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Regular Expressions

Examples of Regular Expressions

Expressions built from a, b, €, using operators +, -, and .
o (a*+b%)-c
“Strings of only a's or only b’s, followed by a c¢.”
e (a+ b)*abb(a+ b)*
“contains abb as a subword.”
e (a+ b)*b(a+ b)(a+ b)
“3rd last letter is a b."
e (b*ab*a)*b*
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Regular Expressions

Examples of Regular Expressions

Expressions built from a, b, €, using operators +, -, and .
o (a*+b%)-c
“Strings of only a's or only b’s, followed by a c¢.”
e (a+ b)*abb(a+ b)*
“contains abb as a subword.”
e (a+ b)*b(a+ b)(a+ b)
“3rd last letter is a b."
e (b*ab*a)*b*
“Even number of a's.”
o Ex. Give regexp for "Every 4-bit block of the form
w(4i,4i + 1,4i + 2,4/ + 3] has even parity.”
(0000 + 0011 + ---+1111)*(e+ 0+ 14 --- 4+ 111)



Regular Expressions

Formal definitions

@ Syntax of regular expresions over an alphabet A:
re=0]alr+r|r-r|r

where a € A.

e Semantics: associate a language L(r) C A* with regexp r.

L(0) = {}

L(a) = {a}
L(r+r) = Lr)ulL(r)
L(r-r) = L(r)-L(r)
L(r¥) = L(r)~.



Regular Expressions

Formal definitions

@ Syntax of regular expresions over an alphabet A:
re=0]alr+r|r-r|r

where a € A.

e Semantics: associate a language L(r) C A* with regexp r.

L(0) = {

L(a) = {a}
L(r+r) = Lr)ulL(r)
L(r-r) = L(r)-L(r)
L(r¥) = L(r)~.

@ Question: Do we need € in syntax?



Regular Expressions

Formal definitions

@ Syntax of regular expresions over an alphabet A:
re=0]alr+r|r-r|r

where a € A.

e Semantics: associate a language L(r) C A* with regexp r.

L(0) = {

L(a) = {a}
L(r+r) = Lr)ulL(r)
L(r-r) = L(r)-L(r)
L(r¥) = L(r)~.

@ Question: Do we need € in syntax?
No. € = 0*.



Regular Expressions

Example: Semantics of regexp

(a*+ b*) - c
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{a} a



Regular Expressions

Example: Semantics of regexp

(a*+ b*) - c

{c, ac, bc, aac, bbc, . . .}

{¢, a, b,aa, bb,...}

{e,a,aa,...} =

{a} a



Kleene's Theorem

Kleene's Theorem: RE = DFA

Class of languages defined by regular expressions coincides with
regular languages.
Proof

o RE — DFA: Use closure properties of regular languages.

o DFA — RE:



Kleene's Theorem

DFA — RE: Kleene's construction

Let A= (Q,s, 0, F) be given DFA.

Define Lpqg = {w € A* | g(p, w) = q}.

Then L(A) = Uscr Lst-

For X C Q, define LY, = {w € A* | 5(p,w) =

g via a path that stays in X except for first and last states}
X

Then L(A) = Urer LY.



Kleene's Theorem

DFA — RE: Kleene's construction

Advantage:

XUr *
Lot = 10+ L% - (1) LK,



Kleene's Theorem

DFA — RE: Kleene's construction (2)

Method:
@ Begin with LS‘ for each f € F.
@ Simplify by using terms with strictly smaller X's:

XU{r *
Ly U = 12+ 1% (L) - L%
@ For base terms, observe that

L{}:{{alé(p,a)zq} if p£gq

P {ald(p,a)=qtuU{e} if p=agq.

@ Exercise: convert NFA/DFA's below to RE's:
a, b b b
ﬂ% p R
J f o0

a
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Method:
@ Begin with LS‘ for each f € F.
@ Simplify by using terms with strictly smaller X's:

XU{r *
Ly U = 12+ 1% (L) - L%
@ For base terms, observe that
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O% p (D
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Equation-based alternate construction

DFA — RE using system of equations

@ Aim: to construct a regexp for
Ly={we A" | d(q,w) e F}.
e Note that L(A) = Ls.

@ Example:
b b
O
Set up equations to capture L,'s:
Xe = b-Xe+ta-x
Xo = a Xe+b-x,+e€.

@ Solution is a RE for each x, such that languages denoted by
LHS and RHS RE's coincide.
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Equation-based alternate construction

Solutions to a system of equations

@ L,'s are a solution to the system of equations
@ In general there could be many solutions to equations.
o Consider x = A*x (Here A is the alphabet). What are the
solutions to this equation?
@ In the case of equations arising out of automata, Lg's can be
seen to be the unique solution to the equations.



Equation-based alternate construction

Computing the least solution to a system of equations

e Equations arising from our automaton can be viewed as:

Xe | | b a Xe €
RN
@ System of linear equations over regular expressions have the

general form:
X=AX+B

where X is a column vector of n variables, A is an nxn matrix
of regular expressions, and B is a column vector of n regular
expressions.
@ Claim: The column vector A*B represents the least solution to
the equations above. [See Kozen, Supplementary Lecture A].
@ Definition of A* when A is a 2x2 matrix:
a b " [ (a+bd ) (a+ bd*c)*bd*
[ c d } N [ (d + ca*b)*ca* (d + ca*b)*
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