A Linear Algorithm for Testing Equivalence of Finite Automata

Namrata Jain

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

October 30, 2013

Outline

- Introduction
 - Problem Definition
 - Previous Work
- 2 Algorithm
 - Intuition
 - Algorithm
 - Example 1
 - Example 2
- 3 Analysis Correctness and Time complexity
 - Correctness
 - Time Complexity

Plan

- Introduction
 - Problem Definition
 - Previous Work
- 2 Algorithm
 - Intuition
 - Algorithm
 - Example 1
 - Example 2
- 3 Analysis Correctness and Time complexity
 - Correctness
 - Time Complexity

A Quick Recap

DFA over $\Sigma : \overline{M} = (Q, s, \delta, F)$

Q is a finite set of states

 $s \in Q$ represents the start state

 $\delta: Q \times \Sigma \to Q$ is the transition function

 $F \subseteq Q$ is the set of final states

Define $\hat{\delta}:Q imes\Sigma^* o Q$

- $\hat{\delta}(q,\epsilon) = q$
- $\hat{\delta}(q, w \cdot a) = \delta(\hat{\delta}(q, w), a)$

Language accepted by DFA M (Denoted by L(M))

$$L(M) = \{ w \in \Sigma^* \mid \hat{\delta}(s, w) \in F \}$$

Problem Definition

Input: 2 DFA's over Σ

- $M_1 = (Q_1, s_1, \delta_1, F_1)$
- $M_2 = (Q_2, s_2, \delta_2, F_2)$

Output : Is
$$L(M_1) = L(M_2)$$
?

$$\forall w \in \Sigma^*, \quad \hat{\delta_1}(s_1, w) \in F_1 \text{ iff } \hat{\delta_2}(s_2, w) \in F_2$$

Existing Solutions

- Previous algorithms have a time complexity of
 - $O(n^2)$
 - O(n lgn)
- ullet Hopcroft-Karp algorithm has a time complexity of $O(n|\Sigma|)$

$$n = |Q_1| + |Q_2|$$

Plan

- Introduction
 - Problem Definition
 - Previous Work
- 2 Algorithm
 - Intuition
 - Algorithm
 - Example 1
 - Example 2
- 3 Analysis Correctness and Time complexity
 - Correctness
 - Time Complexity

Notation

Equivalent States

Two states p and q are said to be equivalent $(p \equiv q)$ if

$$\forall p, q \in Q_1 \bigcup Q_2 \ \forall w \in \Sigma^*,$$

$$\hat{\delta}(p,w) \in F_1 \bigcup F_2 \text{ iff } \hat{\delta}(q,w) \in F_1 \bigcup F_2$$

Right invariant Equivalence Relation

A equivalence relation \equiv over $Q_1 \bigcup Q_2$ is right invariant if

$$\forall p, q \in Q_1 \bigcup Q_2 \ \forall a \in \Sigma,$$

$$\delta(p, a) \equiv \delta(q, a)$$

Intuition

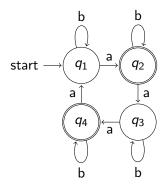
- $L(M_1) = L(M_2)$ $\implies s_1 \text{ and } s_2 \text{ are equivalent}$ $\implies \delta(s_1, a) = \delta(s_2, a)$
- We begin by assuming s_1 and s_2 equivalent.
- Sets are merged whenever it is found two states need to be equivalent for the assumption to hold.
- When the process terminates, M₁ and M₂ are equivalent if none of the sets has a final and a non-final state simultaneously.

Data Structure Used

- Data Structure used is a linear list of sets of elements. Each list has a name.
- It can execute only two types of instructions
 - **1 FIND(x)**: It returns the name of the set containing x
 - MERGE(A, B, C): It merges set A and B and names it C
- A sequence of n instructions takes O(n) time.

