# Regular Expressions

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

19 August 2013

### Outline

Regular Expressions

2 Kleene's Theorem

3 Equation-based alternate construction

Expressions built from a, b,  $\epsilon$ , using operators +,  $\cdot$ , and \*.

- $(a^* + b^*) \cdot c$ "Strings of only a's or only b's, followed by a c."
- $(a + b)^*abb(a + b)^*$ "contains abb as a subword."
- (a+b)\*b(a+b)(a+b)"3rd last letter is a b."
- (b\*ab\*a)\*b\*

Expressions built from a, b,  $\epsilon$ , using operators +, ·, and \*.

- $(a^* + b^*) \cdot c$ "Strings of only a's or only b's, followed by a c."
- $(a + b)^*abb(a + b)^*$ "contains abb as a subword."
- (a+b)\*b(a+b)(a+b)"3rd last letter is a b."
- $(b^*ab^*a)^*b^*$ "Even number of a's."

Expressions built from a, b,  $\epsilon$ , using operators +, ·, and \*.

- $(a^* + b^*) \cdot c$ "Strings of only a's or only b's, followed by a c."
- $(a + b)^*abb(a + b)^*$ "contains abb as a subword."
- (a+b)\*b(a+b)(a+b)"3rd last letter is a b."
- $(b^*ab^*a)^*b^*$  "Even number of a's."
- Ex. Give regexp for "Every 4-bit block of the form w[4i, 4i + 1, 4i + 2, 4i + 3] has even parity."

Expressions built from a, b,  $\epsilon$ , using operators +,  $\cdot$ , and \*.

- $(a^* + b^*) \cdot c$ "Strings of only a's or only b's, followed by a c."
- $(a + b)^*abb(a + b)^*$ "contains abb as a subword."
- (a+b)\*b(a+b)(a+b)"3rd last letter is a b."
- $(b^*ab^*a)^*b^*$  "Even number of a's."
- Ex. Give regexp for "Every 4-bit block of the form w[4i, 4i + 1, 4i + 2, 4i + 3] has even parity."  $(0000 + 0011 + \cdots + 1111)^*(\epsilon + 0 + 1 + \cdots + 111)$

### Formal definitions

• Syntax of regular expresions over an alphabet *A*:

$$r ::= \emptyset \mid a \mid r + r \mid r \cdot r \mid r^*$$

where  $a \in A$ .

• Semantics: associate a language  $L(r) \subseteq A^*$  with regexp r.

$$L(\emptyset) = \{\}$$
  
 $L(a) = \{a\}$   
 $L(r+r') = L(r) \cup L(r')$   
 $L(r \cdot r') = L(r) \cdot L(r')$   
 $L(r^*) = L(r)^*$ .

### Formal definitions

• Syntax of regular expresions over an alphabet *A*:

$$r ::= \emptyset \mid a \mid r + r \mid r \cdot r \mid r^*$$

where  $a \in A$ .

• Semantics: associate a language  $L(r) \subseteq A^*$  with regexp r.

$$L(\emptyset) = \{\}$$

$$L(a) = \{a\}$$

$$L(r+r') = L(r) \cup L(r')$$

$$L(r \cdot r') = L(r) \cdot L(r')$$

$$L(r^*) = L(r)^*.$$

• Question: Do we need  $\epsilon$  in syntax?

### Formal definitions

• Syntax of regular expresions over an alphabet *A*:

$$r ::= \emptyset \mid a \mid r + r \mid r \cdot r \mid r^*$$

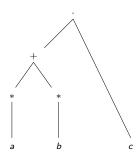
where  $a \in A$ .

• Semantics: associate a language  $L(r) \subseteq A^*$  with regexp r.

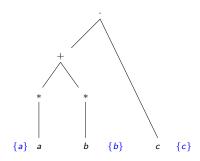
$$L(\emptyset) = \{\} 
L(a) = \{a\} 
L(r+r') = L(r) \cup L(r') 
L(r \cdot r') = L(r) \cdot L(r') 
L(r^*) = L(r)^*.$$

• Question: Do we need  $\epsilon$  in syntax? No.  $\epsilon \equiv \emptyset^*$ .

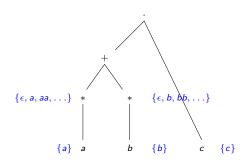
$$(a^* + b^*) \cdot c$$



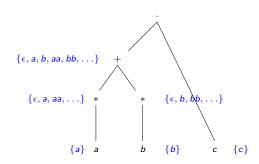
$$(a^* + b^*) \cdot c$$



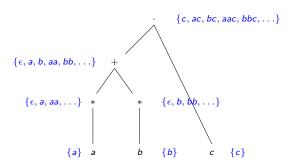
$$(a^* + b^*) \cdot c$$



$$(a^* + b^*) \cdot c$$



$$(a^* + b^*) \cdot c$$



#### Kleene's Theorem: RE = DFA

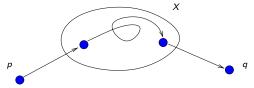
Class of languages defined by regular expressions coincides with regular languages.

