
Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Model-Checking Finite-State Systems for
Temporal Logic Properties

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

9 January 2018

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Overview and Motivation

Model systems as Transition Systems

Specifying properties in Temporal Logic

How we can check these properties algorithmically

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Some example systems and properties: Arbiter Circuit

prio: context =

begin

main: module =

begin

input req1, req2: boolean

output ack1, ack2: boolean

output bit: boolean

definition

ack1 = req1;

ack2 = req2 AND (NOT req1)

initialization

bit = false;

transition

bit’ = ack1

end;

end

Clock
bit

req1

req2 ack2

ack1

Does the circuit satisfy:

mutual exclusion: “the bus is never granted simultaneously to both
requesters”.

no starvation: “If Requester 2 asks for the bus continuously does
she eventually get it?”

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Some example systems and properties: Program

...

1. i := 0;

2. j := 0;

3. while (i < 100) {

4. if (i = p)

5. j := 1;

6. i := i + 1;

7. }

...

Is the value of j always 1 when it the program exits the loop?

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Some example systems and properties: Traffic Light

byte ctr = 0;

active proctype TrafficLight() {

do

:: if

:: tick = false;

:: tick = true;

fi;

if

:: (status == GO) && (ctr == 3) && tick -> status = CHANGE; ctr = 0;

:: (status == CHANGE) && (ctr == 1) && tick -> status = STOP; ctr = 0;

:: (status == STOP) && (ctr == 3) && tick -> status = CHANGE; ctr = 0;

:: else -> ctr = (tick -> (ctr + 1) % 4 : ctr);

fi;

if

:: status == GO -> light = GREEN;

:: status == CHANGE -> light = AMBER;

:: status == STOP -> light = RED;

fi;

od;

}

Whenever the light is RED does it becomes GREEN within 5 ticks?

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Outline of this lecture

1 Transition Systems

2 Specifying properties in LTL

3 LTL Semantics

4 Model-Checking Algo

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Transition systems: states

A state (over a set of variables Var with associated types) is a
valuation for the variables in Var .
Thus a state is a map s : Var → Values, that assigns to each
variable x a value s(x) in the domain of the type of x .

Example of a state

Consider Var = {loc, ctr}, with type of loc = {sleep, try, crit},
and type of ctr = N.
Example state s: 〈loc 7→ sleep, ctr 7→ 2〉, depicted as:

ctr = 2

loc = sleep

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Transition systems

A transition system is of the form T = (S , I ,→) where

S is a set of states,

I ⊆ S is a set of initial states,

→⊆ S × S is a transition relation.

A run or execution of T is a (finite or infinite) sequence of states
s0, s1, s2, . . . such that

s0 ∈ I , and

for each i , si → si+1.

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Example transition system: a mod-4 counter

Transition system of a mod-4 counter

Here Var = {count}, with type of count = {0, 1, 2, 3}.

T = (S = {〈count 7→ 0〉, 〈count 7→ 1〉, 〈count 7→ 2〉, 〈count 7→ 3〉, },
I = {〈count 7→ 0〉},
→ = {(〈count 7→ 0〉, 〈count 7→ 1〉),

(〈count 7→ 1〉, 〈count 7→ 2〉),
(〈count 7→ 2〉, 〈count 7→ 3〉),
(〈count 7→ 3〉, 〈count 7→ 0〉)}).

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Example transition system: a mod-4 counter

Diagrammatic representation

count = 0 count = 2

count = 1

count = 3

Example run:

count = 0 count = 2count = 1 count = 3 count = 0

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Overview of Spin

Spin is model-checking tool, in which we can

Describe transition system models.

Suited for concurrent protocols, supports different
synchronization constructs.

Simulate them, explore paths in them.

Describe desirable properties of the system in temporal logic.

Check that the system satisfies these properties.

Proves that property is satisfied
Produces counter-examples (execution that violates property).

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Mod-4 counter in Spin

byte count = 0;

proctype counter() {

do

:: true -> count = (count + 1) % 4;

od

}

init {

run counter();

}

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Examples: Transition System for Arbiter Circuit

Clock
bit

req1

req2 ack2

ack1

1

0

1

0

0

0

1

0

1

0

1

1

1

0

0

0

0

0

0

1

0

1

0

1

1

1

1

0

1

1

1

0

1

0

1

0

0

0

0

0

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Property specifications in Temporal Logic

Linear-time Temporal Logic (LTL) proposed by Amir Pnueli in
1978 to specify properties of program executions.