Algorithm

- Initialize Data Structures
 - a $\forall q \in Q_1 \bigcup Q_2$, create and initalize a set in Linear List with name q
 - **b** Stack = ϕ
- 2 Assume s_1 and s_2 to be equivalent
 - a MERGE (s_1, s_2, s_2)
 - b Push (s_1, s_2)
- Repet until stack is empty
 - a Pop (q_1, q_2)
 - b $r_1 = FIND(\delta(q_1, a))$
 - $c_{r_2} = FIND(\delta(q_2, a))$
 - d if $r_1 \neq r_2$
 - i MERGE (r_1, r_2, r_2)
 - ii $Push(r_1, r_2)$
- Check if equivalent Scan states on each list. Output "TRUE" iff no list contains a final and a non-final state and "FALSE" otherwise



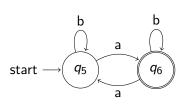
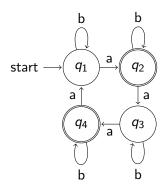


Figure 2: DFA 2

Figure 1: DFA 1

Stack : ϕ

Linear List: $\{q_1\}$, $\{q_2\}$, $\{q_3\}$, $\{q_4\}$, $\{q_5\}$, $\{q_6\}$



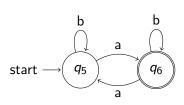
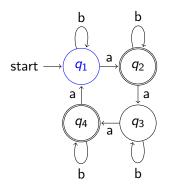


Figure 2 : DFA 2

Figure 1: DFA 1

Stack : $\{q_1, q_5\}$

Linear List : $\{q_1, q_5\}$, $\{q_2\}$, $\{q_3\}$, $\{q_4\}$, $\{q_6\}$



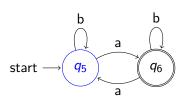
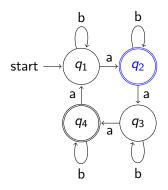


Figure 2 : DFA 2

Figure 1 : DFA 1

Stack : $\{q_2, q_6\}$

Linear List : $\{q_1, q_5\}$, $\{q_2, q_6\}$, $\{q_3\}$, $\{q_4\}$



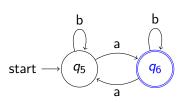
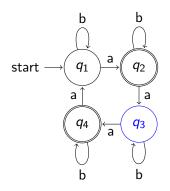


Figure 2 : DFA 2

Figure 1 : DFA 1

Stack : $\{q_3, q_5\}$

Linear List : $\{q_1, q_3, q_5\}$, $\{q_2, q_6\}$, $\{q_4\}$



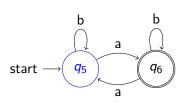
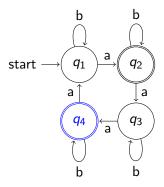


