A Linear Algorithm for Testing Equivalence of
Finite Automata

Namrata Jain

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

October 30, 2013

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain

Outline

@ Introduction
@ Problem Definition
@ Previous Work

© Algorithm
@ Intuition
@ Algorithm
@ Example 1
@ Example 2

© Analysis - Correctness and Time complexity
@ Correctness
@ Time Complexity

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 2/30

Introduction

Problem Definition
Previous Wo

@ Introduction
@ Problem Definition
@ Previous Work

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 3/30

Introduction Problem Definition

Previous Work

A Quick Recap

DFAover ¥ : M = (Q,s, 0, F)

Q is a finite set of states

s € Q represents the start state

0 : Q X X — Q is the transition function
F C Q is the set of final states

Defined : Q x ¥* — Q

o é(qa 6) =q)
° d(q,w-a) =0(d(q,w),a)

Language accepted by DFA M (Denoted by L(M))
L(M) = {w e T* | §(s,w) € F}

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 4/30

Introduction

Problem Definition
Previous Work

Problem Definition

Input : 2 DFA’s over &
o My = (Qq,51,01,F1)
o My = (@, 5,02, F)

\

Output : Is L(My) = L(My)?
Yw € Z*, 5\1(51, W) € F iff gg(SQ, W) € Fp

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 5/30

| i -
ntroduction Problem Definition

Previous Work

Existing Solutions

@ Previous algorithms have a time complexity of
0 O(n?)
@ O(n lgn)

@ Hopcroft-Karp algorithm has a time complexity of O(n|%|)

n=|Q+ |Q]

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 6/30

Intuition

Algorithm
Example 1
Example 2

Algorithm

© Algorithm
@ Intuition
@ Algorithm
@ Example 1
@ Example 2

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 7/30

Intuition

Algorithm
Example 1
Example 2

Algorithm

Notation

Equivalent States

Two states p and q are said to be equivalent (p = q) if

Vp,qulLJQg Yw e X*,

d(p,w) € F| R iff 5(q,w) € F1(J P

Right invariant Equivalence Relation

A equivalence relation = over Q1 |J Q2 is right invariant if

vp7q€(?1LJC)2 VBGZ,

6(p,a) =4(q, a)

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 8/30

Intuition

Algorithm
Example 1
Example 2

Algorithm

Intuition

[L(Ml) = L(M2)
= s1 and s, are equivalent
= J(s1,a) = d(s2, a)
@ We begin by assuming s; and s, equivalent.

@ Sets are merged whenever it is found two states need to be
equivalent for the assumption to hold.

@ When the process terminates, M; and M, are equivalent if
none of the sets has a final and a non-final state
simultaneously.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 9/30

Intuition

Algorithm
Example 1
Example 2

Algorithm

Data Structure Used

@ Data Structure used is a linear list of sets of elements. Each
list has a name.

@ It can execute only two types of instructions

© FIND(x) : It returns the name of the set containing x
@ MERGE(A, B, C) : It merges set A and B and names it C

@ A sequence of n instructions takes O(n) time.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 10/30

Intuition

Algorithm
Example 1
Example 2

Algorithm

Algorithm

o

o

Initialize Data Structures
a Vg € Q1| @, create and initalize a set in Linear List with name
q
b Stack = ¢
Assume s; and s, to be equivalent
a MERGE(Sl,SQ,SQ)
b Push(sy, sp)
Repet until stack is empty
a Pop (g1,)
rn = FIND((q1, a))
ry = FIND((gg, a))
ifrn#n
i MERGE(I’l, r, I’2)
i Push(r,r)
Check if equivalent
Scan states on each list. Output “TRUE" iff no list contains a

final and a non-final state and “FALSE" otherwise

o n T

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 11/30

Intuition

Algorithm
Example 1
Example 2

Algorithm

Example 1 : Step 1

b b
start H&i b b
a

a
a
start H
:
b b

Figure 2 : DFA 2

Figure 1 : DFA 1
Stack : ¢

Linear List : {q1}, {2}, {as}, {aa} {qs} {qe}
Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 12 /30

Intuition

Algorithm
Example 1
Example 2

Algorithm

Example 1 : Step 2

! ! Figure 2 : DFA 2

b b

Figure 1 : DFA 1
Stack : {qg1, g5}

Linear List : {q1,qs}, {q2}, {as}, {aa}, {g6}
Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 13/30

Intuition

Algorithm
Example 1
Example 2

Algorithm

Example 1 : Step 3

! ! Figure 2 : DFA 2

b b

Figure 1 : DFA 1
Stack : {g2, 96}
Linear List : {q1,qs}, {2, 96} {q3}, {qa}
Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 14 /30

Intuition

Algorithm
Example 1
Example 2

Algorithm

Example 1 : Step 3

Figure 2 : DFA 2

Figure 1 : DFA 1
Stack : {g3, s}
Linear List : {q1,q3,qs5}, {92, 96}, {aa}
Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain

Intuition

Algorithm
Example 1
Example 2

Algorithm

Example 1 : Step 3

! ! Figure 2 : DFA 2

b b

Figure 1 : DFA 1
Stack : {94, g6}
Linear List : {q1, 43,95}, {92, s, g6}
Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 16 /30

Intuition

Algorithm
Example 1
Example 2

Algorithm

Example 1 : Step 3

Figure 2 : DFA 2

Figure 1 : DFA 1
Stack : ¢

Linear List : {q1, 43,95}, {92, 94, g6}
Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 17 /30

Intuition

Algorithm
Example 1
Example 2

Algorithm

Example 2 : Step 1

b b a a
a b
start H start H
a b
Figure 1 : DFA 1 Figure 2 : DFA 2
Stack : ¢

Linear List : {g1}, {92}, {g3}, {qa}
Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 18 /30

