

# Binary Search Trees

Deepak D'Souza

Department of Computer Science and Automation  
Indian Institute of Science, Bangalore.

6 Nov, 2017

# Outline

- 1 Motivation
- 2 Binary Search Trees
- 3 Implementing a BST
- 4 Operations on BST

## A motivating example

Google may want to store all taken email ids, and quickly tell a new user whether her choice of email id is available or not. There are around **500 million** user ids.

- Need to support both quick additions as well as membership queries.

Naive algorithm: Store entries in an array. What is the running time of the queries “add” and “is-member” ?

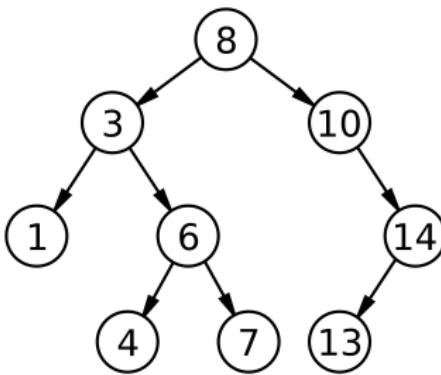
# Term frequency in a document [Kernighan and Ritchie]

Given a text document, find the set of words that occur in the document and the count of the number of times each word occurs.

*Now is the time for all good men to come to the aid of their party ...*

Using an array to store words as they are encountered in the text, takes time **quadratic** in the size of (number of words in) the document.

# Binary Search Trees

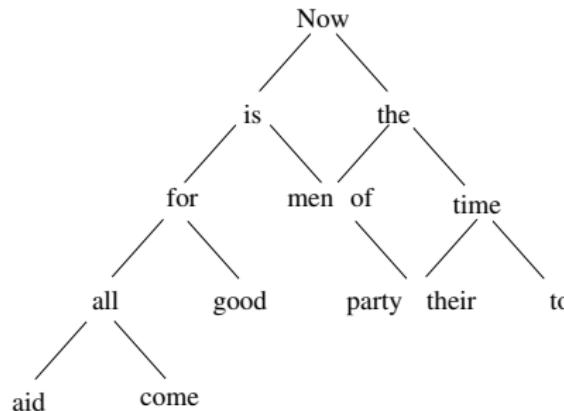


Can support *add* and *is-member* in  $O(\log n)$  worst-case time.

- Add and search is proportional to the **height** of the tree.
- Uses idea of keeping the tree **balanced**, so that height is  $\log n$ .
- $\log(500 \text{ million})$  is about 29.

# Document search using BST

*Now is the time for all good men to come to the aid of their party ...*



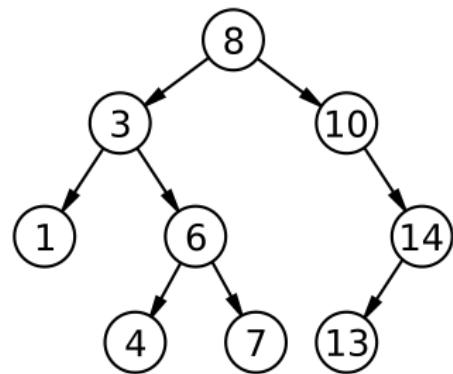
- Document indexing would take  $O(n \cdot \log n)$  time rather than  $O(n^2)$ .

# Binary Search Tree

- A **binary search tree** data-structure is a binary tree in which each node has a “key” value associated with it
- The tree satisfies the “**search tree property**:”

*The key values in the left subtree of a node are at most the key value of the node, which in turn is at most the key values of the nodes in the right subtree.*

