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Closure properties

Class of Regular languages is closed under

Complement, intersection, and union.
Concatenation, Kleene iteration.

Non-deterministic Finite-state Automata (NFA) = DFA.

All strings over A

L M

All languages over A

Regular
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Closure under complementation

Idea: Flip final states.

Formal construction:

Let A = (Q, s, δ,F ) be a DFA over alpahet A.
Define B = (Q, s, δ,Q − F ).
Claim: L(B) = A∗ − L(A).

Proof of claim

L(B) ⊆ A∗ − L(A).

w ∈ L(B) =⇒ δ̂(s,w) ∈ (Q − F ).

=⇒ δ̂(s,w) 6∈ F
=⇒ w 6∈ L(A)
=⇒ w ∈ A∗ − L(A).

L(B) ⊇ A∗ − L(A).
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Closure under intersection

Product construction. Given DFA’s A = (Q, s, δ,F ),
B = (Q ′, s ′, δ′,F ′), define product C of A and B:

C = (Q × Q ′, (s, s ′), δ′′,F × F ′),

where δ′′((p, p′), a) = (δ(p, a), δ′(p′, a)).

Product construction example
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Correctness of product construction

Claim: L(C) = L(A) ∩ L(B).

Proof of claim L(C) = L(A) ∩ L(B).

L(C) ⊆ L(A) ∩ L(B).

w ∈ L(C) =⇒ δ̂′′((s, s ′),w) ∈ F × F ′.

=⇒ (δ̂(s,w), δ̂′(s ′,w)) ∈ F × F ′ (by subclaim)

=⇒ δ̂(s,w) ∈ F and δ̂′(s ′,w) ∈ F ′

=⇒ w ∈ L(A) and w ∈ L(B)
=⇒ w ∈ L(A) ∩ L(B).

L(C) ⊇ L(A) ∩ L(B).

Subclaim: δ̂′′((s, s ′),w) = (δ̂(s,w), δ̂′(s ′,w)).
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Closure under union

Follows from closure under complement and intersection since

L1 ∪ L2 = L1 ∩ L2.

Can also do directly by product construction: Given DFA’s
A = (Q, s, δ,F ), B = (Q ′, s ′, δ′,F ′), define C:
C = (Q × Q ′, (s, s ′), δ′′, (F × Q ′) ∪ (Q × F ′)), where
δ′′((p, p′), a) = (δ(p, a), δ(p′, a)).

Union construction
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Principle of Mathematical Induction

N = {0, 1, 2 . . .}
P(n): A statement P about a natural number n.
Example:

P(n) = “n is even.”
P1(n) = “Sum of the numbers 1 . . . n equals n(n + 1)/2.”
P2(n) = “For all w ∈ A∗, if length of w is n then

δ̂′′((s, s ′),w) = (δ̂(s,w), δ̂′(s ′,w)).”

Principle of Induction

If a statement P about natural numbers

is true for 0 (i.e P(0) is true), and,

is true for n + 1 whenever it is true for n (i.e.
P(n) =⇒ P(n + 1))

then P is true of all natural numbers (i.e. “For all n, P(n)” is
true).
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Proof of subclaim

Exercise: Prove the Subclaim:

δ̂′′((s, s ′),w) = (δ̂(s,w), δ̂′(s ′,w)).

using induction.
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Nondeterministic Finite-state Automata (NFA)

Allows multiple start states.

Allows more than one transition from a state on a given letter.

Non-deterministic transitions
a

a
p

q

r

A word is accepted if there is some path on it from a start to
a final state.
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Example NFA’s

NFA for “contains abb as a subword”

a

a b

a, b

ab abbε
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NFA definition

Mathematical representation of NFA

A = (Q,S ,∆,F ), where S ⊆ Q, and ∆ : Q × A→ 2Q .

Define relation p
w→ q which says there is a path from state p

to state q labelled w .

p
ε→ p

p
ua→ q iff there exists r ∈ Q such that p

u→ r and q ∈ ∆(r , a).

Define L(A) = {w ∈ A∗ | ∃s ∈ S , f ∈ F : s
w→ f }.

NFA → DFA: Subset construction

Example: determinize NFA for “contains abb.”
Formal construction
Correctness
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Closure under concatenation and Kleene iteration

Concatenation of languages:

L ·M = {u · v | u ∈ L, v ∈ M}.

Kleene iteration of a language:

L∗ = {ε} ∪ L ∪ L2 ∪ L3 ∪ · · · ,

where

Ln = L · L · · · L (n times).
= {w1 · · ·wn | each wi ∈ L}.
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