

Model-Checking Finite-State Systems for Temporal Logic Properties

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

9 January 2018

Overview and Motivation

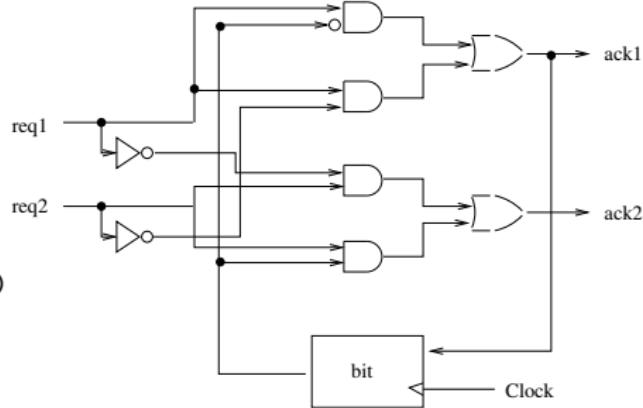
- Model systems as **Transition Systems**
- Specifying properties in **Temporal Logic**
- How we can check these properties **algorithmically**

Some example systems and properties: Arbiter Circuit

```

prio: context =
begin
  main: module =
begin
  input req1, req2: boolean
  output ack1, ack2: boolean
  output bit: boolean
  definition
    ack1 = req1;
    ack2 = req2 AND (NOT req1)
  initialization
    bit = false;
  transition
    bit' = ack1
  end;
end

```



Does the circuit satisfy:

- **mutual exclusion**: “the bus is never granted simultaneously to *both* requesters”.
- **no starvation**: “If Requester 2 asks for the bus continuously does

Some example systems and properties: Program

```
...
1. i := 0;
2. j := 0;
3. while (i < 100) {
4.   if (i = p)
5.     j := 1;
6.   i := i + 1;
7. }
```

...

Is the value of j always 1 when it the program exits the loop?

Some example systems and properties: Traffic Light

```
byte ctr = 0;
active proctype TrafficLight() {
    do
    :: if
        :: tick = false;
        :: tick = true;
    fi;
    if
        :: (status == GO) && (ctr == 3) && tick -> status = CHANGE; ctr = 0;
        :: (status == CHANGE) && (ctr == 1) && tick -> status = STOP; ctr = 0;
        :: (status == STOP) && (ctr == 3) && tick -> status = CHANGE; ctr = 0;
        :: else -> ctr = (tick -> (ctr + 1) % 4 : ctr);
    fi;
    if
        :: status == GO -> light = GREEN;
        :: status == CHANGE -> light = AMBER;
        :: status == STOP -> light = RED;
    fi;
    od;
}
```


Whenever the light is RED does it becomes GREEN within 5 ticks?

Outline of this lecture

1 Transition Systems

2 Specifying properties in LTL

3 LTL Semantics

4 Model-Checking Algo

Transition systems: states

A **state** (over a set of variables Var with associated types) is a valuation for the variables in Var .

Thus a state is a map $s : Var \rightarrow Values$, that assigns to each variable x a value $s(x)$ in the domain of the type of x .

Example of a state

Consider $Var = \{loc, ctr\}$, with type of $loc = \{\text{sleep, try, crit}\}$, and type of $ctr = \mathbb{N}$.

Example state s : $\langle loc \mapsto \text{sleep}, ctr \mapsto 2 \rangle$, depicted as:

$loc = \text{sleep}$

$ctr = 2$

Transition systems

A **transition system** is of the form $\mathcal{T} = (S, I, \rightarrow)$ where

- S is a set of states,
- $I \subseteq S$ is a set of **initial** states,
- $\rightarrow \subseteq S \times S$ is a transition relation.

A **run** or **execution** of \mathcal{T} is a (finite or infinite) sequence of states s_0, s_1, s_2, \dots such that

- $s_0 \in I$, and
- for each i , $s_i \rightarrow s_{i+1}$.