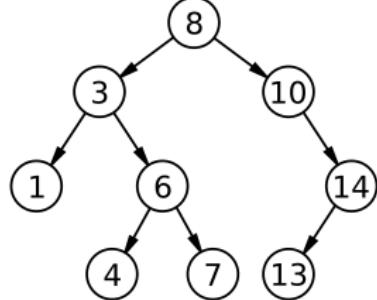
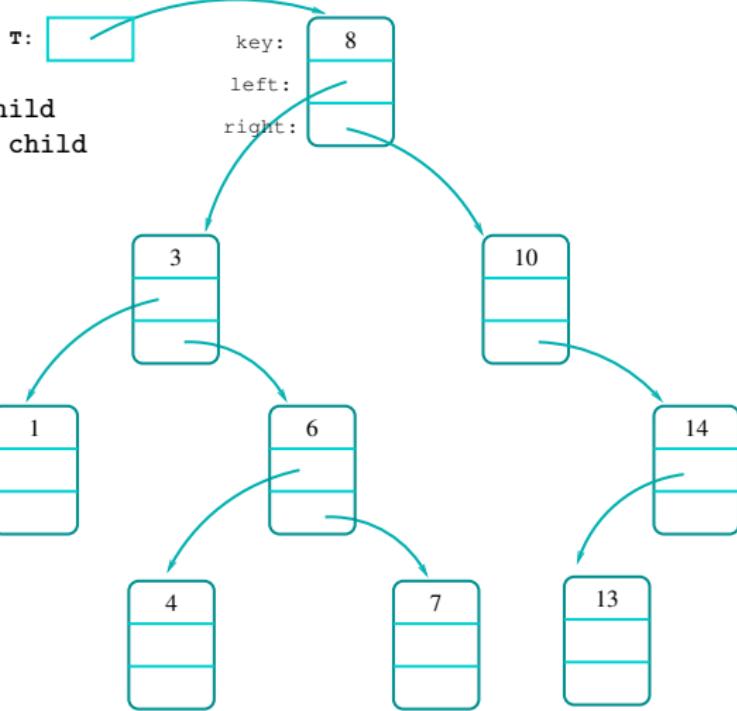
- The **height** of a tree  $T$ , denoted  $h(T)$ , is the number of edges on the longest path from root to leaf.



# Implementing a BST

```
struct node {  
    int key; // key value  
    struct node *left; // left child  
    struct node *right; // right child  
    struct node *p; // parent  
}
```

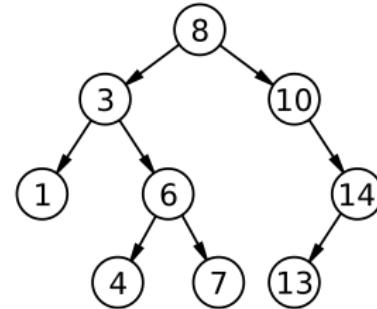
```
struct bst {  
    struct node *root;  
} *T; // BST T
```



# Exercise

Write a C program that creates the BST alongside.

```
void main() {  
    struct bst T;  
    struct node n1, n2, ..., n9;  
    ...  
}
```



# Operations supported by a BST

A binary search tree supports the following operations in worst-case time of  $O(\log h(T))$ :

- SEARCH (retrieve a given key from the tree).
- INSERT (insert a given key value in the tree).
- DELETE (insert a given key value in the tree).

Additional operations include

- PRINT-KEYS (Print out keys in sorted order).
- MIN (Return minimum key value in the tree).
- MAX (Return maximum key value in the tree).
- SUCCESSOR (successor key value of a given key).
- PREDECESSOR (predecessor key value of a given key).

## Search – Iterative version

Given a pointer  $x$  to a node in a BST, and a key value  $k$ , return a pointer to a node with key  $k$  if it exists in the subtree of  $x$ , else `NULL`.

```
Search(x, k) {
    while (x != NULL and x.key != k) {
        if (k < x.key)
            x := x.left;
        else
            x := x.right;
    }
    return x;
}
```

## Search – Recursive version

Given a pointer  $x$  to a node in a BST, and a key value  $k$ , return a pointer to a node with key  $k$  if it exists in the subtree of  $x$ , else `NULL`.

```
Search(x, k) { // x is ptr to a node
    if (x = NULL or x.key = k)
        return x;
    if (k < x.key)
        return Search(x.left, k);
    else
        return Search(x.right, k);
}
```

# Exercise

Write a function

```
struct node* minimum(struct node *x) {  
    ...  
}
```

which returns a pointer to a node with the smallest key value in the tree rooted at  $x$ .

# Printing in ascending order

```
Print(T) {  
    Inorder-Print(T.root);  
}  
  
Inorder-Print(x) {  
    if (x != NULL) {  
        Inorder-Print(x.left);  
        print(x.key);  
        Inorder-Print(x.right);  
    }  
}
```

# Insert

```
Insert(T, z) { // z is pointer to node to be inserted
    x := T.root;
    y := NULL;
    while (x != NULL) {
        y := x;
        if (z.key < x.key)
            x := x.left;
        else
            x := x.right;
    }
    if (y = NULL)
        T.root := z;
    elseif (z.key < y.key)
        y.left := z;
    else
        y.right := z;
    z.p := y;
}
```

# Successor

Given a node  $x$ , return (a pointer to) the node  $u$  such that  $x.key \leq u.key$  and  $u.key$  is the smallest such value.

```
Successor(x) { // x is the node whose succ is to be returned
    if (x.right != NULL)
        return Minimum(x.right);
    y := x.p;
    while (y != NULL and x = y.right) {
        x := y;
        y := y.p;
    }
    return y;
}
```

