
Regular Expressions Kleene’s Theorem Equation-based alternate construction

Regular Expressions

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

19 August 2013

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Outline

1 Regular Expressions

2 Kleene’s Theorem

3 Equation-based alternate construction

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Examples of Regular Expressions

Expressions built from a, b, ε, using operators +, ·, and ∗.
(a∗ + b∗) · c
“Strings of only a’s or only b’s, followed by a c .”

(a + b)∗abb(a + b)∗

“contains abb as a subword.”

(a + b)∗b(a + b)(a + b)
“3rd last letter is a b.”

(b∗ab∗a)∗b∗

“Even number of a’s.”

Ex. Give regexp for “Every 4-bit block of the form
w [4i , 4i + 1, 4i + 2, 4i + 3] has even parity.”
(0000 + 0011 + · · ·+ 1111)∗(ε + 0 + 1 + · · ·+ 111)

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Examples of Regular Expressions

Expressions built from a, b, ε, using operators +, ·, and ∗.
(a∗ + b∗) · c
“Strings of only a’s or only b’s, followed by a c .”

(a + b)∗abb(a + b)∗

“contains abb as a subword.”

(a + b)∗b(a + b)(a + b)
“3rd last letter is a b.”

(b∗ab∗a)∗b∗

“Even number of a’s.”

Ex. Give regexp for “Every 4-bit block of the form
w [4i , 4i + 1, 4i + 2, 4i + 3] has even parity.”
(0000 + 0011 + · · ·+ 1111)∗(ε + 0 + 1 + · · ·+ 111)

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Examples of Regular Expressions

Expressions built from a, b, ε, using operators +, ·, and ∗.
(a∗ + b∗) · c
“Strings of only a’s or only b’s, followed by a c .”

(a + b)∗abb(a + b)∗

“contains abb as a subword.”

(a + b)∗b(a + b)(a + b)
“3rd last letter is a b.”

(b∗ab∗a)∗b∗

“Even number of a’s.”

Ex. Give regexp for “Every 4-bit block of the form
w [4i , 4i + 1, 4i + 2, 4i + 3] has even parity.”

(0000 + 0011 + · · ·+ 1111)∗(ε + 0 + 1 + · · ·+ 111)

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Examples of Regular Expressions

Expressions built from a, b, ε, using operators +, ·, and ∗.
(a∗ + b∗) · c
“Strings of only a’s or only b’s, followed by a c .”

(a + b)∗abb(a + b)∗

“contains abb as a subword.”

(a + b)∗b(a + b)(a + b)
“3rd last letter is a b.”

(b∗ab∗a)∗b∗

“Even number of a’s.”

Ex. Give regexp for “Every 4-bit block of the form
w [4i , 4i + 1, 4i + 2, 4i + 3] has even parity.”
(0000 + 0011 + · · ·+ 1111)∗(ε + 0 + 1 + · · ·+ 111)

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Formal definitions

Syntax of regular expresions over an alphabet A:

r ::= ∅ | a | r + r | r · r | r∗

where a ∈ A.

Semantics: associate a language L(r) ⊆ A∗ with regexp r .

L(∅) = {}
L(a) = {a}
L(r + r ′) = L(r) ∪ L(r ′)
L(r · r ′) = L(r) · L(r ′)
L(r∗) = L(r)∗.

Question: Do we need ε in syntax?
No. ε ≡ ∅∗.

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Formal definitions

Syntax of regular expresions over an alphabet A:

r ::= ∅ | a | r + r | r · r | r∗

where a ∈ A.

Semantics: associate a language L(r) ⊆ A∗ with regexp r .

L(∅) = {}
L(a) = {a}
L(r + r ′) = L(r) ∪ L(r ′)
L(r · r ′) = L(r) · L(r ′)
L(r∗) = L(r)∗.

Question: Do we need ε in syntax?

No. ε ≡ ∅∗.

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Formal definitions

Syntax of regular expresions over an alphabet A:

r ::= ∅ | a | r + r | r · r | r∗

where a ∈ A.

Semantics: associate a language L(r) ⊆ A∗ with regexp r .

L(∅) = {}
L(a) = {a}
L(r + r ′) = L(r) ∪ L(r ′)
L(r · r ′) = L(r) · L(r ′)
L(r∗) = L(r)∗.

Question: Do we need ε in syntax?
No. ε ≡ ∅∗.