What can we say in LTL? An LTL formula describes a
property of an infinite sequence of “states.”

p: an atomic proposition p (like “count = 2” or “tick =
false”) holds in the current state.
Xp (“next p”): property p holds in the tail of the sequence
starting from the next state.
Fp (“future p”): property p holds eventually at a future state.
Gp (“globally p”): property p holds henceforth (at all future
states).
U(p, q) (“p Until q”): property q holds eventually and p holds
till then.

p
q

¬p
¬q

p
¬q

p
¬q

¬p
q

p
q

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Syntax and semantics of LTL

Syntax:
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | U(ϕ,ϕ).

Semantics: Given a finite sequence of states w = s0s1 · · · sn, and a
position i ∈ {0, 1, . . . n}, we define the relation w , i |= ϕ
inductively as follows:

w , i |= p iff p holds true in si .
w , i |= ¬ϕ iff w , i 6|= ϕ.
w , i |= ϕ ∨ ψ iff w , i |= ϕ or w , i |= ψ.
w , i |= Xϕ iff i < n and w , i + 1 |= ϕ.
w , i |= U(ϕ,ψ) iff ∃j ≤ n : i ≤ j , w , j |= ψ, and

∀k : i ≤ k < j , w , k |= ϕ.

Fϕ is shorthand for U(true, ϕ), and Gϕ is shorthand for ¬(F¬ϕ).

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

When a system model satisfies an LTL property

If T is a transition system and ϕ is an LTL formula with
propositions that refer to values of variables in T , then we say
T |= ϕ (read “T satisfies ϕ”) iff each infinite execution of T
satisfies ϕ in its initial state.

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Example properties for counter model

byte count = 0;

proctype counter() {

do

:: true -> count = (count + 1) % 4;

assert (count <= 3);

od

}

init {

run counter();

}

ltl prop1 { [](count <= 3) };

ltl inc { []((count == 1) -> X(count == 2)) }

ltl prop3 { ((count == 0) || (count == 1)) U (count == 2));

ltl prop4 { [](count == 0) };

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Traffic light model in Spin

mtype = { GREEN, AMBER, RED };

mtype = { GO, CHANGE, STOP };

bool tick = false;

mtype status = GO;

mtype light = GREEN;

byte ctr = 0;

active proctype TrafficLight() {

do

:: if

:: tick = false;

:: tick = true;

fi;

if

:: (status == GO) && (ctr == 3) && tick -> status = CHANGE; ctr = 0;

:: (status == CHANGE) && (ctr == 1) && tick -> status = STOP; ctr = 0;

:: (status == STOP) && (ctr == 3) && tick -> status = CHANGE; ctr = 0;

:: else -> ctr = (tick -> (ctr + 1) % 4 : ctr);

fi;

if

:: status == GO -> light = GREEN;

:: status == CHANGE -> light = AMBER;

:: status == STOP -> light = RED;

fi;

od;

}

ltl liveness { []((light == RED) -> <>(light == GREEN)) };

ltl sequence { []((light == RED) U ((light == AMBER) U (light == GREEN))) };

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Transition system for traffic light (partial)

ctr = 0

ctr = 1

tick = true
status = go
light = green

tick = false
status = go
light = green
ctr = 0

tick = true
status = go
light = green

tick = false
status = go
light = green
ctr = 1

ctr = 2

tick = false
status = go
light = green

ctr = 2

tick = true
status = go
light = green

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Exercise

1 Which of the properties below are true of the traffic light
model?

G((light = red) => F(light = green));

G((light = red) U ((light = amber) U (light = green)));

2 Fix model based on error trail found by Spin.

3 Give modified properties that the system satisfies.

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Exercise

1 Which of the properties below are true of the traffic light
model?

G((light = red) => F(light = green));

G((light = red) U ((light = amber) U (light = green)));

2 Fix model based on error trail found by Spin.

3 Give modified properties that the system satisfies.

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Exercise

1 Which of the properties below are true of the traffic light
model?

G((light = red) => F(light = green));

G((light = red) U ((light = amber) U (light = green)));

2 Fix model based on error trail found by Spin.

3 Give modified properties that the system satisfies.

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Syntax and semantics of LTL

Syntax:
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ.

Semantics: Given an infinite sequence of states w = s0s1 · · · , and
a position i ∈ {0, 1, . . .}, we define the relation w , i |= ϕ
inductively as follows:

w , i |= p iff p holds true in si .
w , i |= ¬ϕ iff w , i 6|= ϕ.
w , i |= ϕ ∨ ψ iff w , i |= ϕ or w , i |= ψ.
w , i |= Xϕ iff w , i + 1 |= ϕ.
w , i |= ϕUψ iff ∃j : i ≤ j , w , j |= ψ, and

∀k : i ≤ k < j , w , k |= ϕ.