Example transition system: a mod-4 counter

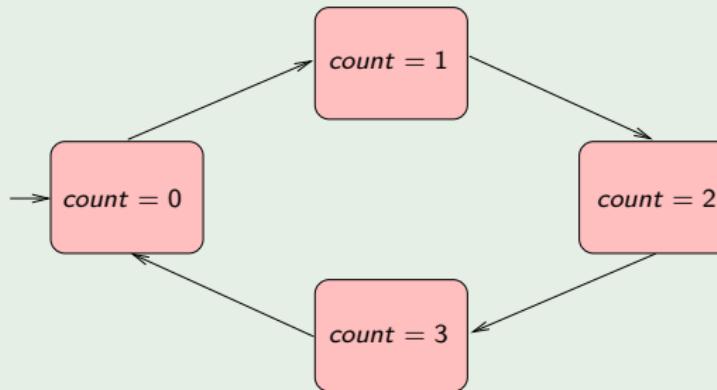
Transition system of a mod-4 counter

Here $Var = \{count\}$, with type of $count = \{0, 1, 2, 3\}$.

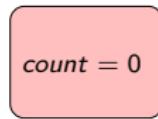
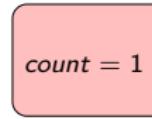
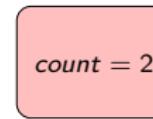
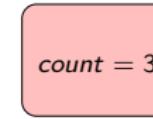
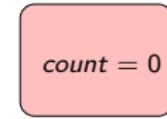
$$\begin{aligned}\mathcal{T} = \quad S &= \{\langle count \mapsto 0 \rangle, \langle count \mapsto 1 \rangle, \langle count \mapsto 2 \rangle, \langle count \mapsto 3 \rangle, \}, \\ I &= \{\langle count \mapsto 0 \rangle\}, \\ \rightarrow &= \{(\langle count \mapsto 0 \rangle, \langle count \mapsto 1 \rangle), \\ &\quad (\langle count \mapsto 1 \rangle, \langle count \mapsto 2 \rangle), \\ &\quad (\langle count \mapsto 2 \rangle, \langle count \mapsto 3 \rangle), \\ &\quad (\langle count \mapsto 3 \rangle, \langle count \mapsto 0 \rangle)\}.\end{aligned}$$

Example transition system: a mod-4 counter

Diagrammatic representation



Example run:



Overview of Spin

Spin is model-checking tool, in which we can

- **Describe** transition system models.
 - Suited for concurrent protocols, supports different synchronization constructs.
- **Simulate** them, explore paths in them.
- **Describe** desirable properties of the system in temporal logic.
- **Check** that the system satisfies these properties.
 - Proves that property is satisfied
 - Produces counter-examples (execution that violates property).

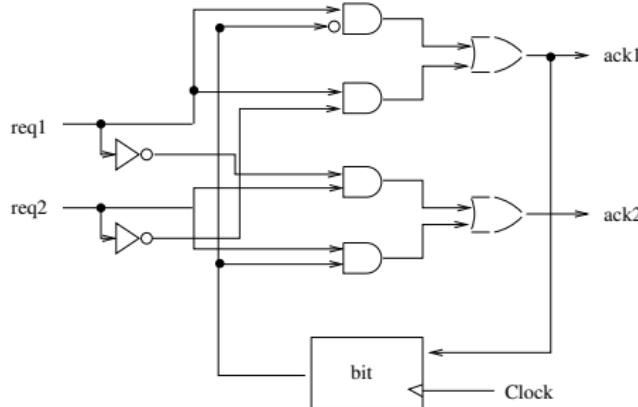
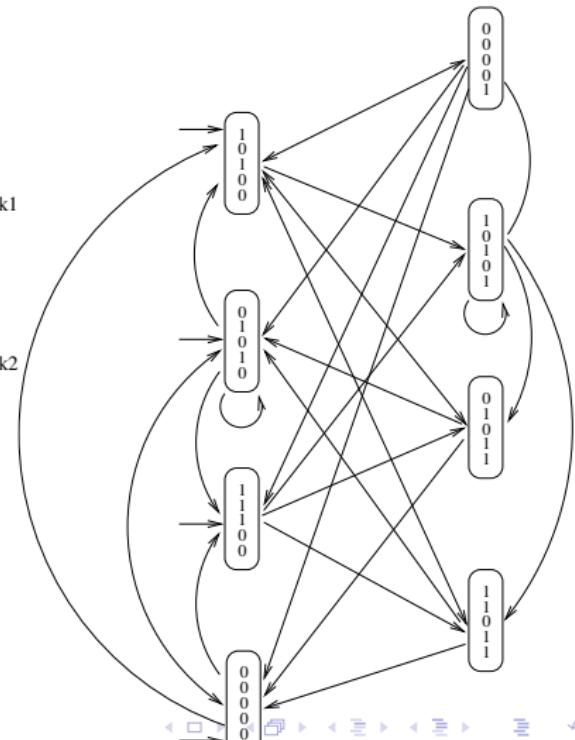
Mod-4 counter in Spin

```
byte count = 0;

proctype counter() {
    do
        :: true -> count = (count + 1) % 4;
    od
}

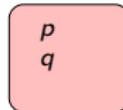
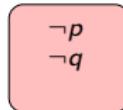
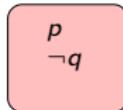
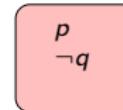
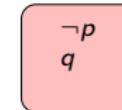
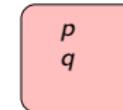
init {
    run counter();
}
```