Intuition

Algorithm
Example 1
Example 2

Algorithm

Example 2 : Step 2

b b a a
a b
start 4> start *>
a b
Figure 1 : DFA 1 Figure 2 : DFA 2

Stack : {q1, 93}
Linear List : {q1, 93}, {g2}, {qa}
Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 19/30

Intuition

Algorithm
Example 1
Example 2

Algorithm

Example 2 : Step 3

b b a a
a b
start 4> start *>
a b
Figure 1 : DFA 1 Figure 2 : DFA 2

Stack : {q2, 93}, {q1, g4}
Linear List : {q1,92,93,q4}

Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 20/30

Intuition

Algorithm
Example 1
Example 2

Algorithm

Example 2 : Step 3

b b a a
a b
start 4> start *>
a b
Figure 1 : DFA 1 Figure 2 : DFA 2

Stack : {q2, g3}
Linear List : {q1,92,93,q4}

Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 21/30

Intuition

Algorithm
Example 1
Example 2

Algorithm

Example 2 : Step 3

b b a a
a b
start H start H
a b
Figure 1 : DFA 1 Figure 2 : DFA 2
Stack : ¢

Linear List : {q1, 92, 93,44}
Figure 3 : Stack and Linear List

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 22/30

Correctness
. . . Time Complexity
Analysis - Correctness and Time complexity F

Plan

© Analysis - Correctness and Time complexity
@ Correctness
@ Time Complexity

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 23/30

Correctness
Time Complexity

Analysis - Correctness and Time complexity

Notation

Connecting Sequence

A sequence of states g1, g, ..., q, is a connecting sequence if
e Vae X, §(qi,a)and 6(qgj+1,a) are on same list
@ The pair (gj, gi+1) is on stack

States p and q are joined by the connecting sequence g1, 2, .- -, g,
if p=gq1and g=gq,

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 24 /30

Correctness

. . . C exity
Analysis - Correctness and Time complexity il Compliexdis

Lemma

E is an equivalence relation defined on p,q € S;1|J Sz s.t. pEgq iff p
and q appear on same list at the end of the algorithm. It is
coarsest right invariant equivalence identifying s; and s,.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 25/30

Correctness

. . . C exity
Analysis - Correctness and Time complexity il Compliexdis

Lemma

E is an equivalence relation defined on p,q € S;1|J Sz s.t. pEgq iff p
and q appear on same list at the end of the algorithm. It is
coarsest right invariant equivalence identifying s; and s,.

Proof :

o Coarsest Equivalence Relation
Two lists are merged only if Ip1, p2 € Q1 |J Q2 are on the
same list and Va € £d1(p1, a) and §(p2, a) are on different lists.
Since does not make too many identifications = it is coarsest.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 25/30

Correctness

. . . C exity
Analysis - Correctness and Time complexity il Compliexdis

Lemma - Proof Contd.

@ Right Invariant Equivalence Relation
Induction Hypothesis : Before k" iteration of the 'while’
loop, if (p, q) are on the same list, then p and g are joined by
a connecting sequence.
Basis : k=1
s1, s2 are only in the same set and (si, sp) are at the stack top.
= s1 and s, are joined by a connecting sequence.
Induction Step :

o If p and q are joined before the k" iteration, they are joined
after k' iteration also
o Assume p and g are on the same list after k" iteration
@ p and g were on same list before the kf iteration, they remain
so.
@ Several lists merge into one list because the join relation is
reflexive, symmetric and transitive.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 26 /30

Correctness

. . . C exity
Analysis - Correctness and Time complexity Uthine Ganmple

Theorem

The given algorithm is correct.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 27 /30

Correctness

. . . C exity
Analysis - Correctness and Time complexity il Compliexdis

Theorem

The given algorithm is correct.

Proof :
4 Ml = M2

o Let E’ be a right invariant equivalence relation s.t. Vp,q €
QU@ vYwes*d(p,w)e RUF iffd(qg,w) e FLUF.

e Since E’ is right invariant = E’ is a refinement of E

e Since E’ can not identify final and non-final states neither can

E
= No list can contain both final and non-final state.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 27 /30

Correctness

. . . C exity
Analysis - Correctness and Time complexity il Compliexdis

Theorem - Proof Contd.

o If My # M, some list contains final and non-final state
Jw € £*: §(s1,w) € F and §(s», w) ¢ F A

Since E is right invariant(Lemma), o(s1, w) E (s, w)

— §(s1, w) and (s, w) are in the same list

= A list contains final and non-final state

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 28 /30

Correctness

Analysis - Correctness and Time complexity it Comtdy

Time Complexity Analysis

Execution time of the algorithm is n x (| Q1] + |@2|)-

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 29/30

Correctness
Analysis - Correctness and Time complexity it Comtdy

Time Complexity Analysis

Execution time of the algorithm is n x (| Q1] + |@2|)-

Proof :

e Step 1, 2 and 3 take O(n) time.

@ Step 3 takes O(m x |X|) time where m is the number of pairs
pushed /popped on the stack

e Each time a pair is pushed on to the stack, total number of
sets are decreased by 1.

o As there were n sets in the beginning, atmost (n-1) pairs are
pushed/ popped.

o Number of pairs pushed/ popped from the stack is therefore
bounded by n.

A Linear Algorithm for Testing Equivalence of Finite Automata Namrata Jain 29/30

Analysis - Correctness and Time complexity

Questions??

Thank Youl!!

Linear Algorithm for Testing Equivalence of Finite Automata Namrata

	Introduction
	Problem Definition
	Previous Work

	Algorithm
	Intuition
	Algorithm
	Example 1
	Example 2

	Analysis - Correctness and Time complexity
	Correctness
	Time Complexity

