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Introduction Motivation

Motivation

Show that if A is a regular set, then so is

FirstHalvespAq = tx | Dy , | y |“| x | and xy P Au

Can be proved using pebbling technique or using a product automaton.
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Introduction Motivation

Some more examples

Show that if A is a regular set, then so are the following:

An2 = tx | Dy , | y |“| x |2 and xy P Au

A2n = tx | Dy , | y |“ 2|x |and xy P Au

A22n = tx | Dy , | y |“ 22
|x|
and xy P Au

Presence of non linear functions makes regularity counter-intuitive.
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Introduction Motivation

Boolean Transition Matrix

For automaton A = (Q,Σ,s,δ, F)
Boolean Transition Matrix ∆ is a | Q | ˆ | Q | matrix where

∆pu, vq “

#

1 if Da P Σ s.t.δpu, aq “ v

0, otherwise

Power ∆n gives the n-step transition relations.
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Introduction Motivation

Example1

A2n

• Create a Boolean transition matrix 4 (as described).

• Basic problem to be solved in this : How to get 42n`1
from 42n?

• Observe that 42pn`1q = 42n ˚42n .

• 6 Maintain 4 matrix in the start state.

• As input is scanned, the successive state gets updated matrix,
pC q Ñ pC ˚ C q

• 6 In n steps, pI q
n
Ñ p42nq

• If pδps, xq = p, then accept if C (p,f) = 1 for any f P F . Reject
otherwise.
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Introduction Motivation

Example2

An2

• Create a Boolean transition matrix 4 (as described).

• Basic problem to be solved in this : How to get 4pn`1q2 from 4pnq2?

• Now, 4pn`1q2 = 4n242n4.

• 6 Maintain (I, I) matrices in start state.

• As input is scanned, the successive state gets updated matrices
pC ,Dq Ñ pCD4,D42q

• 6 In n steps, pI , I q
n
Ñ p4n2 ,42nq

• If pδps, xq = p, then accept if C (p,f) = 1 for any f P F . Reject
otherwise.
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Regularity Preserving Functions Definition

Regularity Preserving Functions

• General class of functions for which the following theorem holds.
If A is regular, then so is

Af = tx | Dy | y |“ f p| x |q and xy P Au

• The class is closed under addition, multiplication, exponentiation,
composition and contains arbitrarily fast growing functions.

• Next, we look at the how to characterize this class in terms of the
concept of ultimate periodicity.
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Characterization using Ultimate Periodicity

Ultimate Periodicity

Definition 1

A set U Ď N is called ultimately periodic (u.p.) (or semilinear) if

Dp ě 1
8

@n n P U ÐÑ n ` p P U.
More generally, a function f : N Ñ N is called ultimately periodic if

Dp ě 1
8

@n f pnq “ f pn ` pq.

8

@ means ”for all but finitely many”.
An example of a u.p. set is rksm, the congruence class of k modulo m

rksm “ tn|n modulo m = ku
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Characterization using Ultimate Periodicity

Properties of Ultimately Periodic Sets

Family of u.p. sets is closed under boolean operations.

• If U,V are u.p. with periods p, q respectively, then U
Ť

V is u.p. with
period lcm(p,q).

• For any regular set A, the set lengths(A) is u.p.

• For a u.p. set U, the set tx | | x |P Uu is regular.
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Characterization using Ultimate Periodicity

Definition 2

A function f : N Ñ N is said to preserve ultimate periodicity if f ´1(U) is
u.p. whenever U is.

Definition 3

A function f : N Ñ N is said to be ultimately periodic modulo m(u.p.
mod m ) if the function n ÞÑ f pnq mod m is ultimately periodic.
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Characterization using Ultimate Periodicity Conditions for Regularity Preservation

Conditions

• C1 : Af is regular whenever A is.

• C2 : A
1

f is regular whenever A is.

• C3 : f preserves ultimate periodicity.

• C4 :
1 f is ultimately periodic modulo m for all m ě 1; and
2 f ´1ptxuq is ultimately periodic for all x P N

Af = tx | Dy | y |“ f p| x |q and xy P Au

Af 1 = tx | Dy | y |“ f p| x |q and y P Au

Regularity Preserving Functions Nov 4, 2013 11



Characterization using Ultimate Periodicity Conditions for Regularity Preservation

Lemma 1

Lemma 1 The statement C4 piq is equivalent to the statement that
f ´1 prismq is ultimately periodic for all i and m.

Proof .

For all m,

f ´1prismqis u.p., 0 ď i ď m ´ 1

ÐÑ
m´1

Λ
i“0
Dpi ě 1 f ´1prismqis u.p. with period pi

ÐÑ Dp ě 1
m´1

Λ
i“0

f ´1 prismq is u.p. with period p (take p = lcmi pi q

ÐÑ Dp ě 1
m´1

Λ
i“0

8

@n n P f ´1prismq ÐÑ n ` p P f ´1prismq
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Characterization using Ultimate Periodicity Conditions for Regularity Preservation

Proof contd..