Examples: Transition System for Arbiter Circuit



Property specifications in Temporal Logic

- Linear-time Temporal Logic (LTL) proposed by Amir Pnueli in 1978 to specify properties of program executions.
- What can we say in LTL? An LTL formula describes a property of an infinite sequence of “states.”
 - p : an atomic proposition p (like “ $count = 2$ ” or “ $tick = false$ ”) holds in the current state.
 - Xp (“next p ”): property p holds in the tail of the sequence starting from the next state.
 - Fp (“future p ”): property p holds eventually at a future state.
 - Gp (“globally p ”): property p holds henceforth (at all future states).
 - $U(p, q)$ (“ p Until q ”): property q holds eventually and p holds till then.



.....

Syntax and semantics of LTL

Syntax:

$$\varphi ::= p \mid \neg\varphi \mid \varphi \vee \varphi \mid X\varphi \mid U(\varphi, \varphi).$$

Semantics: Given a finite sequence of states $w = s_0 s_1 \cdots s_n$, and a position $i \in \{0, 1, \dots, n\}$, we define the relation $w, i \models \varphi$ inductively as follows:

- $w, i \models p$ iff p holds true in s_i .
- $w, i \models \neg\varphi$ iff $w, i \not\models \varphi$.
- $w, i \models \varphi \vee \psi$ iff $w, i \models \varphi$ or $w, i \models \psi$.
- $w, i \models X\varphi$ iff $i < n$ and $w, i+1 \models \varphi$.
- $w, i \models U(\varphi, \psi)$ iff $\exists j \leq n : i \leq j, w, j \models \psi$, and $\forall k : i \leq k < j, w, k \models \varphi$.

$F\varphi$ is shorthand for $U(\text{true}, \varphi)$, and $G\varphi$ is shorthand for $\neg(F\neg\varphi)$.

When a system model satisfies an LTL property

If \mathcal{T} is a transition system and φ is an LTL formula with propositions that refer to values of variables in \mathcal{T} , then we say $\mathcal{T} \models \varphi$ (read " \mathcal{T} satisfies φ ") iff each infinite execution of \mathcal{T} satisfies φ in its initial state.

Example properties for counter model

```
byte count = 0;

proctype counter() {
    do
        :: true -> count = (count + 1) % 4;
                    assert (count <= 3);
    od
}

init {
    run counter();
}

ltl prop1 { [] (count <= 3) };
ltl inc { [] ((count == 1) -> X(count == 2)) }
ltl prop3 { ((count == 0) || (count == 1)) U (count == 2));
ltl prop4 { [] (count == 0) };
```

