Binary Search Trees

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

6 Nov, 2017



Outline

@ Motivation
© Binary Search Trees
© Implementing a BST

@ Operations on BST



Motivation

A motivating example

Google may want to store all taken email ids, and quickly tell a
new user whether her choice of email id is available or not. There
are around 500 million user ids.

@ Need to support both quick additions as well as membership
queries.

Naive algorithm: Store entries in an array. What is the running
time of the queries “add” and “is-member”?



Motivation

Term frequency in a document [Kernighan and Ritchie]

Given a text document, find the set of words that occur in the
document and the count of the number of times each word occurs.
Now is the time for all good men to come to the aid of

their party ...

Using an array to store words as they are encountered in the text,
takes time quadratic in the size of (number of words in) the
doucment.



Motivation

Binary Search Trees

Can support add and is-member in O(log n) worst-case time.
@ Add and search is proportional to the height of the tree.
@ Uses idea of keeping the tree balanced, so that height is log n.
@ log(500 million) is about 29.



Motivation

Document search using BST

Now is the time for all good men to come to the aid of
their party ...

Now
the
ANVAN
for men of time
SN NN
all good party their
/N
aid come

e Document indexing would take O(n - log n) time rather than

O(n?).



Binary Search Trees

Binary Search Tree

@ A binary search tree data-structure is a
binary tree in which each node has a
“key" value associated with it

@ The tree satisfies the “search tree
property:”

The key values in the left subtree of a
node are at most the key value of the
node, which in turn is at most the key
values of the nodes in the right
subtree.

@ The height of a tree T, denoted h(T),
is the number of edges on the longest
path from root to leaf.



Implementing a BST

Implementing a BST

struct node { T:
int key; // key value
struct node *left; // left child
struct node *right; // right child
struct node *p; // parent

}

struct bst {

struct node *root;
} *T; // BST T ;\ _"\

—




Implementing a BST

Exercise

Write a C program that creates the
BST alongside.

void main() {
struct bst T;
struct node ni1, n2, ..., n9;




Operations on BST

Operations supported by a BST

A binary search tree supports the following operations in
worst-case time of O(log h(T)):

@ SEARCH (retrieve a given key from the tree).
o INSERT (insert a given key value in the tree).

e DELETE (insert a given key value in the tree).

Additional operations include
e PRINT-KEYS (Print out keys in sorted order).
e MIN (Return minimum key value in the tree).
@ MAX (Return maximum key value in the tree).
@ SUCCESSOR (successor key value of a given key).
e PREDECESSOR (predecessor key value of a given key).



Operations on BST

Search — lterative version

Given a pointer x to a node in a BST, and a key value k, return a
pointer to a node with key k if it exists in the subtree of x, else
NULL.

Search(x, k) {
while (x != NULL and x.key != k) {
if (k < x.key)
X := x.left;
else
X

x.right;
}

return Xx;



Operations on BST

Search — Recursive version

Given a pointer x to a node in a BST, and a key value k, return a
pointer to a node with key k if it exists in the subtree of x, else
NULL.

Search(x, k) { // x is ptr to a node
if (x = NULL or x.key = k)
return x;
if (k < x.key)
return Search(x.left, k);
else
return Search(x.right, k);



Operations on BST

Exercise

Write a function
struct node* minimum(struct node *x) {

}

which returns a pointer to a node with the smallest key value in
the tree rooted at x.



Operations on BST

Printing in ascending order

Print(T) {
Inorder-Print(T.root);

3

Inorder-Print(x) {
if (x != NULL) {
Inorder-Print (x.left);
print(x.key);
Inorder-Print(x.right);
}
}



Insert

Operations on BST

Insert(T, z) { // z is pointer to node to be inserted

1

x := T.root;

y := NULL;

while (x != NULL) {
y 1= X5

if (z.key < x.key)
X := x.left;
else
X := x.right;

X

if (y = NULL)
T.root := z;

elseif (z.key < y.key)
y.left := z;

else
y.right := z;

Z.p = Y;



Operations on BST

Successor

Given a node x, return (a pointer to) the node u such that
x.key < u.key and u.key is the smallest such value.

Successor(x) { // x is the node whose succ is to be returned
if (x.right != NULL)
return Minimum(x.right);
y 1= X.p;
while (y != NULL and x = y.right) {
X 1= y;
y :=V¥-p;
}
return y;

}



Operations on BST

Correctness of Successor

We assume that keys in the given tree are distinct.

Claim 1: If x has a non-empty right subtree, then minimum node y
in this right subtree is the successor of x.
Argue that:

@ If v is an ancestor of X, it cannot be successor.

@ If v is not an ancestor of x, consider the least common
ancestor of x and v, say z, and argue that v cannot be
successor of x.



Operations on BST

Correctness of Successor

Similarly:
Claim 2: If x has an empty right subtree, then the smallest
ancestor u of x such that x lies in u's left subtree, is the successor
of x.
Argue that:

@ If v is an ancestor of u, it cannot be successor.

@ If v is an ancestor of x but not of u, it cannot be successor.

@ If v is not an ancestor of x, consider the least common
ancestor of x and u, say z, and argue that v cannot be
successor of x.



Operations on BST

Delete operation:

®) [ — [ X



Operations on BST

Delete operation: cases

NULL . X



Operations on BST

Delete

Delete(T, z) { // z is pointer to node to be deleted
if (z.left = NULL)
Transplant (T, z, z.right);

elseif (z.right = NULL); Transplant (T, u, v) {
Transplant(T, z, z.left); // transplant subtree at u
else { // by subtree at v
y := Minimum(z.right); if (u.p = NULL)
if (y.p !'= z) { T.root = v;
// y not child of z elseif (u = (u.p).left);
Transplant(T, y, y.right); (u.p) .left = v;
y.right = z.right; else
(y.right) .p = y (u.p) .right = v;
} if (v !'= NULL)
Transplant(T, z, y) V.p = u.p;
y.left = z.left; }

(y.left).p = y;



Operations on BST

Balancing BST's

@ In general the BST may not be "balanced”, leading to height
that could be O(n) in the worst case.

@ There are some popular schemes for maintaining the BST in a
balanced form:

o Red-Black trees: Nodes have either red or black colour, root
and leaves are black, red nodes have black children, and paths
from root to leaf have same number of black nodes.

e AVL trees: for each node, height of its left and right subtrees
differ by at most 1.



Operations on BST




	Motivation
	Binary Search Trees
	Implementing a BST
	Operations on BST

