Overview of
E0222: Automata and Computability

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

August 5, 2013



What we study

What this course is about

What we study
@ Models of computation and their expressive power.
@ Formal notion of an “algorithm” and “computable” functions.

@ Theory of computability.



What we study

Different State Machines
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@ Finite-State Automata
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@ Pushdown Automata

@ Turing Machines
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What we study

Kind of results we study

@ Expressive power of the models.
e What kind of languages do they recognize?
e What kind of languages can they not recognize?
@ Characterisations of the class of languages they recognize:
o Myhill-Nerode theorem.
e Biichi's logical characterisation.
e Parikh's characterisation of Context-Free Languages.
o Existence of languages even Turing machines cannot recognize
(undecidable languages).



Why study automata theory?

Why study automata theory?

Corner stone of many subjects in CS:
@ Compilers
o Lexical analysis, parsing, regular expression search

@ Digital circuits (state minimization, analysis).
© Mathematical Logic (decision procedures for logical problems).
© Complexity Theory (algorithmic hardness of problems)
© Formal Verification
o Is L(A) C L(B)?
@ Program Analysis



Why study automata theory?

Why a language-theoretic view?

We usually study these machine models in terms of the languages
they accept.

@ This generalises problems like reachability and satisfaction of
linear-time properties, for computer systems (programs,
protocols, circuits) which can be modelled using these classes.

e Notion of computability (function f is computable iff its
induced language L is computable/recursive).



Why study automata theory?

Uses in Verification and Logic

@ Useful problems for Verification
o Is L(A) empty?
o Is L(A) C L(B)?
e Is a particular configuration of a pushdown automaton
reachable?

@ System models are natural extensions of automata

e Programs with no dynamic memory allocation, no procedures
= Finite State systems.

e No dynamic memory allocation = Pushdown systems.

o General program = Turing machine.

e Programs with integer variables = counter machine.

© Decide satisfiability problems for logics by translating them
into automata.



Why study automata theory?

Uses in computability

@ Notion of a function being computable.
@ Formalize the notion of an “algorithm” or a program.
@ Connection with language recognition
e A function f can be represented as a language
Le ={u#tv | f(u) = v}
e f is computable iff Ls is decidable.
@ Existence of “uncomputable” or “unsolvable” problems.

@ Does a given C program ever terminate?



Some results we do

Overview of what we do

Machines and grammars:
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Some results we do

Overview of what we do
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The Chomsky Hierarchy



Some results we do

Some topics which may be new to you

Myhill-Nerode Theorem:

Every regular language has a canonical DFA accepting it.

Some consequences:
@ Any DFA for L is a refinement of its canonical DFA.

@ “minimal” DFA’s for L are isomorphic.



Some results we do

Blchi's logical characterisation of automata

@ Describe properties of strings in a logical language
Eg. “For all positions x in a word which are labelled a, there
is a later position labelled b"

Vx(Qa(x) = 3y(y > x & Qp(y)))-

o Biichi's result:
A language is regular iff it is definable by a sentence
in this logic.



Some results we do

First-Order logic of (N, <).

o Interpreted over N = {0,1,2,3,...}.

@ What you can say:
x <y, dxp, Vxp, -, &, V.

@ Examples:
Q VxIy(x < y).
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Some results we do

First-Order logic of (N, <).

o Interpreted over N = {0,1,2,3,...}.
@ What you can say:

x <y, dxp, Vxp, -, &, V.

@ Examples:
Q VxIy(x < y).
Q Vx3dy(y < x).
Q Ix(Vy(y < x)).
Q YxVy((x <y) = Fz(x <z <y)).
@ Question: Is there an algorithm to decide if a given FO(N, <)
sentence is true or not?



Some results we do

Ultimate periodicity of regular languages

Ultimate periodicity

For any regular language L, len(L) = {|w| : we L} is
ultimately periodic.
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Show properties like “There exist languages L such that neither L
nor its complement contain an infinite regular language.”



Some results we do

Parikh's Theorem for CFL's

Y(w): “Letter-count” of a string w:

Eg : ¢(aabab) = (3,2).

If L is a context-free language, then (L) is semi-linear
(Every CFL is letter-equivalent to a regular language).

«(@,1),(1,2))




Some results we do

Reachable configurations of a Pushdown automaton

The set of reachable configurations of a Pushdown
automaton is regular.

Useful for program analysis and verification of pushdown systems.



Some results we do

Rice's Theorem

Every non-trivial property of languages accepted by
Turing Machines is undecidable.

Can show that checking whether a given TM accepts a regular
language is undecidable.



Some results we do

Godel's Incompleteness result

There cannot be a sound and complete proof system for
first-order arithmetic.



Some results we do

What we can say in FO(N, +, -)

@ “Every number has a successor”

Vnim(m = n+1).

“Every number has a predecessor”
Ynim(n = m+1).
@ “There are only finitely many primes”

AnVp(prime(p) = p < n).

“There are infinitely many primes”

Vn3p(prime(p) & p > n).



Some results we do

Godel's Incompleteness result

There cannot be a sound and complete proof system for
first-order arithmetic.

Formal language-theoretic proof: Th(N, +,.) is not even
recursively enumerable.



Course details

Course details

Weightage: 40% assignments + seminar, 20% midsem exam,
40% final exam.

@ Assignments to be done on your own.

@ Dishonesty Policy: Any instance of copying in an assignment
will fetch you a 0 in that assignment + one grade reduction.

@ Seminar (in pairs) can be chosen from list on course webpage
or your own topic.

o Course webpage:
www.csa.iisc.ernet.in/"deepakd/atc-2013/atc.html

@ Teaching assistants for the course: Himanshu Arora and
Rashmi Mudduluru.

@ Those interested in crediting/auditing please send me an
email so that | can add you to the course mailing list.
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