Traffic light model in Spin

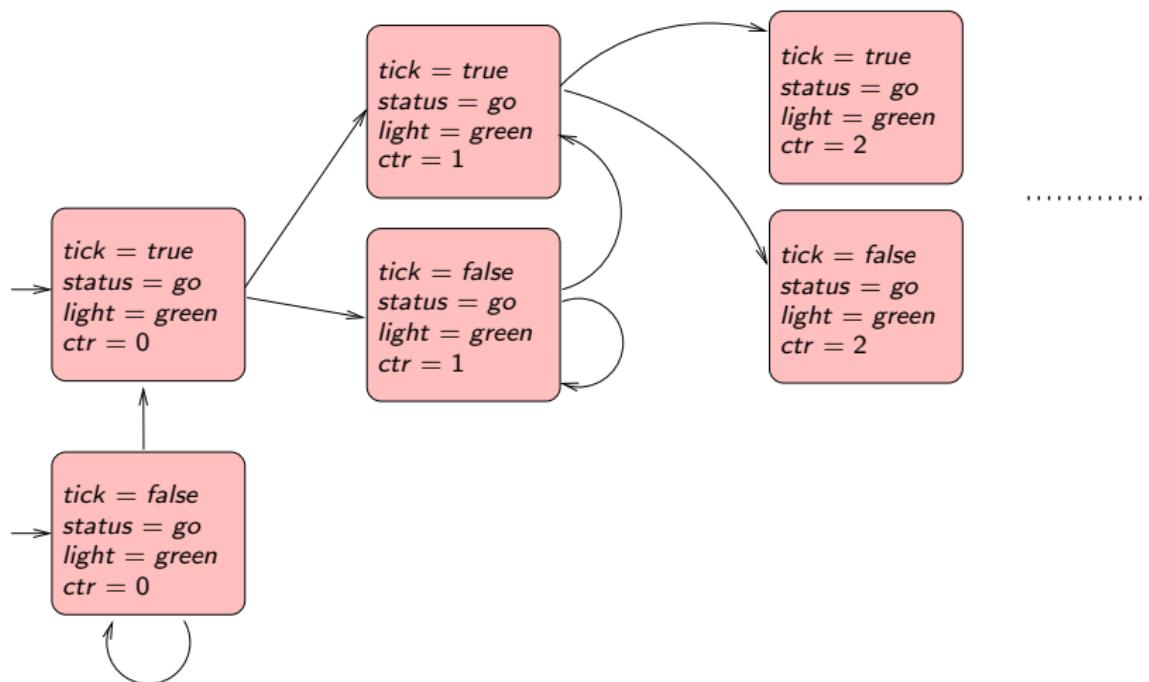
```
mtype = { GREEN, AMBER, RED };
mtype = { GO, CHANGE, STOP };

bool tick = false;
mtype status = GO;
mtype light = GREEN;
byte ctr = 0;

active proctype TrafficLight() {
    do
    :: if
        :: tick = false;
        :: tick = true;
    fi;

    if
        :: (status == GO) && (ctr == 3) && tick -> status = CHANGE; ctr = 0;
        :: (status == CHANGE) && (ctr == 1) && tick -> status = STOP; ctr = 0;
        :: (status == STOP) && (ctr == 3) && tick -> status = CHANGE; ctr = 0;
        :: else -> ctr = (tick -> (ctr + 1) % 4 : ctr);
    fi;
    if
        :: status == GO -> light = GREEN;
        :: status == CHANGE -> light = AMBER;
        :: status == STOP -> light = RED;
    fi;
    od;
}
ltl liveness { []((light == RED) -> <>(light == GREEN)) };
ltl sequence { []((light == RED) U ((light == AMBER) U (light == GREEN))) };
```

Transition system for traffic light (partial)



Exercise

- 1 Which of the properties below are true of the traffic light model?

$G((\text{light} = \text{red}) \Rightarrow F(\text{light} = \text{green})) ;$

$G((\text{light} = \text{red}) \cup ((\text{light} = \text{amber}) \cup (\text{light} = \text{green}))) ;$

Exercise

- 1 Which of the properties below are true of the traffic light model?

```
G((light = red) => F(light = green));
```

```
G((light = red) U ((light = amber) U (light = green)));
```

- 2 Fix model based on error trail found by Spin.

Exercise

- 1 Which of the properties below are true of the traffic light model?

```
G((light = red) => F(light = green));
```

```
G((light = red) U ((light = amber) U (light = green)));
```

- 2 Fix model based on error trail found by Spin.
- 3 Give modified properties that the system satisfies.

