
Introduction
Algorithm

Analysis - Correctness and Time complexity

A Linear Algorithm for Testing Equivalence of
Finite Automata

Namrata Jain

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

October 30, 2013

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 1 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Outline

1 Introduction
Problem Definition
Previous Work

2 Algorithm
Intuition
Algorithm
Example 1
Example 2

3 Analysis - Correctness and Time complexity
Correctness
Time Complexity

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 2 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Problem Definition
Previous Work

Plan

1 Introduction
Problem Definition
Previous Work

2 Algorithm
Intuition
Algorithm
Example 1
Example 2

3 Analysis - Correctness and Time complexity
Correctness
Time Complexity

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 3 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Problem Definition
Previous Work

A Quick Recap

DFA over Σ : M = (Q, s, δ,F)

Q is a finite set of states
s ∈ Q represents the start state
δ : Q × Σ→ Q is the transition function
F ⊆ Q is the set of final states

Define δ̂ : Q × Σ∗ → Q

δ̂(q, ε) = q

δ̂(q,w · a) = δ(δ̂(q,w), a)

Language accepted by DFA M (Denoted by L(M))

L(M) = {w ∈ Σ∗ | δ̂(s,w) ∈ F}

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 4 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Problem Definition
Previous Work

Problem Definition

Input : 2 DFA’s over Σ

M1 = (Q1, s1, δ1,F1)

M2 = (Q2, s2, δ2,F2)

Output : Is L(M1) = L(M2)?

∀w ∈ Σ∗, δ̂1(s1,w) ∈ F1 iff δ̂2(s2,w) ∈ F2

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 5 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Problem Definition
Previous Work

Existing Solutions

Previous algorithms have a time complexity of
1 O(n2)
2 O(n lgn)

Hopcroft-Karp algorithm has a time complexity of O(n|Σ|)

n = |Q1|+ |Q2|

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 6 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Plan

1 Introduction
Problem Definition
Previous Work

2 Algorithm
Intuition
Algorithm
Example 1
Example 2

3 Analysis - Correctness and Time complexity
Correctness
Time Complexity

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 7 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Notation

Equivalent States

Two states p and q are said to be equivalent (p ≡ q) if

∀p, q ∈ Q1

⋃
Q2 ∀w ∈ Σ∗,

δ̂(p,w) ∈ F1

⋃
F2 iff δ̂(q,w) ∈ F1

⋃
F2

Right invariant Equivalence Relation

A equivalence relation ≡ over Q1
⋃

Q2 is right invariant if

∀p, q ∈ Q1

⋃
Q2 ∀a ∈ Σ,

δ(p, a) ≡ δ(q, a)

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 8 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Intuition

L(M1) = L(M2)
=⇒ s1 and s2 are equivalent
=⇒ δ(s1, a) = δ(s2, a)

We begin by assuming s1 and s2 equivalent.

Sets are merged whenever it is found two states need to be
equivalent for the assumption to hold.

When the process terminates, M1 and M2 are equivalent if
none of the sets has a final and a non-final state
simultaneously.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 9 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Data Structure Used

Data Structure used is a linear list of sets of elements. Each
list has a name.

It can execute only two types of instructions
1 FIND(x) : It returns the name of the set containing x
2 MERGE(A, B, C) : It merges set A and B and names it C

A sequence of n instructions takes O(n) time.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 10 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Algorithm

1 Initialize Data Structures
a ∀q ∈ Q1

⋃
Q2, create and initalize a set in Linear List with name

q
b Stack = φ

2 Assume s1 and s2 to be equivalent
a MERGE(s1, s2, s2)
b Push(s1, s2)

3 Repet until stack is empty
a Pop (q1, q2)
b r1 = FIND(δ(q1, a))
c r2 = FIND(δ(q2, a))
d if r1 6= r2

i MERGE(r1, r2, r2)
ii Push(r1, r2)

4 Check if equivalent
Scan states on each list. Output “TRUE” iff no list contains a
final and a non-final state and “FALSE” otherwise