Fϕ is shorthand for trueUϕ, and Gϕ is shorthand for ¬(F¬ϕ).

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

When a system model satisfies an LTL property

If T is a transition system and ϕ is an LTL formula with
propositions that refer to values of variables in T , then we say
T |= ϕ (read “T satisfies ϕ”) iff each infinite execution of T
satisfies ϕ in the initial position.

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Model-Checking Algo: Idea

Can we give an algorithm to decide if L(A) ⊆ L(B)?

1 2 3 4

c

c

a, b
a

b

c

A B

First complement B:

1 2 3 4 5

c

c

a, b
a

b

c

A B

a, b

a, b, c

Then construct the “product” of A and B:

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Model-Checking Algo: Idea

Can we give an algorithm to decide if L(A) ⊆ L(B)?

1 2 3 4

c

c

a, b
a

b

c

A B

First complement B:

1 2 3 4 5

c

c

a, b
a

b

c

A B

a, b

a, b, c

Then construct the “product” of A and B:

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

LTL models as sequences of propositional valuations

LTL can be interpreted over a sequence of valuations to the
propositions used in the formula.

E.g. In the formula G((count = 1) => X(count = 2)),
count = 1 and count = 2 are the only propositions (say p
and q), and a state can be viewed as a valuation to these
propositions

Example propositional valuation: 〈p 7→ true, q 7→ false〉.
We represent such a valuation as simply {p} (that is the
subset of propositions that are true).

Further use a propositional formula (like p ∨ q) to represent
sets of propositional valuations, namely those in which the
formula is true.

E.g. p ∨ q represents the 3 valuations {p, q}, {p}, and {q, }.

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Compiling LTL properties into automata

Every LTL property ϕ over a set of propositions P can be
expressed in the form of a (Büchi) automaton Aϕ over the the
alphabet 2P , that accepts precisely the models of ϕ.
Some examples over set of propositions P = {p, q}. The label
“¬p” is short for the set of labels {q} and {}.

Automaton for G (F (p))

p

¬p

p¬p

Automaton for pUq

truep

q

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Compiling LTL properties into automata

Every LTL property ϕ over a set of propositions P can be
expressed in the form of a (Büchi) automaton Aϕ over the the
alphabet 2P , that accepts precisely the models of ϕ.
Some examples over set of propositions P = {p, q}. The label
“¬p” is short for the set of labels {q} and {}.

Automaton for G (F (p))

p

¬p

p¬p

Automaton for pUq

truep

q

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Compiling LTL properties into automata

Every LTL property ϕ over a set of propositions P can be
expressed in the form of a (Büchi) automaton Aϕ over the the
alphabet 2P , that accepts precisely the models of ϕ.
Some examples over set of propositions P = {p, q}. The label
“¬p” is short for the set of labels {q} and {}.

Automaton for G (F (p))

p

¬p

p¬p

Automaton for pUq

truep

q

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Model-checking LTL properties

Given a transition system T and an LTL property ϕ over a set of
propositions P, we want to know whether T |= ϕ (i.e. do all
infinite executions of T satisfy ϕ?).

Compile given property ϕ into an automaton A¬ϕ accepting
precisely the models of ¬ϕ.

Take the “product” of T and A¬ϕ. (Pair states t of T and A
of A¬ϕ together iff the set of propositions p true in t is
exactly A ∩ P.)

Look for an “accepting” path in this product.

If such a path exists, this is a counter-example to the claim
that T satisfies the property ϕ.

If no such path exists, then T satisfies ϕ.

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Exercise

Check if the arbiter model satisfies

G (req2 =⇒ F ack2)

Construct a formula automaton that describes the models of
the given formula.

Construct the product of the arbiter transition system and
formula automaton.

Describe your counter-example if any.

Use Spin to model the arbiter and assert the above property,
and model-check it, and describe the counter-example
reported by Spin.

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Exercise

If p is the proposition “count 6= 2” then check if the mod-4
counter transition system satisfies the formula ¬(pU¬p).

Construct the product of the mod-4 counter transition system
and formula automaton for pU¬p.

Describe your counter-example if any.

Transition Systems Specifying properties in LTL LTL Semantics Model-Checking Algo

Resources

Spin webpage: http://spinroot.com/

Current version: Spin v6.4.6
Useful documentation:

Spin documentation (tutorial, reference manual, etc):
http://spinroot.com/spin/Man/.

Material for other topics:

Textbook by Huth and Ryan, Logic in Computer Science:
Specifications, semantics, and model-checking techniques for
LTL.

	Transition Systems
	Specifying properties in LTL
	LTL Semantics
	Model-Checking Algo

