Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

23 August 2013

- 1 Homomorphisms
- 2 Two results regarding homomorphisms
- Some applications
- Proof of results

Homomorphism from Σ^* to Δ^*

A map

$$h: \Sigma^* \to \Delta^*$$

satisfying:

- $b(u \cdot v) = h(u) \cdot h(v).$

• $h: \{a, b\}^* \to \{a\}^*$ given by $h(w) = a^{\#_a(w)}$.

• So h(aabbabb) = aaa.

Examples

- $h: \{a, b\}^* \to \{a\}^*$ given by $h(w) = a^{\#_a(w)}$.
- So h(aabbabb) = aaa.

Some observations:

• First clause in definition of homomorphism is redundant

Examples

- $h: \{a,b\}^* \to \{a\}^*$ given by $h(w) = a^{\#_a(w)}$.
- So h(aabbabb) = aaa.

Some observations:

- First clause in definition of homomorphism is redundant
 - $h(\epsilon \cdot \epsilon) = h(\epsilon) \cdot h(\epsilon)$
 - That is $h(\epsilon) = h(\epsilon) \cdot h(\epsilon)$.
 - Only ϵ can satisfy this equation.

Examples

- $h: \{a, b\}^* \to \{a\}^*$ given by $h(w) = a^{\#_a(w)}$.
- So h(aabbabb) = aaa.

Some observations:

- First clause in definition of homomorphism is redundant
 - $h(\epsilon \cdot \epsilon) = h(\epsilon) \cdot h(\epsilon)$
 - That is $h(\epsilon) = h(\epsilon) \cdot h(\epsilon)$.
 - Only ϵ can satisfy this equation.
- h is determined completely by h on Σ .
 - For example above: h is determined by

$$a \mapsto a$$

Homomorphisms preserve regular sets

Let $h: \Sigma^* \to \Delta^*$ be a homomorphism. Then

Fact 1

If $L \subseteq \Sigma^*$ is regular, then so is h(L).

Homomorphisms preserve regular sets

- Define $h^{-1}: \Delta^* \to 2^{\Sigma^*}$ by $h^{-1}(w) = \{u \in \Sigma^* \mid h(u) = w\}.$
- Define $h^{-1}(M) = \bigcup_{w \in M} h^{-1}(w)$.

Fact 2

If $M \subseteq \Delta^*$ is regular, then so is $h^{-1}(M)$.

Some applications: NFA's with ϵ -transitions

• NFA with ϵ -labelled transitions:

$$\Delta: Q \times (A \cup \{\underline{\epsilon}\}) \to 2^Q$$
.

• Accepts a word w if there is a path from a start state to a final state labelled by a word u such that h(u) = w, where

$$a \mapsto a$$
 $\epsilon \mapsto \epsilon$.

- Claim: NFA's with ϵ -transitions accept only regular sets.
- Observe that L(A) = h(L(A')), where A' is A viewed as running over the alphabet $A \cup \{\epsilon\}$.

A wrong application

• Consider homomorphism h on $\{a, b\}^*$, given by:

$$b \mapsto a$$

- Let $L = \{a^n b^n \mid n \ge 0\}$.
- Then $h(L) = \{a^{2n} \mid n \ge 0\}.$
- Can we conclude that L is regular?

Fact 1

If $L \subseteq \Sigma^*$ is regular, then so is h(L).

Fact 1

If $L \subseteq \Sigma^*$ is regular, then so is h(L).

Use regular expressions.

Fact 1

If $L \subseteq \Sigma^*$ is regular, then so is h(L).

Use regular expressions.

Fact 2

If $M \subseteq \Delta^*$ is regular, then so is $h^{-1}(M)$.

Fact 1

If $L \subseteq \Sigma^*$ is regular, then so is h(L).

Use regular expressions.

Fact 2

If $M \subseteq \Delta^*$ is regular, then so is $h^{-1}(M)$.

Construct DFA for $h^{-1}(M)$ using DFA \mathcal{A} for M.