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 11 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Example 1 : Step 1

q1start q2

q3q4

a

b

a

b

a

b

a

b

Figure 1 : DFA 1

q5start q6

a

b

a

b

Figure 2 : DFA 2

Stack : φ
Linear List : {q1}, {q2}, {q3}, {q4}, {q5}, {q6}

Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 12 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Example 1 : Step 2

q1start q2

q3q4

a

b

a

b

a

b

a

b

Figure 1 : DFA 1

q5start q6

a

b

a

b

Figure 2 : DFA 2

Stack : {q1, q5}
Linear List : {q1, q5}, {q2}, {q3}, {q4}, {q6}

Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 13 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Example 1 : Step 3

q1start q2

q3q4

a

b

a

b

a

b

a

b

Figure 1 : DFA 1

q5start q6

a

b

a

b

Figure 2 : DFA 2

Stack : {q2, q6}
Linear List : {q1, q5}, {q2, q6}, {q3}, {q4}

Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 14 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Example 1 : Step 3

q1start q2

q3q4

a

b

a

b

a

b

a

b

Figure 1 : DFA 1

q5start q6

a

b

a

b

Figure 2 : DFA 2

Stack : {q3, q5}
Linear List : {q1, q3, q5}, {q2, q6}, {q4}

Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 15 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Example 1 : Step 3

q1start q2

q3q4

a

b

a

b

a

b

a

b

Figure 1 : DFA 1

q5start q6

a

b

a

b

Figure 2 : DFA 2

Stack : {q4, q6}
Linear List : {q1, q3, q5}, {q2, q4, q6}

Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 16 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Example 1 : Step 3

q1start q2

q3q4

a

b

a

b

a

b

a

b

Figure 1 : DFA 1

q5start q6

a

b

a

b

Figure 2 : DFA 2

Stack : φ
Linear List : {q1, q3, q5}, {q2, q4, q6}

Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 17 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Example 2 : Step 1

q1start q2

a

b

a

b

Figure 1 : DFA 1

q3start q4

b

a

b

a

Figure 2 : DFA 2

Stack : φ
Linear List : {q1}, {q2}, {q3}, {q4}

Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 18 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Example 2 : Step 2

q1start q2

a

b

a

b

Figure 1 : DFA 1

q3start q4

b

a

b

a

Figure 2 : DFA 2

Stack : {q1, q3}
Linear List : {q1, q3}, {q2}, {q4}

Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 19 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Example 2 : Step 3

q1start q2

a

b

a

b

Figure 1 : DFA 1

q3start q4

b

a

b

a

Figure 2 : DFA 2

Stack : {q2, q3}, {q1, q4}
Linear List : {q1, q2, q3, q4}

Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 20 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Example 2 : Step 3

q1start q2

a

b

a

b

Figure 1 : DFA 1

q3start q4

b

a

b

a

Figure 2 : DFA 2

Stack : {q2, q3}
Linear List : {q1, q2, q3, q4}

Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 21 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Intuition
Algorithm
Example 1
Example 2

Example 2 : Step 3

q1start q2

a

b

a

b

Figure 1 : DFA 1

q3start q4

b

a

b

a

Figure 2 : DFA 2

Stack : φ
Linear List : {q1, q2, q3, q4}

Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 22 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Correctness
Time Complexity

Plan

1 Introduction
Problem Definition
Previous Work

2 Algorithm
Intuition
Algorithm
Example 1
Example 2

3 Analysis - Correctness and Time complexity
Correctness
Time Complexity

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 23 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Correctness
Time Complexity

Notation

Connecting Sequence

A sequence of states q1, q2, . . . , qr is a connecting sequence if

∀a ∈ Σ, δ(qi , a) and δ(qi+1, a) are on same list

The pair (qi , qi+1) is on stack

Joined States

States p and q are joined by the connecting sequence q1, q2, . . . , qr

if p = q1 and q = qr

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 24 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Correctness
Time Complexity

Lemma

Lemma

E is an equivalence relation defined on p, q ∈ S1
⋃

S2 s.t. pEq iff p
and q appear on same list at the end of the algorithm. It is
coarsest right invariant equivalence identifying s1 and s2.

Proof :

Coarsest Equivalence Relation
Two lists are merged only if ∃p1, p2 ∈ Q1

⋃
Q2 are on the

same list and ∀a ∈ Σδ1(p1, a) and δ(p2, a) are on different lists.
Since does not make too many identifications ⇒ it is coarsest.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 25 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Correctness
Time Complexity

Lemma

Lemma

E is an equivalence relation defined on p, q ∈ S1
⋃

S2 s.t. pEq iff p
and q appear on same list at the end of the algorithm. It is
coarsest right invariant equivalence identifying s1 and s2.

