic collision avoidance protocol

Minimum separation

The aircraft maintain a minimum
distance between them always

Jz —yll <p c=x+A=y+ e
lz —c|=vV3r (w?=]d]? 2°:=zx,d°:=d

x = (x1,T3): position of the airplane free

W = =k
collision detection
& negotiatio @

d = (dy,ds): velocity of the airplane

reach inner HQZ‘ — C” <r

Ty 001 0] [ . circle W= —w
. parallel to its
33.2 — 000 1 X2 initial directioy
dl 000 —w dl
i d2 _ _0 O w O _ i d2 _
w: the angular velocity w:=0 z+d=1"+\d
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Parameterized linear systems

Parameterized linear system  Related work:

7= Agp Approximate the state transition matrices [Althoff et al]:
zo € Xo,t €[0,T] M) = {eP A cQ}
A e Not straightforward to compute the sampling interval for a
given error tolerance
Main idea: ® (20, w, t)

* Sample both the parameter space and the

time dOmain /
t
* Construct a piecewise bilinear function /

interpolating the values at the sample points

55



Parameterized linear systems

Main idea: + B(zg,w, t)
* Sample both the parameter space and the
time domain

* Construct a piecewise bilinear function
interpolating the values at the sample points

For w € [wy,ws] and t € [tq,1s],
A 6w1t1 _____ ewth
O(xo,w,t) = [S{ae“™ + (1 —a)e“r2}+ } e
P ’ /_'_.-v":dth
(1 —B) {ae?" + (1 — a)e>2}] xq e 1
__ 1=t . w—w
where a = 7—% and f = —- £ 2 v
Bound the precision of approximation:
€
+ Finding the 0 corresponding to an € max{5 HQ”€5”9” ; 5T€5T} < 1oIT

56



BEAVER: Bounded Error Approximation based VERification

Parameterized .
Linear Hybrid Blhne.ar
Aut t expressions
utomaton »| Bounded error 3+ SMT formula
approximation construction
SMT
Safety formula
property
> SMT formula
verification
BEAVER |

!

Yes/No

90?(:37:560(}(737 t’b) — Sp;;neee A\ Sp%eﬁtry A 907;:,7,'67“(: A sz’af’it
Spgafe =4t [spleéceec(xlv t) A\ ngfec(x% t) A\ HXl — X2 H < dsep + 26]

Main highlight of BEAVER — can perform compositional verification

57



Analysis results

# Aircraft epsilon Size of formula Time Create Time Verify (in Total Time (in =~ SMT result
(Chars) (101°) SMT(107') sec) (107!) sec) (10™')
2 2 0.072 2.084 0.035 0.056 Sat
2 1 2.09 5.066 0.301 0.351 Unsat
4 2 1.44 3.729 0.152 0.189 Sat
4 1 3.37 8.514 1.280 1.360 Unsat
6 2 1.81 4.764 0.384 0.431 Sat
6 1 3.92 9.731 4.310 4.410 Unsat
8 2 2.55 6.646 2.850 2.920 Sat
8 1 5.21 14.74 29.50 30.00 Unsat

Safety analysis of aircraft collision avoidance protocol for p=1, T=0.2

* We start from some reasonable value of error, and we reduce it gradually until

we get safety

* The size of formula increases slowly as we increase the number of aircraft

* Total time for safety analysis grows slowly as we increase the number of aircraft
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Overview of other safety analysis techniques

59



Safety Analysis

* 5o far, we saw bounded safety analysis using bounded error approximation
* How about unbounded safety?
+ Two broad techniques based on state-space exploration

+ Symbolic reach set computation

+  Abstractions

60



State-space exploration

+ Start with the initial set of states

* Iteratively compute the set of states reached by traversing a
discrete or a continuous transition

* Until a fix point is reached

{ Discrete Post Operator

D}gost(S) ={s'|s€ S,ec E,s > s'}

Continuous Post Operator

CPost(S) = {5 |5 € 5,t € Rog, s 2> '}

61



Reach Set Computation

Compute Reach(H, 1)
1. Let RQ =/
2. Compute R;11 := R; U DPost( CPost(R;))

3. Stop when R;.1 = R;

The reach sets computed are infinite sets,

need efficient representation

A\

The shape of the reach set and the appropriate
representation depends on dynamics

62



IHlustration of symbolic computation

press?
7 =0 press?
., o r <10
. Dpresst
x >— 10

press?

