Model-Checking Finite-State Systems for
Temporal Logic Properties

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

9 January 2018

Overview and Motivation

@ Model systems as Transition Systems
@ Specifying properties in Temporal Logic

@ How we can check these properties algorithmically

Some example systems and properties: Arbiter Circuit

prio: context =

begin D
main: module = r— ° ™y
begin L~

input reql, req2: boolean 444444>[:>“J49

output ackl, ack2: boolean real E |

output bit: boolean —

definition req2 “I%;j“ﬂ [:DAAI‘%ﬂ::>A~A> ack2
ackl = reql; %:D—‘
ack2 = req2 AND (NOT reql)

initialization
bit = false; bit -

transition Clock
bit’ = ackl

end;
end

Does the circuit satisfy:

@ mutual exclusion: “the bus is never granted simultaneously to both
requesters” .

@ no starvation: "“If Requester 2 asks for the bus continuously does

Some example systems and properties: Program

1.
2.
3.
4.
5.
6.
7

i:=0;

j :=0;

while (i < 100) {
if (i = p)

j:

1 :=

-}

1;
+ 1;

[|

Is the value of j always 1 when it the program exits the loop?

Some example systems and properties: Traffic Light

byte ctr = 0;
active proctype TrafficLight() {

do
o if
:: tick = false;
: tick = true;
fi;
if
(status == GO) && (ctr == 3) && tick -> status = CHANGE; ctr = 0;
(status == CHANGE) && (ctr == 1) && tick -> status = STOP; ctr = 0;
(status == STOP) && (ctr == 3) && tick -> status = CHANGE; ctr = 0;
:: else -> ctr = (tick -> (ctr + 1) % 4 : ctr);
fi;
if
: status == GO -> light = GREEN;
:: status == CHANGE -> light = AMBER;
: status == STOP -> light = RED;
fi;
od;

}
Whenever the light is RED does it becomes GREEN within 5 ticks?

Outline of this lecture

@ Transition Systems
© Specifying properties in LTL
© LTL Semantics

@ Model-Checking Algo

Transition Systems

Transition systems: states

A state (over a set of variables Var with associated types) is a
valuation for the variables in Var.

Thus a state is a map s : Var — Values, that assigns to each
variable x a value s(x) in the domain of the type of x.

Example of a state

Consider Var = {loc, ctr}, with type of loc = {sleep, try,crit},
and type of ctr = N.
Example state s: (loc — sleep, ctr — 2), depicted as:

loc = sleep

ctr =2

Transition Systems

Transition systems

A transition system is of the form 7 = (S, /,—) where
@ S is a set of states,
@ /| C S is a set of initial states,
@ —+C S x S is a transition relation.

A run or execution of T is a (finite or infinite) sequence of states
S0, S1, 52, ... such that

@ sp e/, and

e for each i, s; — sj11.

Transition Systems

Example transition system: a mod-4 counter

Transition system of a mod-4 counter

Here Var = {count}, with type of count = {0,1,2,3}.

T=1(5 = {
= A
- = {
(
(
(

(count — 0), (count — 1), (count — 2), (count — 3), },
(count — 0)},

({count — 0), (count — 1)),

(count — 1), (count > 2)),

(count — 2), {count — 3)),

(count — 3), (count — 0))}).

Transition Systems

Example transition system: a mod-4 counter

Diagrammatic representation

/\

—=| count = 0 count = 2

Example run:

count = 3 count = 0

Transition Systems

Overview of Spin

Spin is model-checking tool, in which we can
@ Describe transition system models.
e Suited for concurrent protocols, supports different
synchronization constructs.

@ Simulate them, explore paths in them.

@ Describe desirable properties of the system in temporal logic.
@ Check that the system satisfies these properties.

e Proves that property is satisfied
o Produces counter-examples (execution that violates property).

Transition Systems

Mod-4 counter in Spin

byte count = 0;

proctype counter() {
do
:: true -> count = (count + 1) % 4;
od

}

init {
run counter();

}

Transition Systems

Examples: Transition System for Arbiter Circuit

reql T

req Tt)

»—= ackl

PN i
I)\
= (2 C

—
\)(

—cocoo

==

Specifying properties in LTL

Property specifications in Temporal Logic

@ Linear-time Temporal Logic (LTL) proposed by Amir Pnueli in
1978 to specify properties of program executions.

