Undecidable problems about CFL's

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

26 November 2011

Outline

1 Some Decidable/Undecidable problems about CFL's

Problem (a)

Is it decidable whether a given CFG accepts a non-empty language?

Problem (a)

Is it decidable whether a given CFG accepts a non-empty language?

Yes, it is. We can find out which non-terminals of G can derive a terminal string: i.e. there exists a derivation $X \stackrel{*}{\Rightarrow} w$ for some terminal string w.

- Maintain a set of "marked" non-terminals. Initially $N_{marked} = \emptyset$.
- Mark all non-terminals X such that $X \to w$ is a production in G.
- Repeat untill we are unable to mark any more non-terminals:
 - Mark X if there exists a production $X \to \alpha$ such that $\alpha \in (A \cup N_{marked})^*$.
- Return "Non-emtpy" if $S \in N_{marked}$, else return "Empty."

Problem (b)

Is it decidable whether a given CFG accepts a finite language?

Problem (b)

Is it decidable whether a given CFG accepts a finite language?

Yes, it is.

- Convert G to CNF.
- Check if there is a parse tree of depth n+1 where n is the number of non-terminals. L(G) is infinite iff there is a parse tree of depth n+1 or more.

Problem (c)

Is it decidable whether a given CFG G is universal. That is, is $L(G) = A^*$?

Problem (c)

Is it decidable whether a given CFG G is universal. That is, is $L(G) = A^*$?

No, it is undecidable.

Undecidability of universality of a CFL

• We can reduce ¬HP to the problem of universality of a CFG:

$$\neg HP \leq Universality of CFG.$$

• Given a TM M and input x, we can construct a CFG $G_{M,x}$ over an input alphabet Δ such that

M does not halt on x iff
$$G_{M,x}$$
 is universal (i.e. $L(G_{M,x}) = \Delta^*$).

• Hence the problem is non-r.e.

Encoding computations of M on x

Let $M = (Q, A, \Gamma, s, \delta, \vdash, \flat, t, r)$ be a given TM and let $x = a_1 a_2 \cdots a_n$ be an input to it. We can represent a configuration of M as follows:

$$\vdash b_1 b_2 b_3 \cdots b_m$$

Thus a configuration is encoded over the alphabet $\Gamma \times (Q \cup \{-\})$.

Encoding computations of M on x

A computation of M on x is string of the form

$$c_0 \# c_1 \# \cdots \# c_N \#$$

such that

- **1** Each c_i is the encoding of a configuration of M.
- ② c_0 is (encoding of) the start configuration of M on x.

$$\vdash$$
 a_1 a_2 a_3 \cdots a_n s $-$

- **3** Each $c_i \stackrel{1}{\Rightarrow} c_{i+1}$, and

Describing $Valcomp_{M,x}$

The language $Valcomp_{M,x}$ over the alphabet

$$\Delta = \Gamma \times (Q \cup \{-\}) \cup \{\#\}$$

can be described as the intersection of

- $L_1 = (C \cdot \#)^*$ where C is the set of valid encodings of configurations of M.
- $L_2 = \{c_0 \# \cdots \# c_N \# \mid N \geq 1, \ c_i \stackrel{1}{\Rightarrow} c_{i+1}\}.$

Hence $\neg Valcomp_{M,x} = \overline{L_1} \cup \overline{L_2}$.

Claim: $\neg Valcomp_{M,x}$ is a CFL.

Problem (d)

Is it decidable whether the intersection of 2 given CFG's is a CFL?

Problem (d)

Is it decidable whether the intersection of 2 given CFG's is a CFL?

No, it is undecidable. Given M and x, describe 2 CFL's that accept computations of the form:

Problem (e)

Is it decidable whether the complement of a given CFL is a CFL?

Problem (e)

Is it decidable whether the complement of a given CFL is a CFL?

No, it is undecidable.

Exercise!