Syntax and semantics of LTL

Syntax:

$$\varphi ::= p \mid \neg\varphi \mid \varphi \vee \varphi \mid X\varphi \mid \varphi U \varphi.$$

Semantics: Given an infinite sequence of states $w = s_0 s_1 \dots$, and a position $i \in \{0, 1, \dots\}$, we define the relation $w, i \models \varphi$ inductively as follows:

- $w, i \models p$ iff p holds true in s_i .
- $w, i \models \neg\varphi$ iff $w, i \not\models \varphi$.
- $w, i \models \varphi \vee \psi$ iff $w, i \models \varphi$ or $w, i \models \psi$.
- $w, i \models X\varphi$ iff $w, i + 1 \models \varphi$.
- $w, i \models \varphi U \psi$ iff $\exists j : i \leq j, w, j \models \psi$, and $\forall k : i \leq k < j, w, k \models \varphi$.

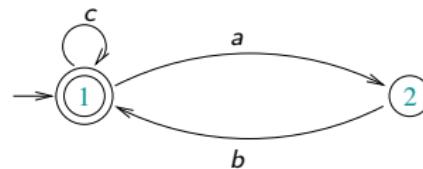
$F\varphi$ is shorthand for $true U \varphi$, and $G\varphi$ is shorthand for $\neg(F\neg\varphi)$.

When a system model satisfies an LTL property

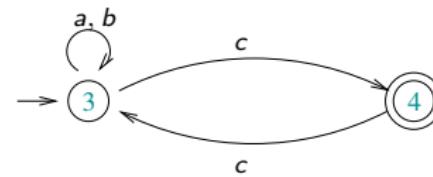
If \mathcal{T} is a transition system and φ is an LTL formula with propositions that refer to values of variables in \mathcal{T} , then we say $\mathcal{T} \models \varphi$ (read " \mathcal{T} satisfies φ ") iff each infinite execution of \mathcal{T} satisfies φ in the initial position.

Model-Checking Algo: Idea

Can we give an algorithm to decide if $L(\mathcal{A}) \subseteq L(\mathcal{B})$?



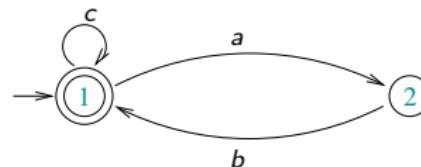
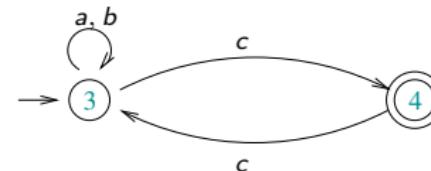
\mathcal{A}



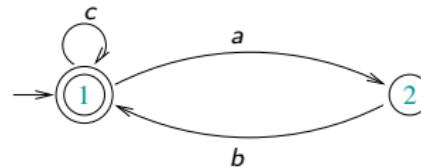
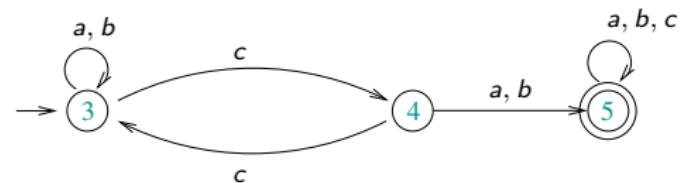
\mathcal{B}

Model-Checking Algo: Idea

Can we give an algorithm to decide if $L(\mathcal{A}) \subseteq L(\mathcal{B})$?

 \mathcal{A}  \mathcal{B}

First complement \mathcal{B} :

 \mathcal{A}  $\overline{\mathcal{B}}$

Then construct the “product” of \mathcal{A} and $\overline{\mathcal{B}}$:

LTL models as sequences of propositional valuations

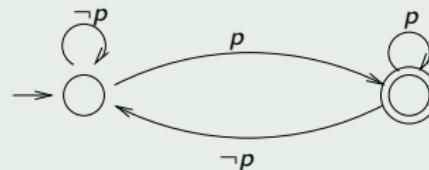
- LTL can be interpreted over a sequence of valuations to the propositions used in the formula.
 - E.g. In the formula $G((\text{count} = 1) \Rightarrow X(\text{count} = 2))$, $\text{count} = 1$ and $\text{count} = 2$ are the only propositions (say p and q), and a state can be viewed as a valuation to these propositions
- Example propositional valuation: $\langle p \mapsto \text{true}, q \mapsto \text{false} \rangle$.
- We represent such a valuation as simply $\{p\}$ (that is the subset of propositions that are **true**).
- Further use a propositional formula (like $p \vee q$) to represent sets of propositional valuations, namely those in which the formula is true.
 - E.g. $p \vee q$ represents the 3 valuations $\{p, q\}$, $\{p\}$, and $\{q\}$.