* For constant dynamics, we can use polyhedral set

* In one dimension, a polyhedral set is an interval

(Dim,0) = {(Dim,0)}
(Of{ R>0) = {(Qff, z) |z € Rxo}
(Onj{x < 10}) ={(On,z) |x < 10}

l Symbolic state | Concrete state
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IHlustration of symbolic computation

Reach Set

CPost

(Oﬁi,O

Initial states

)—A>( Off, R>0)

DPost

DPost Qm < 10}
CPost

CPost

)——b( O[f, Rzo)—vb(D’Lm, O)——»(Dzm, 20)

S

No more states added
(Reached fixpoint)

CPost

DPost

(OFf, ==

( On, RZO)
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IHlustration of symbolic computation

(North, North)
1 =0 29 =0

ylzT QQZT

{(=5,0)} 8" {(2,0) |z € (—5,00)} PPst {(0,0)} CPgst {(0,) |y € (0,00)}

* Each of the intermediate set of states can be represented as a
polyhedron and the CPost and DPost as operations on polyhedra.

* For instance, DPost operation above corresponds to intersection
with the y-axis (a polyhedron)
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IHlustration of symbolic computation

(North, North)
1 =0 29 =0

Y1 =71 Y2 =71

{(=5,0)} 8" {(2,0) |z € (—5,00)} PPst {(0,0)} CPgst {(0,) |y € (0,00)}

* Alternately, we can represent them as SMT formula and CPost and
DPost operations would correspond to quantifier elimination

r = —09 Cz)Sth,x,tZO,J;Z 5.2 =x+2¢t

=z’ > -5
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Challenges in symbolic exploration

* Symbolic computation relies on being able to represent the sets
obtained by CPost and DPost

* CPost can be a complex set, e.g., CPost for linear dynamics
systems requires exponential functions

* Again, we need to approximate the reach set by data structures
for which operations such as intersection and emptiness
checking are computationally possible

A\

Challenge 1: Efficient data structures for representing and
manipulating the intermediate reach sets or precise over
approximations
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Related work

* Complexity of verification is affected by the number of sample
points and the data structures used to represent the reach sets

* Data structure investigated — Polyhedra [Dang,Maler],
|Chutinan, Krogh], Ellipsoids [Kurzhanski, Varaiya], Zonotopes,
Support functions [Girard, Guernic]

* Previous work: a dynamic algorithm which samples non-
uniformly, and provides an approximation with orders of
magnitude smaller number of sample points, and takes orders ot
magnitude smaller time [Prabhakar, Viswanathan]
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Challenges in symbolic exploration

AN

Challenge 2: In practice, a straight forward state space exploration
does not ensure fixpoint

* Alternate technique: Use abstractions to simplify the system, so
that state space exploration terminates
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Predicate Abstraction

Construct a finite abstract system from a given concrete hybrid
automaton such that if the abstract system is safe, we can conclude
that the hybrid automaton is safe

The safety verification of the finite abstract system is efficient

However, finite abstract system does not provide a bound on the
error of approximation

Hence, abstractions are often coupled with a refinement loop to assist
the safety proof search
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Robot Navigation Protocol

A
l
l

\
l
!

Safety Problem

* Can the robot reach the red region starting from the green region?

+ There is no bound on the number of cells the robot crosses —
unbounded safety analysis problem.
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Abstraction

\
l
l

\
l
l

\
l
!

