Pumping Lemma and Ultimate Periodicity

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

21 August 2012
Outline

1. Pumping Lemma
2. Ultimate Periodicity
Two necessary conditions for regularity

- **Pumping Lemma**: Any “long enough” word in a regular language must have a “pump.”
- Lengths of words in a regular language are “ultimately periodic.”
Pumping lemma for regular languages

Based on a simple observation:
In a given a DFA A, if a path p in it is longer than the number of states in A then p must have a loop in it.

So if uvw is accepted along this path, then so is uw, uv^2w,
Pumping Lemma statement

For any regular language L there exists a constant k, such that for any word $t \in L$ of the form xyz with $|y| \geq k$, there exist strings u, v, w such that:

1. $y = uvw$, $v \neq \epsilon$, and
2. $xuv^iwz \in L$, for each $i \geq 0$.

Pumping Lemma
Game induced by L

A play in G_L:

<table>
<thead>
<tr>
<th>Demon</th>
<th>You</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides a k.</td>
<td>Choose $t \in L$, with decomposition x, y, z, and $</td>
</tr>
<tr>
<td>Provides decomposition of y into uvw, with $v \neq \epsilon$.</td>
<td>Choose $i \geq 0$.</td>
</tr>
</tbody>
</table>

Demon wins the play if $xuv^i w z \in L$, otherwise You win.
Game induced by L

A play in G_L:

<table>
<thead>
<tr>
<th>Demon</th>
<th>You</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides a k.</td>
<td>Choose $t \in L$, with decomposition x, y, z, and $</td>
</tr>
<tr>
<td>Provides decomposition of y into uvw, with $v \neq \epsilon$.</td>
<td>Choose $i \geq 0$.</td>
</tr>
</tbody>
</table>

Demon wins the play if $xuv^i wz \in L$, otherwise You win.

- If L is regular then Demon has a winning strategy in G_L.
- Equivalently: If You have a winning strategy in G_L, then L is not regular.
Pumping Lemma is *not* a sufficient condition for regularity.

- There exist non-regular languages L for which the Demon has a winning strategy in G_L.
Example applications of Pumping Lemma

Describe Your strategy to beat the Demon in the games for:

- \(\{a^n b^n \mid n \geq 0\} \).
- \(\{a^{2n} \mid n \geq 0\} \).
Two problems to think about

1. If $L \subseteq \{a\}^*$, show that L^* is regular.
2. Show that there exists a language $L \subseteq A^*$ such that neither L nor its complement $A^* - L$ contains an infinite regular set.
A subset \(X \) of \(\mathbb{N} \) is **ultimately periodic** if

- There exist \(n_0 \geq 0, \ p \geq 1 \) in \(\mathbb{N} \), such that for all \(m \geq n_0 \),
 \[
 m \in X \ \text{iff} \ m + p \in X.
 \]
A subset X of \mathbb{N} is **ultimately periodic** if

- There exist $n_0 \geq 0$, $p \geq 1$ in \mathbb{N}, such that for all $m \geq n_0$,
 \[m \in X \iff m + p \in X. \]

- Or equivalently:
 There exist $n_0 \geq 0$, $p \geq 1$ in \mathbb{N}, such that for all $m \geq n_0$,
 \[m \in X \implies m + p \in X. \]
A subset X of \mathbb{N} is **ultimately periodic** if

- There exist $n_0 \geq 0$, $p \geq 1$ in \mathbb{N}, such that for all $m \geq n_0$,

 $$m \in X \iff m + p \in X.$$

- Or equivalently:

 There exist $n_0 \geq 0$, $p \geq 1$ in \mathbb{N}, such that for all $m \geq n_0$,

 $$m \in X \implies m + p \in X.$$

- Or equivalently: $X = F \cup A_1 \cup \cdots \cup A_k$, for some finite set F and arithmetic progressions A_i of same period p.
Examples of u.p. sets

- \{10, 12, 14, 16, \ldots\} is u.p.
Examples of u.p. sets

- \{10, 12, 14, 16, \ldots\} is u.p.
- \{10, 12, 14, 16, \ldots\} \cup \{5, 10, 15, \ldots\} is u.p.
Examples of u.p. sets

- \{10, 12, 14, 16, \ldots\} is u.p.
- \{10, 12, 14, 16, \ldots\} \cup \{5, 10, 15, \ldots\} is u.p.
- \{0, 2, 4, 8, 16, 32, \ldots\} is not u.p.
Ultimate Periodicity of Regular Languages

Claim

If L is a regular language then $\text{lengths}(L)$ is an ultimately periodic set.

Proof:

- Argue for language over single-letter alphabet.
- Infer for general language.
What does a DFA on single-letter alphabet look like?

\[
\text{lengths}(L(A)) = \{2\} \cup \{5, 11, 17, \ldots\} \cup \{8, 14, 20, \ldots\}.
\]
What does a DFA on single-letter alphabet look like?

\[\text{lengths}(L(A)) = \{2\} \cup \{5, 11, 17, \ldots\} \cup \{8, 14, 20, \ldots\}. \]