REGULARITY PRESERVING FUNCTIONS

Presented By: Priyanka Bhatt & Surabhi Punjabi

Department of Computer Science and Automation (CSA), Indian Institute of Science (IISc), Bangalore.

Nov 26, 2013

OVERVIEW

- Introduction
- 2 REGULARITY PRESERVING FUNCTIONS
- 3 Characterization using Ultimate Periodicity

MOTIVATION

Show that if A is a regular set, then so is

$$FirstHalves(A) = \{x | \exists y, |y| = |x| \text{ and } xy \in A\}$$

Can be proved using pebbling technique or using a product automaton.

Some more examples

Show that if A is a regular set, then so are the following:

$$A_{n^2} = \{x \mid \exists y, \mid y \mid = \mid x \mid^2 \text{ and } xy \in A\}$$

 $A_{2^n} = \{x \mid \exists y, \mid y \mid = 2^{|x|} \text{ and } xy \in A\}$
 $A_{2^n} = \{x \mid \exists y, \mid y \mid = 2^{2^{|x|}} \text{ and } xy \in A\}$

Presence of non linear functions makes regularity counter-intuitive.

BOOLEAN TRANSITION MATRIX

For automaton A = (Q, Σ ,s, δ , F) Boolean Transition Matrix Δ is a $\mid Q \mid \times \mid Q \mid$ matrix where

$$\Delta(u,v) = \begin{cases} 1 & \text{if } \exists a \in \Sigma \text{ s.t.} \delta(u,a) = v \\ 0, & \text{otherwise} \end{cases}$$

Power Δ^n gives the n-step transition relations.

EXAMPLE1

A_{2^n}

- Create a Boolean transition matrix \triangle (as described).
- Basic problem to be solved in this : How to get $\triangle^{2^{n+1}}$ from \triangle^{2^n} ?
- Observe that $\triangle^{2^{(n+1)}} = \triangle^{2^n} * \triangle^{2^n}$.
- ∴ Maintain △ matrix in the start state.
- As input is scanned, the successive state gets updated matrix, $(C) \rightarrow (C * C)$
- ... In *n* steps, $(I) \stackrel{n}{\rightarrow} (\triangle^{2^n})$
- If $\hat{\delta}(s,x)=p$, then accept if C(p,f)=1 for any $f\in F$. Reject otherwise.

Example2

A_{n^2}

- Create a Boolean transition matrix \triangle (as described).
- Basic problem to be solved in this : How to get $\triangle^{(n+1)^2}$ from $\triangle^{(n)^2}$?
- Now, $\triangle^{(n+1)^2} = \triangle^{n^2} \triangle^{2n} \triangle$.
- ∴ Maintain (I, I) matrices in start state.
- As input is scanned, the successive state gets updated matrices $(C,D) \rightarrow (CD\triangle,D\triangle^2)$
- \therefore In n steps, $(I,I) \stackrel{n}{\rightarrow} (\triangle^{n^2},\triangle^{2n})$
- If $\hat{\delta}(s,x)=p$, then accept if C(p,f)=1 for any $f\in F$. Reject otherwise.

OVERVIEW

- Introduction
- 2 Regularity Preserving Functions
- **3** Characterization using Ultimate Periodicity

REGULARITY PRESERVING FUNCTIONS

General class of functions for which the following theorem holds.
 If A is regular, then so is

$$A_f = \{x \mid \exists y \mid y \mid = f(\mid x \mid) \text{ and } xy \in A\}$$

- The class is closed under addition, multiplication, exponentiation, composition and contains arbitrarily fast growing functions.
- Next, we look at the how to characterize this class in terms of the concept of ultimate periodicity.

OVERVIEW

- Introduction
- 2 REGULARITY PRESERVING FUNCTIONS
- **3** Characterization using Ultimate Periodicity

Ultimate Periodicity

Definition 1

A set $U \subseteq N$ is called *ultimately periodic* (u.p.) (or semilinear) if

$$\exists p \geqslant 1 \quad \forall n \quad n \in U \longleftrightarrow n+p \in U.$$

More generally, a function $f: N \rightarrow N$ is called *ultimately periodic* if

$$\exists p \geqslant 1 \quad \overset{\sim}{\forall} n \quad f(n) = f(n+p).$$

 ∞

 $\stackrel{\sim}{\forall}$ means "for all but finitely many".