* Construct a finite graph where the nodes correspond to cells and
edges between them to trajectories between the corresponding cells

* Every trajectory corresponds to a path in the graph

* Absence of a path from green to red node implies safety
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Predicate Abstraction

+ Predicate

* A technique for constructing PC S

a finite state abstraction

from a finite set of predicates * Fix a set of predicates

|Graf & Saidi 97]
M={P,...,P)
* The abstract system

simulates the concrete * Abstraction function

system arg: S — {0,1}F

s+ (Pi(s),..., Pr(s))
+ (Concretization function
v {0, 1}F — 29



Predicate Abstraction

# Set of Predicates
[I={P,..., P}
*  Abstract state-space

{0, 1}*

+  Abstract transitions

b1 — A4 b2

381 - ’Yﬂ(bl),SQ - ’71‘[([?2) : S1 —(C S92



Predicate Abstraction: Example

Predicates: © <0, x <1, <2,z <3, y<0,y<1l,y<2,y<3
Abstraction Function: s — 1 if s € C}

Concretization Function: 7 — C;



Abstraction

* The above system is safe

* The abstract graph has a counter-example

* Right abstractions are hard to find!
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Refinement

* Refine by analyzing the abstract counter-example
* Check if counter-example corresponds to an actual trajectory
* If yes, then the system is unsafe

+ Otherwise, it is a spurious counter-example and we use the
knowledge from the analysis to refine the abstraction
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Counter-example guided abstraction refinement

lProperty
Concrete Abstract
Syst Yes
Yﬂl} Abstract Jystem » Model-Check _)Pro.pe.rty
. satisfied
Abstraction No |Apstract Counter-
Relation example
Y
No Yes Pro
. . perty
< - I
Refine Analysis Validate violated
Results

* CEGAR for discrete systems [Kurshan et al. 93, Clarke et al. 00,

Ball et al. 02]

* CEGAR for hybrid systems safety verification [Alur et al 03,
Clarke et al 03, Prabhakar et al 13]
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Challenges with CEGAR

lProperty
Concrete Abstract
Syst Yes
Yﬂ Abstract Jystem » Model-Check _)Pro.pe.rty
. satisfied
Abstraction No |Apstract Counter-
Relation example
Y
No Yes Pro
. . perty
< - —_—>
Refine Analysis Validate violated
Results

* Finite abstraction construction involves CPost computation

+ Validation is a bounded model-checking problem and can only
be performed exactly for limited dynamics (so there is no
guarantee of exhibiting an unsafe trajectory even if the counter-

example is valid)
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Hybridization

&= f(x)

r e Xg CR"

* Divide the state-space into a finite number of regions

* Approximate the dynamics on the right hand side by simple
dynamics solving optimization problems

* Hybridization techniques consider different simpler abstract
dynamics including rectangular, linear [Puri, Borkar, Varaiyal,
[Asarin,Dang,Girard]
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Hybridization — Rectangular Approximation

jjl — fl(xlaxQ)

Ty = fo(x1, 22)

Find a rectangular approximation
of f(x)in each cell

Value of uq

T1 E

_l17 ur

_l27 Uz

(b7 d) Mavximizefl (21, 22)
a<x1<b

c<xo <d
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Hybridization

Can bound the error of approximation between the right hand
sides of the differential equation

However, it does not provide a global bound on the error
between the solutions

Abstraction construction is simpler
Model-checking is more complex

The problems with validation remain
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Summary and Research Challenges

Bounded safety Provide error bound Need to solve. differential
equations
Bounded safety : Need to solve differential
, Provide error bound .
(sometimes unbounded) equations
Unbounded safety No error bound Require (overappro>.<1mate)
CPost computation
Unbounded safety Provide error bound | Rely only on optimization
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Summary and Research Challenges

Decidable under some

do not exist

Solutions are linear Decidable constraints on the
switching
Not known
Solutions are ,
. (Bound.ed error In general, undecidable
exponential approximations
computable)
Closed form solutions .
Not known In general, undecidable

84



Summary and Research Challenges

* How to compute approximations of CPost that are
* Precise
* Have efficient representation
* Low computation overhead
* How to design an abstract refinement framework that provides
* Abstractions that have efficient analysis algorithms
* Abstractions that are efficiently computable

* Better refinement strategies for the guiding the proof search
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