Reachability in Pushdown Systems

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

18 October 2013

Outline

- Pushdown Systems
- Reachability in Pushdown Systems
- Saturation algorithm for Pre*
- Correctness of saturation algo

Pushdown Systems

A pushdown system is of the form

$$\mathcal{P} = (P, \Gamma, \Delta)$$

where

- P is a finite set of states
- Γ is the stack alphabet,
- $\Delta \subseteq P \times \Gamma \times P \times \Gamma^*$ is the non-deterministic transition relation.
 - Each transition is of the form $pa \rightarrow q\gamma$.

A pushdown system is thus like a PDA but with no input and no initial/final states.

Can model several useful classes of systems

- PDA with input abstracted away
- Programs with finite state but with procedure calls (or "Boolean Programs")

Example Pushdown System

Example pushdown system \mathcal{P}_1

$$p_0a \rightarrow p_1ba$$

 $p_1b \rightarrow p_2ca$
 $p_2c \rightarrow p_0b$
 $p_0b \rightarrow p_0\epsilon$.

Sequence of configurations reachable from p₂ cbba:

$$p_2cbba \stackrel{1}{\Rightarrow} p_0bbba \stackrel{1}{\Rightarrow} p_0bba \stackrel{1}{\Rightarrow} p_0ba \stackrel{1}{\Rightarrow} p_0a \stackrel{1}{\Rightarrow} p_1ba \stackrel{1}{\Rightarrow} p_2caa \stackrel{1}{\Rightarrow} p_0baa$$

Configuration graph induced by a pushdown system

 \mathcal{P} induces a (possibly infinite) graph whose

- nodes are configurations of \mathcal{P} represented by strings in $P \cdot \Gamma^*$
- edges are $c \to c'$ iff $c \stackrel{1}{\Rightarrow} c'$ in \mathcal{P} .

Given a set of configurations C of \mathcal{P} we can define

$$Pre^*(C) = \{c \mid \exists c' \in C : c \stackrel{*}{\Rightarrow} c'\}.$$

And similarly

$$Post^*(C) = \{c' \mid \exists c \in C : c \stackrel{*}{\Rightarrow} c'\}.$$

Reachability in Pushdown Systems

Theorem (Büchi, 1964)

Let \mathcal{P} be a pushdown system, and let C be a regular set of configurations of \mathcal{P} . Then $Pre^*(C)$ and $Post^*(C)$ are also regular sets. Moreover given an NFA for C we can construct an NFA accepting $Pre^*(C)$ and $Post^*(C)$ respectively.

Saturation algorithm for Pre*

Let $\mathcal{P} = (P, \Gamma, \Delta)$ be a pushdown system, and C be a set of configurations of \mathcal{P} .

A *P*-automaton for *C* is an NFA $\mathcal{A} = (Q, \Gamma, P, \Delta', F)$ that accepts from an initial state $p \in P$ exactly the words w such that $pw \in C$.

- The control states of \mathcal{P} are used as initial states of \mathcal{A} .
- A must not have a transition to an initial state.

Example P-automaton for $\{p_0aac\}$:

Example P-automaton

Example P-automaton for $\{p_0aa\}$:

Saturation algo for *Pre**

Input: Pushdown system $\mathcal{P} = (P, \Gamma, \Delta)$, and P-automaton \mathcal{A} for C. Output: $\overline{\mathcal{A}}$ accepting $Pre^*(C)$.

- Repeat until no more new edges can be added to \mathcal{A} :
 - If $pa \to p'v \in \Delta$ and $p' \stackrel{\vee}{\to} q$ in \mathcal{A} , then add $p \stackrel{a}{\to} q$ to \mathcal{A} .

• Return $\overline{\mathcal{A}}$.

Run saturation algo for *Pre**

Example pushdown system

$$\begin{array}{ccc} p_0a & \rightarrow & p_1ba \\ p_1b & \rightarrow & p_2ca \\ p_2c & \rightarrow & p_0b \\ p_0b & \rightarrow & p_0\epsilon. \end{array}$$

P-automaton for $C = \{p_0aa\}$:

Run saturation algo for *Pre**

Example pushdown system

$$\begin{array}{ccc} p_0 a & \rightarrow & p_1 ba \\ p_1 b & \rightarrow & p_2 ca \\ p_2 c & \rightarrow & p_0 b \\ p_0 b & \rightarrow & p_0 \epsilon. \end{array}$$

P-automaton for $C = \{p_0aa\}$:

Saturated *P*-automaton:

Correctness

- $Pre^*(C) \subseteq L(\overline{\mathcal{A}})$.
 - Prove by induction on *n* that if $pw \stackrel{n}{\Rightarrow} p'w' \in C$ then $pw \in L(\overline{\mathcal{A}}).$
- $L(\overline{\mathcal{A}}) \subseteq Pre^*(C)$.
 - Let \mathcal{A}_i be P-automaton after i-th step of algo.
 - Claim 1: If $pw \in L(\mathcal{A}_i)$ then $pw \stackrel{*}{\Rightarrow} p'w' \in Pre^*(C)$. • Proof by induction on *i* gets into rough weather.
 - Strengthen Claim to: If $p \stackrel{w}{\rightarrow} q$ in \mathcal{A}_i then there exists p'w' such
 - that $p' \stackrel{w'}{\rightarrow} q$ in \mathcal{A} and $pw \stackrel{*}{\Rightarrow} p'w'$.

Observe that strengthened Claim implies Claim 1 and completes proof.

Proof of Claim

Claim

If $p \stackrel{w}{\rightarrow} q$ in \mathcal{A}_i then there exists p'w' such that $p' \stackrel{w'}{\rightarrow} q$ in \mathcal{A} and $pw \stackrel{*}{\Rightarrow} p'w'$.

Proof: By induction on i. For the induction step, suppose we added the edge (p_1, a, q_1) in \mathcal{A}_{i+1} due to the PDA transition $p_1 a \to p_2 v$. Suppose $p \stackrel{w}{\to} q$ in \mathcal{A}_{i+1} .

Proof of Claim - II

If this path does not use the new edge, it is a path in \mathcal{A}_i itself and by induction hypothesis we are done.

If it uses the new edge 1 or more times consider the representative case of when it uses it exactly once. Say the path is

$$p \xrightarrow{u_1} p_1 \xrightarrow{a} q_1 \xrightarrow{u_2} q.$$

- By IH there has to be a path p_3u_3 to p_1 in \mathcal{A} such that $pu_1 \Rightarrow p_3 u_3$. But since \mathcal{A} has no incoming edges to the *P*-states, we must have $p_3 = p_1$ and $u_3 = \epsilon$. So $pu_1 \Rightarrow p_1$.
- By IH we also have a path p₄u₄ to q in \mathcal{A} such that $p_2 v u_2 \Rightarrow p_4 w_4$.
- Putting these together: pw = $pu_1 au_2 \stackrel{*}{\Rightarrow} p_1 au_2 \stackrel{!}{\Rightarrow} p_2 vu_2 \stackrel{*}{\Rightarrow} p_4 u_4$ and p_4u_4 is required p'w'.