ÐÑ Dp ě 1
m´1

Λ
i“0

8

@n f pnq P rism ÐÑ f pn ` pq P rism

ÐÑ Dp ě 1
8

@n
m´1

Λ
i“0

f pnq P rism ÐÑ f pn ` pq P rism

ÐÑ Dp ě 1
8

@n f pnq “ f pn ` pq mod m

ÐÑ f is u.p. modulo m.

Regularity Preserving Functions Nov 4, 2013 13



Characterization using Ultimate Periodicity Conditions for Regularity Preservation

Theorem

Theorem

The four conditions C1 - C4 are equivalent.

Proof. (C1 Ñ C4) To show C4(i), let 0 ď k ď m ´ 1, and consider the
regular set pamq˚ak . We have

ppamq˚akqf “ tx |Dy |y | “ f p|x |q and xy P tamn`k |n ě 0uu

“ tai |Dj j “ f piq and aiaj P tamn`k |n ě 0uu

“ tai |Dj j “ f piq and i ` j “ k mod mu

“ tai |i ` f piq “ k mod mu,
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Characterization using Ultimate Periodicity Conditions for Regularity Preservation

Proof Contd..

and by C1, this set is regular, thus

lengthspppamq˚akqf q “ lengthsptai |i ` f piq “ k mod muq

“ ti |i ` f piq “ k mod mu

“ f
1´1prksmq

is u.p., where f
1

pnq “ n ` f pnq.
Since this holds for arbitrary k and m, it follows from Lemma 1 that f

1

pnq
satisfies C4(i) ùñ f

1

pnq is u.p. modulo m for any m.
Since the function n ÞÑ p´nq mod m is also u.p., so is the sum

mod f
1

pnqm ` p´nq mod m “ f
1

pnq ´ n mod m

“ f pnq mod m.
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Characterization using Ultimate Periodicity Conditions for Regularity Preservation

To show C4(ii), consider regular set a˚bak . Then, a˚b X pa˚bakqf

“ tanb| Dy | y |“ f p| anb |q and anby P tanbak | n ě 0uu

“ tanb| Dy | y |“ f pn ` 1q and y = aku

“ tanb| k = f pn ` 1qu

“ tanb| n+1 P f ´1ptkuqu,

by C1, this set is regular, 6 lengths(tanb| n+1 P f ´1ptkuqu )

“ tn ` 1| n ` 1 P f ´1ptkuqu

“ f ´1ptkuq ´ t0u

is u.p.. ùñ f ´1pkq is u.p.
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Characterization using Ultimate Periodicity Conditions for Regularity Preservation

(C4 Ñ C3) Let U be a u.p. set with period p.
U can be expressed as a Boolean combination of a finite set F and sets of
form risp:

U “ F ‘ pri1sp Y ri2sp Y ...Y rik spq,

‘ denotes symmetric difference of sets.

f ´1pUq “ f ´1pF ‘ pri1sp Y ri2sp Y ...Y rik spqq

“ f ´1pF q ‘ pf ´1pri1spq Y f ´1pri2spq Y ...Y f ´1prik spqq

“ p
ď

xPF

f ´1pxqq ‘ pf ´1pri1spq Y f ´1pri2spq Y ...Y f ´1prik spqq

C4, Lemma 1, and closure properties of u.p. sets imply that this set is u.p.
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Characterization using Ultimate Periodicity Conditions for Regularity Preservation

(C3 Ñ C2)

A
1

f “ tx | Dy P A | y |“ f p| x |qu

“ tx | Dn P lengthspAq n = f p| x |qu

“ tx | f p| x |q P lengthspAqu

“ tx | | x |P f ´1plengthspAqqu

If A is regular
ùñ lengths(A) is u.p.
ùñ f ´1plengthspAqq is u.p. by C3
ùñ A

1

f is regular.
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Characterization using Ultimate Periodicity Conditions for Regularity Preservation

(C2 Ñ C1) Let A be a regular set and let M = (Q, Σ, δ, s, F) be a
deterministic finite automaton with L(M)=A.
If p P Q and G Ď Q, define

MG
p “ pQ,Σ, δ, p,G q

Af “ tx | Dy | y |“ f p| x |q and xy P Au

“ tx | Dy | y |“ f p| x |q and pδps, xyq P F u

“ tx | Dy | y |“ f p| x |q and pδppδps, xq, yqu

“
ď

pPQ

tx | Dy | y |“ f p| x |q and pδps, xq= p and pδpp, yq P F u

“
ď

pPQ

tx | pδps, xq= pu X tx | Dy | y |“ f p| x |q and pδpp, yq P F u

“
ď

pPQ

LpMp
s q X LpMF

p q
1

f .

By C2 and closure of regular sets under the boolean set operations, this is
a regular set.
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Characterization using Ultimate Periodicity Conditions for Regularity Preservation

Thank You!
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