@ What can we say in LTL? An LTL formula describes a
property of an infinite sequence of “states.”

e p: an atomic proposition p (like “count = 2" or “tick =
false”) holds in the current state.

o Xp (“next p"): property p holds in the tail of the sequence
starting from the next state.

o Fp (“future p"): property p holds eventually at a future state.

o Gp (“globally p"): property p holds henceforth (at all future

states).
o U(p,q) ("p Until g"): property g holds eventually and p holds
till then.
P -p P P -p P
e

Specifying properties in LTL

Syntax and semantics of LTL

Syntax:
pu=plopleVvel Xe | Ulp,).
Semantics: Given a finite sequence of states w = sps1 -+ - s, and a

position i € {0,1,... n}, we define the relation w,i = ¢
inductively as follows:

w,i = p iff p holds true in s;.

w,i = g it w,i e

w,iEpVy il wiEporw,iE.
w,i = X iff i<nandw,i+1fF .

wi e Ulp) it 3 <n:i<j wjkw, and
Vkii<k<j, wkE o

Fy is shorthand for U(true,), and Gy is shorthand for —(F—¢).

Specifying properties in LTL

When a system model satisfies an LTL property

If 7 is a transition system and ¢ is an LTL formula with
propositions that refer to values of variables in T, then we say
T = ¢ (read "“T satisfies ") iff each infinite execution of T
satisfies ¢ in its initial state.

Specifying properties in LTL

Example properties for counter model

byte count = 0;

proctype counter() {
do
: true -> count = (count + 1) % 4;
assert (count <= 3);
od
}

init {
run counter();

}

1t1 propl { [1(count <= 3) };

1tl inc { [1((count == 1) -> X(count == 2)) }

1tl prop3 { ((count == 0) || (count == 1)) U (count == 2));
1tl prop4 { [I(count == 0) };

Specifying properties in LTL

Traffic light model in Spin

mtype = { GREEN, AMBER, RED };
mtype = { GO, CHANGE, STOP };

bool tick = false;
mtype status = GO;
mtype light = GREEN;
byte ctr = 0;

active proctype TrafficLight() {

do
o if
: tick = false;
:: tick = true;
£i;
if
:: (status G0) && (ctr == 3) &% tick -> status = CHANGE; ctr = O;
:: (status CHANGE) && (ctr == 1) && tick -> status = STOP; ctr = 0;
:: (status == STOP) && (ctr == 3) && tick -> status = CHANGE; ctr = 0;
:: else -> ctr = (tick -> (ctr + 1) % 4 : ctr);
fi;
if
:: status GO -> light = GREEN;
:: status CHANGE -> light = AMBER;
:: status == STOP -> light = RED;
fi;
od;

}
1tl liveness { []((light RED) -> <>(light == GREEN)) };
1tl sequence { []((light == RED) U ((light == AMBER) U (light == GREEN))).};

Specifying properties in LTL

Transition system for traffic light (partial)

tick = true
status = go
light = green
ctr =0

T

tick = false
status = go
light = green
ctr =0

U

tick = true
status = go
light = green
ctr =1

tick = false
status = go
light = green
ctr=1

tick = true
status = go
light = green
ctr =2

tick = false

status = go
light = green
ctr =2

Specifying properties in LTL

Exercise

© Which of the properties below are true of the traffic light

model?
G((light = red) => F(light = green));
G((light = red) U ((light = amber) U (light = green)));

Specifying properties in LTL

Exercise

© Which of the properties below are true of the traffic light

model?
G((light = red) => F(light = green));
G((light = red) U ((light = amber) U (light = green)));

@ Fix model based on error trail found by Spin.

Specifying properties in LTL

Exercise

© Which of the properties below are true of the traffic light

model?
G((light = red) => F(light = green));
G((light = red) U ((light = amber) U (light = green)));

@ Fix model based on error trail found by Spin.
© Give modified properties that the system satisfies.

LTL Semantics

Syntax and semantics of LTL

Syntax:
pu=p|op Vel Xe| pUe.

Semantics: Given an infinite sequence of states w = sps1 - - -, and
a position i € {0,1,...}, we define the relation w,i = ¢
inductively as follows:

w,iE=p iff p holds true in s;.

w,i = - iff w,itEep.

w,iE=eVy it w,ikEporw,iE=.

w,i=Xp it w,i+1lEe.

w,i=eUy it Jj: i<j, w,jE1, and
Vk:i<k<j, wkEe.

