Pumping Lemma and Ultimate Periodicity

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

21 August 2012

Pumping Lemma

2 Ultimate Periodicity

Two necessary conditions for regularity

- Pumping Lemma: Any "long enough" word in a regular language must have a "pump."
- Lengths of words in a regular language are "ultimately periodic."

Pumping lemma for regular languages

Based on a simple observation:

In a given a DFA A, if a path p in it is longer than the number of states in A then p must have a loop in it.

So if uvw is accepted along this path, then so is uw, uv^2w ,

Pumping lemma statement

Pumping Lemma

For any regular language L there exists a constant k, such that for any word $t \in L$ of the form xyz with $|y| \ge k$, there exist strings u, v, w such that:

- $\mathbf{0}$ $y = uvw, v \neq \epsilon$, and
- 2 $xuv^iwz \in L$, for each $i \ge 0$.

Game induced by L

A play in G_L :

Demon	You
Provides a k .	
	Choose $t \in L$, with
	decomposition x, y, z ,
	Choose $t \in L$, with decomposition x, y, z , and $ y \ge k$.
Provides decomposition of	
y into uvw , with $v \neq \epsilon$.	
	Choose $i \geq 0$.

Demon wins the play if $xuv^iwz \in L$, otherwise You win.

Game induced by L

A play in G_L :

Demon	You
Provides a k .	
	Choose $t \in L$, with
	decomposition x, y, z ,
	Choose $t \in L$, with decomposition x, y, z , and $ y \ge k$.
Provides decomposition of	
y into <i>uvw</i> , with $v \neq \epsilon$.	
	Choose $i \geq 0$.

Demon wins the play if $xuv^iwz \in L$, otherwise You win.

- If L is regular then Demon has a winning strategy in G_L .
- Equivalently: If You have a winning strategy in G_L , then L is not regular.

Pumping Lemma is not a sufficient condition for regularity

• There exist non-regular languages L for which the Demon has a winning strategy in G_L .

Example applications of Pumping Lemma

Describe Your strategy to beat the Demon in the games for:

- $\{a^nb^n \mid n \ge 0\}.$
- $\{a^{2^n} \mid n \geq 0\}.$

Two problems to think about

- **1** If $L \subseteq \{a\}^*$, show that L^* is regular.
- ② Show that there exists a language $L \subseteq A^*$ such that neither L nor its complement $A^* L$ contains an infinite regular set.

Ultimately periodic sets

A subset X of \mathbb{N} is ultimately periodic if

• There exist $n_0 \ge 0$, $p \ge 1$ in \mathbb{N} , such that for all $m \ge n_0$,

$$m \in X \text{ iff } m + p \in X.$$

Ultimately periodic sets

A subset X of \mathbb{N} is ultimately periodic if

• There exist $n_0 \ge 0$, $p \ge 1$ in \mathbb{N} , such that for all $m \ge n_0$,

$$m \in X$$
 iff $m + p \in X$.

• Or equivalently: There exist $n_0 \ge 0$, $p \ge 1$ in \mathbb{N} , such that for all $m \ge n_0$,

$$m \in X \implies m + p \in X$$
.

Ultimately periodic sets

A subset X of \mathbb{N} is ultimately periodic if

• There exist $n_0 \ge 0$, $p \ge 1$ in \mathbb{N} , such that for all $m \ge n_0$,

$$m \in X$$
 iff $m + p \in X$.

• Or equivalently: There exist $n_0 \ge 0$, $p \ge 1$ in \mathbb{N} , such that for all $m \ge n_0$,

$$m \in X \implies m + p \in X$$
.

• Or equivalently: $X = F \cup A_1 \cup \cdots \cup A_k$, for some finite set F and arithmetic progressions A_i of same period p.

Examples of u.p. sets

• $\{10, 12, 14, 16, \ldots\}$ is u.p.

Examples of u.p. sets

- $\{10, 12, 14, 16, \ldots\}$ is u.p.
- $\{10,12,14,16,\ldots\} \cup \{5,10,15,\ldots\}$ is u.p.

Examples of u.p. sets

- $\{10, 12, 14, 16, \ldots\}$ is u.p.
- $\{10,12,14,16,\ldots\} \cup \{5,10,15,\ldots\}$ is u.p.
- $\{0, 2, 4, 8, 16, 32, \ldots\}$ is not u.p.

Ultimate Periodicity of Regular Languages

Claim

If L is a regular language then lengths(L) is an ultimately periodic set.

Proof:

- Argue for language over single-letter alphabet.
- Infer for general language.

What does a DFA on single-letter alphabet look like?

What does a DFA on single-letter alphabet look like?

$$lengths(L(A)) = \{2\} \cup \{5, 11, 17, \ldots\} \cup \{8, 14, 20, \ldots\}.$$