An example of a u.p. set is $[k]_m$, the congruence class of k modulo m

$$[k]_m = \{n | n \text{ modulo } m = k\}$$

Properties of Ultimately Periodic Sets

Family of u.p. sets is closed under boolean operations.

- If U,V are u.p. with periods p, q respectively, then U ∪ V is u.p. with period lcm(p,q).
- For any regular set A, the set lengths(A) is u.p.
- For a u.p. set U, the set $\{x \mid |x| \in U\}$ is regular.

Definition 2

A function $f: N \to N$ is said to *preserve ultimate periodicity* if $f^{-1}(U)$ is u.p. whenever U is.

Definition 3

A function $f: N \to N$ is said to be *ultimately periodic modulo m*(u.p. mod m) if the function $n \mapsto f(n) \mod m$ is ultimately periodic.

CONDITIONS

- C1 : A_f is regular whenever A is.
- C2: A'_f is regular whenever A is.
- **C3**: *f* preserves ultimate periodicity.
- C4:
 - ① f is ultimately periodic modulo m for all $m \ge 1$; and
 - 2 $f^{-1}(\{x\})$ is ultimately periodic for all $x \in N$

$$A_f = \{x \mid \exists y \mid y \mid = f(\mid x \mid) \text{ and } xy \in A\}$$

$$A_{f'} = \{x \mid \exists y \mid y \mid = f(|x|) \text{ and } y \in A\}$$

LEMMA 1

Lemma 1 The statement **C4** (i) is equivalent to the statement that $f^{-1}([i]_m)$ is ultimately periodic for all i and m.

Proof.

$$f^{-1}([i]_m)$$
 is u.p., $0 \le i \le m-1$

$$\longleftrightarrow \bigwedge_{i=0}^{m-1} \exists p_i \ge 1 \quad f^{-1}([i]_m)$$
 is u.p. with period p_i

$$\longleftrightarrow \exists p \geqslant 1 \bigwedge_{i=0}^{m-1} f^{-1}([i]_m)$$
 is u.p. with period p (take p = lcm_i p_i)

$$\longleftrightarrow \exists p \geqslant 1 \bigwedge_{i=0}^{m-1} \bigvee_{j=0}^{\infty} n \ n \in f^{-1}([i]_m) \longleftrightarrow n+p \in f^{-1}([i]_m)$$

Proof contd..

$$\longleftrightarrow \exists p \geqslant 1 \bigwedge_{i=0}^{m-1} \bigvee_{j=0}^{\infty} f(n) \in [i]_m \longleftrightarrow f(n+p) \in [i]_m$$

$$\longleftrightarrow \exists p \geqslant 1 \bigvee_{j=0}^{\infty} \bigwedge_{i=0}^{m-1} f(n) \in [i]_m \longleftrightarrow f(n+p) \in [i]_m$$

$$\longleftrightarrow \exists p \geqslant 1 \bigvee_{j=0}^{\infty} f(n) = f(n+p) \mod m$$

$$\longleftrightarrow f \text{ is u.p. modulo } m.$$

THEOREM

Theorem

The four conditions **C1** - **C4** are equivalent.

Proof. (C1 \rightarrow C4) To show C4(i), let $0 \le k \le m-1$, and consider the regular set $(a^m)^*a^k$. We have

$$((a^{m})^{*}a^{k})_{f} = \{x \mid \exists y \mid y \mid = f(|x|) \text{ and } xy \in \{a^{mn+k} \mid n \geqslant 0\}\}$$

$$= \{a^{i} \mid \exists j \mid j = f(i) \text{ and } a^{i}a^{j} \in \{a^{mn+k} \mid n \geqslant 0\}\}$$

$$= \{a^{i} \mid \exists j \mid j = f(i) \text{ and } i + j = k \text{ mod } m\}$$

$$= \{a^{i} \mid i + f(i) = k \text{ mod } m\},$$

PROOF CONTD...

and by C1, this set is regular, thus

lengths(
$$((a^m)^*a^k)_f$$
) = lengths($\{a^i|i+f(i)=k \mod m\}$)
= $\{i|i+f(i)=k \mod m\}$
= $f'^{-1}([k]_m)$

is u.p., where f'(n) = n + f(n).