Proof :

Coarsest Equivalence Relation
Two lists are merged only if ∃p1, p2 ∈ Q1

⋃
Q2 are on the

same list and ∀a ∈ Σδ1(p1, a) and δ(p2, a) are on different lists.
Since does not make too many identifications ⇒ it is coarsest.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 25 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Correctness
Time Complexity

Lemma - Proof Contd.

Right Invariant Equivalence Relation
Induction Hypothesis : Before kth iteration of the ’while’
loop, if (p, q) are on the same list, then p and q are joined by
a connecting sequence.
Basis : k=1
s1, s2 are only in the same set and (s1, s2) are at the stack top.
⇒ s1 and s2 are joined by a connecting sequence.
Induction Step :

If p and q are joined before the k th iteration, they are joined
after k th iteration also
Assume p and q are on the same list after k th iteration

1 p and q were on same list before the k th iteration, they remain
so.

2 Several lists merge into one list because the join relation is
reflexive, symmetric and transitive.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 26 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Correctness
Time Complexity

Theorem

Lemma

The given algorithm is correct.

Proof :

M1 ≡ M2

Let E ′ be a right invariant equivalence relation s.t. ∀p, q ∈
Q1

⋃
Q2 ∀w ∈ Σ∗ δ̂(p,w) ∈ F1

⋃
F2 iff δ̂(q,w) ∈ F1

⋃
F2

Since E ′ is right invariant ⇒ E ′ is a refinement of E
Since E ′ can not identify final and non-final states neither can
E
⇒ No list can contain both final and non-final state.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 27 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Correctness
Time Complexity

Theorem

Lemma

The given algorithm is correct.

Proof :

M1 ≡ M2

Let E ′ be a right invariant equivalence relation s.t. ∀p, q ∈
Q1

⋃
Q2 ∀w ∈ Σ∗ δ̂(p,w) ∈ F1

⋃
F2 iff δ̂(q,w) ∈ F1

⋃
F2

Since E ′ is right invariant ⇒ E ′ is a refinement of E
Since E ′ can not identify final and non-final states neither can
E
⇒ No list can contain both final and non-final state.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 27 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Correctness
Time Complexity

Theorem - Proof Contd.

If M1 6= M2 some list contains final and non-final state
∃w ∈ Σ∗ : δ̂(s1,w) ∈ F and δ̂(s2,w) /∈ F
Since E is right invariant(Lemma), δ̂(s1,w) E δ̂(s2,w)
=⇒ δ̂(s1,w) and δ̂(s2,w) are in the same list
=⇒ A list contains final and non-final state

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 28 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Correctness
Time Complexity

Time Complexity Analysis

Theorem

Execution time of the algorithm is n × (|Q1|+ |Q2|).

Proof :

Step 1, 2 and 3 take O(n) time.

Step 3 takes O(m × |Σ|) time where m is the number of pairs
pushed/popped on the stack

Each time a pair is pushed on to the stack, total number of
sets are decreased by 1.
As there were n sets in the beginning, atmost (n-1) pairs are
pushed/ popped.
Number of pairs pushed/ popped from the stack is therefore
bounded by n.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 29 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Correctness
Time Complexity

Time Complexity Analysis

Theorem

Execution time of the algorithm is n × (|Q1|+ |Q2|).

Proof :

Step 1, 2 and 3 take O(n) time.

Step 3 takes O(m × |Σ|) time where m is the number of pairs
pushed/popped on the stack

Each time a pair is pushed on to the stack, total number of
sets are decreased by 1.
As there were n sets in the beginning, atmost (n-1) pairs are
pushed/ popped.
Number of pairs pushed/ popped from the stack is therefore
bounded by n.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 29 / 30

Introduction
Algorithm

Analysis - Correctness and Time complexity

Correctness
Time Complexity

Questions??

Thank You!!

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 30 / 30

	Introduction
	Problem Definition
	Previous Work

	Algorithm
	Intuition
	Algorithm
	Example 1
	Example 2

	Analysis - Correctness and Time complexity
	Correctness
	Time Complexity