#### Proof

- RE  $\rightarrow$  DFA: Use closure properties of regular languages.
- DFA → RE:

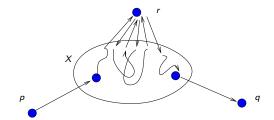
### DFA → RE: Kleene's construction

- Let  $\mathcal{A} = (Q, s, \delta, F)$  be given DFA.
- Define  $L_{pq} = \{ w \in A^* \mid \widehat{\delta}(p, w) = q \}.$
- Then  $L(A) = \bigcup_{f \in F} L_{sf}$ .
- For  $X \subseteq Q$ , define  $L_{pq}^X = \{ w \in A^* \mid \widehat{\delta}(p, w) = q \text{ via a path that stays in } X \text{ except for first and last states} \}$



• Then  $L(A) = \bigcup_{f \in F} L_{sf}^Q$ .

### DFA → RE: Kleene's construction



Advantage:

$$L_{pq}^{X \cup \{r\}} = L_{pq}^X + L_{pr}^X \cdot (L_{rr}^X)^* \cdot L_{rq}^X.$$

# DFA → RE: Kleene's construction (2)

#### Method:

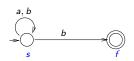
- Begin with  $L_{sf}^Q$  for each  $f \in F$ .
- Simplify by using terms with strictly smaller X's:

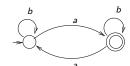
$$L_{pq}^{X \cup \{r\}} = L_{pq}^X + L_{pr}^X \cdot (L_{rr}^X)^* \cdot L_{rq}^X.$$

• For base terms, observe that

$$L_{pq}^{\{\}} = \begin{cases} \{a \mid \delta(p, a) = q\} & \text{if} \quad p \neq q \\ \{a \mid \delta(p, a) = q\} \cup \{\epsilon\} & \text{if} \quad p = q. \end{cases}$$

• Exercise: convert NFA/DFA's below to RE's:





# DFA → RE: Kleene's construction (2)

#### Method:

- Begin with  $L_{sf}^Q$  for each  $f \in F$ .
- Simplify by using terms with strictly smaller X's:

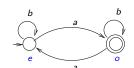
$$L_{pq}^{X \cup \{r\}} = L_{pq}^X + L_{pr}^X \cdot (L_{rr}^X)^* \cdot L_{rq}^X.$$

• For base terms, observe that

$$L_{pq}^{\{\}} = \begin{cases} \{a \mid \delta(p, a) = q\} & \text{if} \quad p \neq q \\ \{a \mid \delta(p, a) = q\} \cup \{\epsilon\} & \text{if} \quad p = q. \end{cases}$$

• Exercise: convert NFA/DFA's below to RE's:



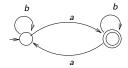


### DFA → RE using system of equations

• Aim: to construct a regexp for

$$L_q = \{ w \in A^* \mid \widehat{\delta}(q, w) \in F \}.$$

- Note that  $L(A) = L_s$ .
- Example:



Set up equations to capture  $L_q$ 's:

$$x_e = b \cdot x_e + a \cdot x_o$$
  
 $x_o = a \cdot x_e + b \cdot x_o + \epsilon.$ 

 Solution is a RE for each x, such that languages denoted by LHS and RHS RE's coincide.

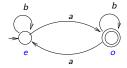


### DFA → RE using system of equations

• Aim: to construct a regexp for

$$L_q = \{ w \in A^* \mid \widehat{\delta}(q, w) \in F \}.$$

- Note that  $L(A) = L_s$ .
- Example:



Set up equations to capture  $L_q$ 's:

$$x_e = b \cdot x_e + a \cdot x_o$$
  
 $x_o = a \cdot x_e + b \cdot x_o + \epsilon.$ 

 Solution is a RE for each x, such that languages denoted by LHS and RHS RE's coincide.



### Solutions to a system of equations

- $L_q$ 's are a solution to the system of equations
- In general there could be many solutions to equations.
  - Consider  $x = A^*x$  (Here A is the alphabet). What are the solutions to this equation?
- In the case of equations arising out of automata,  $L_q$ 's can be seen to be the unique solution to the equations.

### Computing the least solution to a system of equations

Equations arising from our automaton can be viewed as:

$$\left[\begin{array}{c} x_{e} \\ x_{o} \end{array}\right] = \left[\begin{array}{c} b & a \\ a & b \end{array}\right] \left[\begin{array}{c} x_{e} \\ x_{o} \end{array}\right] + \left[\begin{array}{c} \epsilon \\ \emptyset \end{array}\right]$$

 System of linear equations over regular expressions have the general form:

$$X = AX + B$$

where X is a column vector of n variables, A is an  $n \times n$  matrix of regular expressions, and B is a column vector of n regular expressions.

- Claim: The column vector A\*B represents the least solution to the equations above. [See Kozen, Supplementary Lecture A].
- Definition of A\* when A is a 2x2 matrix:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^* = \begin{bmatrix} (a+bd^*c)^* & (a+bd^*c)^*bd^* \\ (d+ca^*b)^*ca^* & (d+ca^*b)^* \end{bmatrix}$$