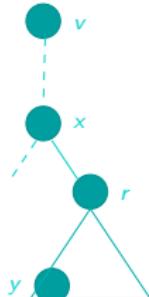
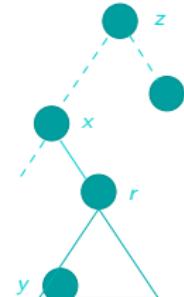
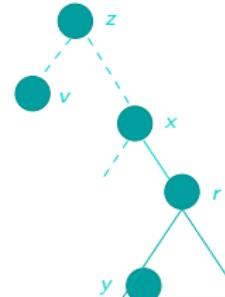
# Correctness of Successor

We assume that keys in the given tree are distinct.

Claim 1: If  $x$  has a non-empty right subtree, then minimum node  $y$  in this right subtree is the successor of  $x$ .

Argue that:

- If  $v$  is an ancestor of  $x$ , it cannot be successor.
- If  $v$  is not an ancestor of  $x$ , consider the least common ancestor of  $x$  and  $v$ , say  $z$ , and argue that  $v$  cannot be successor of  $x$ .



# Correctness of Successor

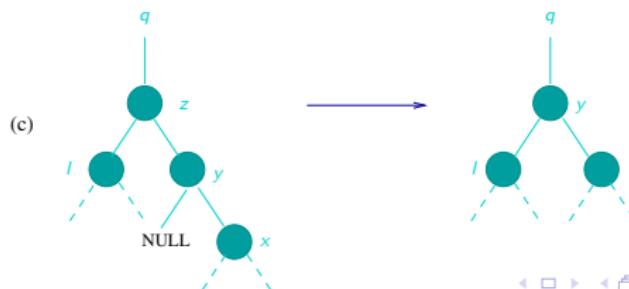
Similarly:

Claim 2: If  $x$  has an empty right subtree, then the smallest ancestor  $u$  of  $x$  such that  $x$  lies in  $u$ 's left subtree, is the successor of  $x$ .

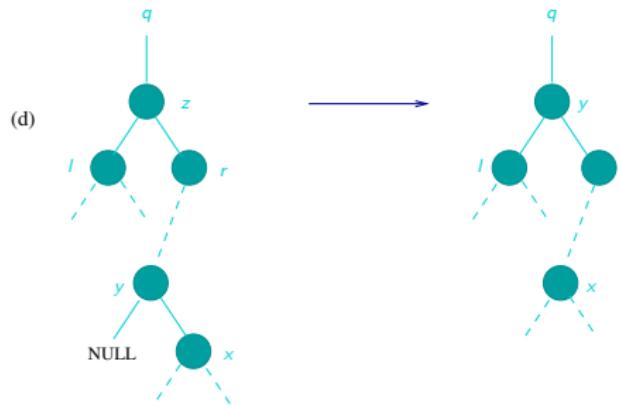
Argue that:

- If  $v$  is an ancestor of  $u$ , it cannot be successor.
- If  $v$  is an ancestor of  $x$  but not of  $u$ , it cannot be successor.
- If  $v$  is not an ancestor of  $x$ , consider the least common ancestor of  $x$  and  $u$ , say  $z$ , and argue that  $v$  cannot be successor of  $x$ .

# Delete operation: cases



# Delete operation: cases



# Delete

```
Delete(T, z) { // z is pointer to node to be deleted
    if (z.left = NULL)
        Transplant(T, z, z.right);
    elseif (z.right = NULL);
        Transplant(T, z, z.left);
    else {
        y := Minimum(z.right);
        if (y.p != z) {
            // y not child of z
            Transplant(T, y, y.right);
            y.right = z.right;
            (y.right).p = y
        }
        Transplant(T, z, y)
        y.left = z.left;
        (y.left).p = y;
    }
}

Transplant(T, u, v) {
    // transplant subtree at u
    // by subtree at v
    if (u.p = NULL)
        T.root = v;
    elseif (u = (u.p).left);
        (u.p).left = v;
    else
        (u.p).right = v;
    if (v != NULL)
        v.p = u.p;
}
```

# Balancing BST's

- In general the BST may not be “balanced”, leading to height that could be  $O(n)$  in the worst case.
- There are some popular schemes for maintaining the BST in a balanced form:
  - **Red-Black trees**: Nodes have either red or black colour, root and leaves are black, red nodes have black children, and paths from root to leaf have same number of black nodes.
  - **AVL trees**: for each node, height of its left and right subtrees differ by at most 1.