F¢ is shorthand for trueUyp, and Gy is shorthand for =(F—p).

LTL Semantics

When a system model satisfies an LTL property

If 7 is a transition system and ¢ is an LTL formula with
propositions that refer to values of variables in T, then we say
T = ¢ (read "“T satisfies ") iff each infinite execution of T
satisfies ¢ in the initial position.

Model-Checking Algo

Model-Checking Algo: Idea

Can we give an algorithm to decide if L(A) C L(B)?
c a, b
Q/a\ :
-0 e -0l 0
b c

A B

Model-Checking Algo

Model-Checking Algo: Idea

Can we give an algorithm to decide if L(A) C L(B)?
c a, b
Q/a\ :
-0 e -0l 0
b c
A B

First complement B:

c a, b a, b, c
oY &y = !
/\ /\ a, b
0o -8
A B

Then construct the “product” of A and B:

Model-Checking Algo

LTL models as sequences of propositional valuations

@ LTL can be interpreted over a sequence of valuations to the
propositions used in the formula.

e E.g. In the formula G((count = 1) => X(count = 2)),
count = 1 and count = 2 are the only propositions (say p
and q), and a state can be viewed as a valuation to these
propositions

e Example propositional valuation: (p +— true, q > false).
e We represent such a valuation as simply {p} (that is the
subset of propositions that are true).

e Further use a propositional formula (like p V q) to represent
sets of propositional valuations, namely those in which the
formula is true.

o E.g. pV g represents the 3 valuations {p, q}, {p}, and {q, }.

Model-Checking Algo

Compiling LTL properties into automata

Every LTL property ¢ over a set of propositions P can be
expressed in the form of a (Biichi) automaton A, over the the
alphabet 2, that accepts precisely the models of ¢.

Some examples over set of propositions P = {p, q}. The label
“=p" is short for the set of labels {gq} and {}.

Automaton for G(F(p))

Model-Checking Algo

Compiling LTL properties into automata

Every LTL property ¢ over a set of propositions P can be
expressed in the form of a (Biichi) automaton A, over the the
alphabet 2, that accepts precisely the models of ¢.

Some examples over set of propositions P = {p, q}. The label
“=p" is short for the set of labels {gq} and {}.

Automaton for G(F(p))

v

Automaton for pUg

A\

Model-Checking Algo

Compiling LTL properties into automata

Every LTL property ¢ over a set of propositions P can be
expressed in the form of a (Biichi) automaton A, over the the
alphabet 2, that accepts precisely the models of ¢.

Some examples over set of propositions P = {p, q}. The label
“=p" is short for the set of labels {gq} and {}.

Automaton for G(F(p))

v

Automaton for pUg

P true
o q
O

—

A\

Model-Checking Algo

Model-checking LTL properties

Given a transition system 7 and an LTL property ¢ over a set of
propositions P, we want to know whether 7 = ¢ (i.e. do all
infinite executions of T satisfy ¢?).

e Compile given property ¢ into an automaton A-, accepting
precisely the models of —p.

o Take the “product” of 7 and A-. (Pair states t of 7 and A
of A, together iff the set of propositions p true in t is
exactly AN P.)

@ Look for an "accepting” path in this product.

@ If such a path exists, this is a counter-example to the claim
that T satisfies the property .

@ If no such path exists, then 7T satisfies .

Model-Checking Algo

Exercise

Check if the arbiter model satisfies

G(req2 = F ack2)

@ Construct a formula automaton that describes the models of
the given formula.

@ Construct the product of the arbiter transition system and
formula automaton.

@ Describe your counter-example if any.

@ Use Spin to model the arbiter and assert the above property,
and model-check it, and describe the counter-example
reported by Spin.

Model-Checking Algo

Exercise

If p is the proposition “count # 2" then check if the mod-4
counter transition system satisfies the formula =(pU-p).

@ Construct the product of the mod-4 counter transition system
and formula automaton for pU-p.

@ Describe your counter-example if any.

Model-Checking Algo

Resources

Spin webpage: http://spinroot.com/
Current version: Spin v6.4.6
Useful documentation:
@ Spin documentation (tutorial, reference manual, etc):
http://spinroot.com/spin/Man/.
@ Material for other topics:

o Textbook by Huth and Ryan, Logic in Computer Science:
Specifications, semantics, and model-checking techniques for
LTL.

	Transition Systems
	Specifying properties in LTL
	LTL Semantics
	Model-Checking Algo