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Example: Semantics of regexp

(a∗ + b∗) · c

∗

+

{ε, a, b, aa, bb, . . .}

·

∗

a b

{a} {b}

c

{c}

{ε, a, aa, . . .} {ε, b, bb, . . .}

{c, ac, bc, aac, bbc, . . .}

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Example: Semantics of regexp

(a∗ + b∗) · c

∗

+

{ε, a, b, aa, bb, . . .}

·

∗

a b{a} {b} c {c}

{ε, a, aa, . . .} {ε, b, bb, . . .}

{c, ac, bc, aac, bbc, . . .}

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Example: Semantics of regexp

(a∗ + b∗) · c

∗

+

{ε, a, b, aa, bb, . . .}

·

∗

a b{a} {b} c {c}

{ε, a, aa, . . .} {ε, b, bb, . . .}

{c, ac, bc, aac, bbc, . . .}

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Example: Semantics of regexp

(a∗ + b∗) · c

∗

+{ε, a, b, aa, bb, . . .}

·

∗

a b{a} {b} c {c}

{ε, a, aa, . . .} {ε, b, bb, . . .}

{c, ac, bc, aac, bbc, . . .}

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Example: Semantics of regexp

(a∗ + b∗) · c

∗

+{ε, a, b, aa, bb, . . .}

·

∗

a b{a} {b} c {c}

{ε, a, aa, . . .} {ε, b, bb, . . .}

{c, ac, bc, aac, bbc, . . .}

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Kleene’s Theorem: RE = DFA

Class of languages defined by regular expressions coincides with
regular languages.
Proof

RE → DFA: Use closure properties of regular languages.

DFA → RE:

Regular Expressions Kleene’s Theorem Equation-based alternate construction

DFA → RE: Kleene’s construction

Let A = (Q, s, δ, F) be given DFA.

Define Lpq = {w ∈ A∗ | δ̂(p,w) = q}.
Then L(A) =

⋃
f ∈F Lsf .

For X ⊆ Q, define LX
pq = {w ∈ A∗ | δ̂(p,w) =

q via a path that stays in X except for first and last states}
X

p q

Then L(A) =
⋃

f ∈F LQ
sf .

Regular Expressions Kleene’s Theorem Equation-based alternate construction

DFA → RE: Kleene’s construction

p q

r

X

Advantage:

L
X∪{r}
pq = LX

pq + LX
pr · (LX

rr)
∗ · LX

rq.

Regular Expressions Kleene’s Theorem Equation-based alternate construction

DFA → RE: Kleene’s construction (2)

Method:

Begin with LQ
sf for each f ∈ F .

Simplify by using terms with strictly smaller X ’s:

L
X∪{r}
pq = LX

pq + LX
pr · (LX

rr)
∗ · LX

rq.

For base terms, observe that

L
{}
pq =

{
{a | δ(p, a) = q} if p 6= q
{a | δ(p, a) = q} ∪ {ε} if p = q.

Exercise: convert NFA/DFA’s below to RE’s:

s

b

a, b

f

b
a

b

a

e o

Regular Expressions Kleene’s Theorem Equation-based alternate construction

DFA → RE: Kleene’s construction (2)

Method:

Begin with LQ
sf for each f ∈ F .

Simplify by using terms with strictly smaller X ’s:

L
X∪{r}
pq = LX

pq + LX
pr · (LX

rr)
∗ · LX

rq.

For base terms, observe that

L
{}
pq =

{
{a | δ(p, a) = q} if p 6= q
{a | δ(p, a) = q} ∪ {ε} if p = q.

Exercise: convert NFA/DFA’s below to RE’s:

s

b

a, b

f

b
a

b

a
e o

Regular Expressions Kleene’s Theorem Equation-based alternate construction

DFA → RE using system of equations

Aim: to construct a regexp for

Lq = {w ∈ A∗ | δ̂(q,w) ∈ F}.

Note that L(A) = Ls .

Example:
b

a
b

a

e o

Set up equations to capture Lq’s:

xe = b · xe + a · xo

xo = a · xe + b · xo + ε.

Solution is a RE for each x , such that languages denoted by
LHS and RHS RE’s coincide.

Regular Expressions Kleene’s Theorem Equation-based alternate construction

DFA → RE using system of equations

Aim: to construct a regexp for

Lq = {w ∈ A∗ | δ̂(q,w) ∈ F}.

Note that L(A) = Ls .

Example:
b

a
b

a
e o

Set up equations to capture Lq’s:

xe = b · xe + a · xo

xo = a · xe + b · xo + ε.

Solution is a RE for each x , such that languages denoted by
LHS and RHS RE’s coincide.

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Solutions to a system of equations

Lq’s are a solution to the system of equations

In general there could be many solutions to equations.

Consider x = A∗x (Here A is the alphabet). What are the
solutions to this equation?

In the case of equations arising out of automata, Lq’s can be
seen to be the unique solution to the equations.

Regular Expressions Kleene’s Theorem Equation-based alternate construction

Computing the least solution to a system of equations

Equations arising from our automaton can be viewed as:[
xe

xo

]
=

[
b a
a b

] [
xe

xo

]
+

[
ε
∅

]
System of linear equations over regular expressions have the
general form:

X = AX + B

where X is a column vector of n variables, A is an nxn matrix
of regular expressions, and B is a column vector of n regular
expressions.
Claim: The column vector A∗B represents the least solution to
the equations above. [See Kozen, Supplementary Lecture A].
Definition of A∗ when A is a 2x2 matrix:[

a b
c d

]∗
=

[
(a + bd∗c)∗ (a + bd∗c)∗bd∗

(d + ca∗b)∗ca∗ (d + ca∗b)∗

]

	Regular Expressions
	Kleene's Theorem
	Equation-based alternate construction

