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Examples of Regular Expressions

Expressions built from a, b, ε, using operators +, ·, and ∗.
(a∗ + b∗) · c
“Strings of only a’s or only b’s, followed by a c .”

(a + b)∗abb(a + b)∗

“contains abb as a subword.”

(a + b)∗b(a + b)(a + b)
“3rd last letter is a b.”

(b∗ab∗a)∗b∗

“Even number of a’s.”

Ex. Give regexp for “Every 4-bit block of the form
w [4i , 4i + 1, 4i + 2, 4i + 3] has even parity.”
(0000 + 0011 + · · ·+ 1111)∗(ε + 0 + 1 + · · ·+ 111)
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Formal definitions

Syntax of regular expresions over an alphabet A:

r ::= ∅ | a | r + r | r · r | r∗

where a ∈ A.

Semantics: associate a language L(r) ⊆ A∗ with regexp r .

L(∅) = {}
L(a) = {a}
L(r + r ′) = L(r) ∪ L(r ′)
L(r · r ′) = L(r) · L(r ′)
L(r∗) = L(r)∗.

Question: Do we need ε in syntax?
No. ε ≡ ∅∗.
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Example: Semantics of regexp

(a∗ + b∗) · c

∗

+

{ε, a, b, aa, bb, . . .}

·

∗

a b

{a} {b}

c

{c}

{ε, a, aa, . . .} {ε, b, bb, . . .}

{c, ac, bc, aac, bbc, . . .}
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Kleene’s Theorem: RE = DFA

Class of languages defined by regular expressions coincides with
regular languages.
Proof

RE → DFA: Use closure properties of regular languages.

DFA → RE:
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DFA → RE: Kleene’s construction

Let A = (Q, s, δ, F ) be given DFA.

Define Lpq = {w ∈ A∗ | δ̂(p,w) = q}.
Then L(A) =

⋃
f ∈F Lsf .

For X ⊆ Q, define LX
pq = {w ∈ A∗ | δ̂(p,w) =

q via a path that stays in X except for first and last states}
X

p q

Then L(A) =
⋃

f ∈F LQ
sf .



Regular Expressions Kleene’s Theorem Equation-based alternate construction

DFA → RE: Kleene’s construction

p q

r

X

Advantage:

L
X∪{r}
pq = LX

pq + LX
pr · (LX

rr )
∗ · LX

rq.



Regular Expressions Kleene’s Theorem Equation-based alternate construction

DFA → RE: Kleene’s construction (2)

Method:

Begin with LQ
sf for each f ∈ F .

Simplify by using terms with strictly smaller X ’s:

L
X∪{r}
pq = LX

pq + LX
pr · (LX

rr )
∗ · LX

rq.

For base terms, observe that

L
{}
pq =

{
{a | δ(p, a) = q} if p 6= q
{a | δ(p, a) = q} ∪ {ε} if p = q.

Exercise: convert NFA/DFA’s below to RE’s:

s

b

a, b

f

b
a

b

a

e o
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DFA → RE using system of equations

Aim: to construct a regexp for

Lq = {w ∈ A∗ | δ̂(q,w) ∈ F}.

Note that L(A) = Ls .

Example:
b

a
b

a

e o

Set up equations to capture Lq’s:

xe = b · xe + a · xo

xo = a · xe + b · xo + ε.

Solution is a RE for each x , such that languages denoted by
LHS and RHS RE’s coincide.
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Solutions to a system of equations

Lq’s are a solution to the system of equations

In general there could be many solutions to equations.

Consider x = A∗x (Here A is the alphabet). What are the
solutions to this equation?

In the case of equations arising out of automata, Lq’s can be
seen to be the unique solution to the equations.
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Computing the least solution to a system of equations

Equations arising from our automaton can be viewed as:[
xe

xo

]
=

[
b a
a b

] [
xe

xo

]
+

[
ε
∅

]
System of linear equations over regular expressions have the
general form:

X = AX + B

where X is a column vector of n variables, A is an nxn matrix
of regular expressions, and B is a column vector of n regular
expressions.
Claim: The column vector A∗B represents the least solution to
the equations above. [See Kozen, Supplementary Lecture A].
Definition of A∗ when A is a 2x2 matrix:[

a b
c d

]∗
=

[
(a + bd∗c)∗ (a + bd∗c)∗bd∗

(d + ca∗b)∗ca∗ (d + ca∗b)∗

]
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