Since this holds for arbitrary k and m, it follows from Lemma 1 that f'(n) satisfies $C4(i) \Longrightarrow f'(n)$ is u.p. modulo m for any m.

Since the function $n \mapsto (-n) \mod m$ is also u.p., so is the sum

$$\text{mod } f'(n)m + (-n) \text{ mod } m = f'(n) - n \text{ mod } m$$

= $f(n) \text{ mod } m$.

To show **C4**(ii), consider regular set a^*ba^k . Then, $a^*b \cap (a^*ba^k)_f$

$$= \{a^n b | \exists y | y | = f(| a^n b |) \text{ and } a^n b y \in \{a^n b a^k | n \ge 0\}\}$$

$$= \{a^n b | \exists y | y | = f(n+1) \text{ and } y = a^k\}$$

$$= \{a^n b | k = f(n+1)\}$$

$$= \{a^n b | n+1 \in f^{-1}(\{k\})\},$$

by **C1**, this set is regular, \therefore lengths($\{a^n b | n+1 \in f^{-1}(\{k\})\}$) $= \{n+1 | n+1 \in f^{-1}(\{k\})\}$

$$= \{n+1 \mid n+1 \in r \quad (\{k\})\}$$

= $f^{-1}(\{k\}) - \{0\}$

is u.p.. $\Longrightarrow f^{-1}(k)$ is u.p.

 $(C4 \rightarrow C3)$ Let U be a u.p. set with period p.

U can be expressed as a Boolean combination of a finite set F and sets of form $|i|_p$:

$$U = F \oplus ([i_1]_p \cup [i_2]_p \cup ... \cup [i_k]_p),$$

denotes symmetric difference of sets.

$$f^{-1}(U) = f^{-1}(F \oplus ([i_1]_p \cup [i_2]_p \cup ... \cup [i_k]_p))$$

$$= f^{-1}(F) \oplus (f^{-1}([i_1]_p) \cup f^{-1}([i_2]_p) \cup ... \cup f^{-1}([i_k]_p))$$

$$= (\bigcup_{x \in F} f^{-1}(x)) \oplus (f^{-1}([i_1]_p) \cup f^{-1}([i_2]_p) \cup ... \cup f^{-1}([i_k]_p))$$

C4, Lemma 1, and closure properties of u.p. sets imply that this set is u.p.

$$(C3 \rightarrow C2)$$

$$A'_{f} = \{x | \exists y \in A | y | = f(|x|)\}$$

$$= \{x | \exists n \in lengths(A) | n = f(|x|)\}$$

$$= \{x | f(|x|) \in lengths(A)\}$$

$$= \{x | |x| \in f^{-1}(lengths(A))\}$$

If A is regular

 \implies lengths(A) is u.p.

 $\Longrightarrow f^{-1}(lengths(A))$ is u.p. by **C3**

 $\Longrightarrow A'_f$ is regular.

(C2 \rightarrow C1) Let A be a regular set and let M = (Q, Σ , δ , s, F) be a deterministic finite automaton with L(M)=A.

If $p \in Q$ and $G \subseteq Q$, define

$$M_p^G = (Q, \Sigma, \delta, p, G)$$

$$A_{f} = \{x \mid \exists y \mid y \mid = f(\mid x \mid) \text{ and } xy \in A\}$$

$$= \{x \mid \exists y \mid y \mid = f(\mid x \mid) \text{ and } \widehat{\delta}(s, xy) \in F\}$$

$$= \{x \mid \exists y \mid y \mid = f(\mid x \mid) \text{ and } \widehat{\delta}(\widehat{\delta}(s, x), y)\}$$

$$= \bigcup_{p \in Q} \{x \mid \exists y \mid y \mid = f(\mid x \mid) \text{ and } \widehat{\delta}(s, x) = p \text{ and } \widehat{\delta}(p, y) \in F\}$$

$$= \bigcup_{p \in Q} \{x \mid \widehat{\delta}(s, x) = p\} \cap \{x \mid \exists y \mid y \mid = f(\mid x \mid) \text{ and } \widehat{\delta}(p, y) \in F\}$$

$$= \bigcup_{p \in Q} L(M_{s}^{p}) \cap L(M_{p}^{F})'_{f}.$$

By C2 and closure of regular sets under the boolean set operations, this is a regular set. 4 D F 4 D F 4 D F 4 D F 5

Thank You!