Compiling LTL properties into automata

Every LTL property φ over a set of propositions P can be expressed in the form of a (Büchi) automaton \mathcal{A}_φ over the alphabet 2^P , that accepts precisely the models of φ .

Some examples over set of propositions $P = \{p, q\}$. The label “ $\neg p$ ” is short for the set of labels $\{q\}$ and $\{\}$.

Automaton for $G(F(p))$

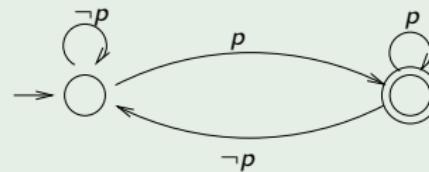


Compiling LTL properties into automata

Every LTL property φ over a set of propositions P can be expressed in the form of a (Büchi) automaton \mathcal{A}_φ over the alphabet 2^P , that accepts precisely the models of φ .

Some examples over set of propositions $P = \{p, q\}$. The label “ $\neg p$ ” is short for the set of labels $\{q\}$ and $\{\}$.

Automaton for $G(F(p))$



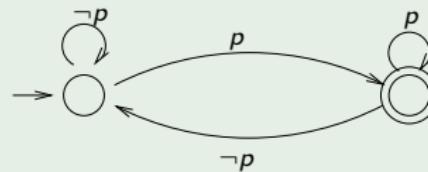
Automaton for pUq

Compiling LTL properties into automata

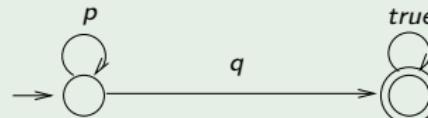
Every LTL property φ over a set of propositions P can be expressed in the form of a (Büchi) automaton \mathcal{A}_φ over the alphabet 2^P , that accepts precisely the models of φ .

Some examples over set of propositions $P = \{p, q\}$. The label “ $\neg p$ ” is short for the set of labels $\{q\}$ and $\{\}$.

Automaton for $G(F(p))$



Automaton for pUq



Model-checking LTL properties

Given a transition system \mathcal{T} and an LTL property φ over a set of propositions P , we want to know whether $\mathcal{T} \models \varphi$ (i.e. do all infinite executions of \mathcal{T} satisfy φ ?).

- Compile given property φ into an automaton $\mathcal{A}_{\neg\varphi}$ accepting precisely the models of $\neg\varphi$.
- Take the “product” of \mathcal{T} and $\mathcal{A}_{\neg\varphi}$. (Pair states t of \mathcal{T} and A of $\mathcal{A}_{\neg\varphi}$ together iff the set of propositions p true in t is exactly $A \cap P$.)
- Look for an “accepting” path in this product.
- If such a path exists, this is a **counter-example** to the claim that \mathcal{T} satisfies the property φ .
- If no such path exists, then \mathcal{T} **satisfies** φ .

Exercise

Check if the arbiter model satisfies

$$G(\text{req2} \implies \text{F ack2})$$

- Construct a formula automaton that describes the models of the given formula.
- Construct the product of the arbiter transition system and formula automaton.
- Describe your counter-example if any.
- Use Spin to model the arbiter and assert the above property, and model-check it, and describe the counter-example reported by Spin.

Exercise

If p is the proposition “ $count \neq 2$ ” then check if the mod-4 counter transition system satisfies the formula $\neg(pU\neg p)$.

- Construct the product of the mod-4 counter transition system and formula automaton for $pU\neg p$.
- Describe your counter-example if any.

Resources

Spin webpage: <http://spinroot.com/>

Current version: Spin v6.4.6

Useful documentation:

- Spin documentation (tutorial, reference manual, etc):
<http://spinroot.com/spin/Man/.>
- Material for other topics:
 - Textbook by Huth and Ryan, *Logic in Computer Science: Specifications, semantics, and model-checking techniques for LTL*.