Figure 2 : DFA 2

Figure 1: DFA 1

Stack : $\{q_4, q_6\}$

Linear List : $\{q_1, q_3, q_5\}$, $\{q_2, q_4, q_6\}$



start $\rightarrow q_5$ a q_6

Figure 2: DFA 2

Figure 1: DFA 1

Stack : ϕ

Linear List : $\{q_1, q_3, q_5\}, \{q_2, q_4, q_6\}$

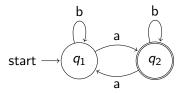


Figure 1: DFA 1

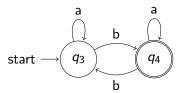


Figure 2 : DFA 2

Stack : ϕ

Linear List : $\{q_1\}$, $\{q_2\}$, $\{q_3\}$, $\{q_4\}$

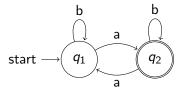


Figure 1: DFA 1

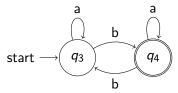


Figure 2 : DFA 2

Stack : $\{q_1, q_3\}$

Linear List : $\{q_1, q_3\}$, $\{q_2\}$, $\{q_4\}$

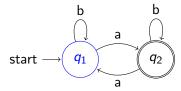


Figure 1: DFA 1

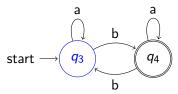


Figure 2 : DFA 2

Stack : $\{q_2, q_3\}, \{q_1, q_4\}$ Linear List : $\{q_1, q_2, q_3, q_4\}$

Figure 3: Stack and Linear List

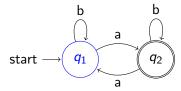


Figure 1: DFA 1

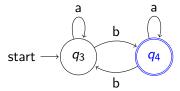


Figure 2 : DFA 2

Stack : $\{q_2, q_3\}$

Linear List : $\{q_1, q_2, q_3, q_4\}$

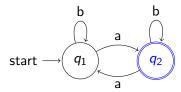


Figure 1: DFA 1

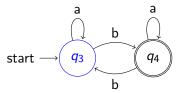


Figure 2 : DFA 2

 $\mathsf{Stack}:\,\phi$

Linear List : $\{q_1, q_2, q_3, q_4\}$

Plan

- Introduction
 - Problem Definition
 - Previous Work
- 2 Algorithm
 - Intuition
 - Algorithm
 - Example 1
 - Example 2
- 3 Analysis Correctness and Time complexity
 - Correctness
 - Time Complexity

Notation

Connecting Sequence

A sequence of states q_1, q_2, \dots, q_r is a connecting sequence if

- $\forall a \in \Sigma$, $\delta(q_i, a)$ and $\delta(q_{i+1}, a)$ are on same list
- The pair (q_i, q_{i+1}) is on stack

Joined States

States p and q are joined by the connecting sequence q_1, q_2, \ldots, q_r if $p=q_1$ and $q=q_r$

Lemma

Lemma

E is an equivalence relation defined on $p, q \in S_1 \bigcup S_2$ s.t. pEq iff p and q appear on same list at the end of the algorithm. It is coarsest right invariant equivalence identifying s_1 and s_2 .

Lemma

Lemma

E is an equivalence relation defined on $p, q \in S_1 \bigcup S_2$ s.t. pEq iff p and q appear on same list at the end of the algorithm. It is coarsest right invariant equivalence identifying s_1 and s_2 .

Proof:

Coarsest Equivalence Relation

Two lists are merged only if $\exists p_1, p_2 \in Q_1 \bigcup Q_2$ are on the same list and $\forall a \in \Sigma \delta_1(p_1, a)$ and $\delta(p_2, a)$ are on different lists. Since does not make too many identifications \Rightarrow it is coarsest.

Lemma - Proof Contd.

• Right Invariant Equivalence Relation Induction Hypothesis: Before k^{th} iteration of the 'while' loop, if (p,q) are on the same list, then p and q are joined by a connecting sequence.

Basis: k=1

 s_1 , s_2 are only in the same set and (s_1, s_2) are at the stack top. $\Rightarrow s_1$ and s_2 are joined by a connecting sequence.

Induction Step:

- If p and q are joined before the k^{th} iteration, they are joined after k^{th} iteration also
- Assume p and q are on the same list after k^{th} iteration
 - ① p and q were on same list before the k^{th} iteration, they remain so.
 - Several lists merge into one list because the join relation is reflexive, symmetric and transitive.

Theorem

Lemma

The given algorithm is correct.

Theorem

Lemma

The given algorithm is correct.

Proof:

- $M_1 \equiv M_2$
 - Let E' be a right invariant equivalence relation s.t. $\forall p, q \in Q_1 \bigcup Q_2 \ \forall w \in \Sigma^* \ \hat{\delta}(p, w) \in F_1 \bigcup F_2 \ \text{iff} \ \hat{\delta}(q, w) \in F_1 \bigcup F_2$
 - Since E' is right invariant \Rightarrow E' is a refinement of E
 - ullet Since E' can not identify final and non-final states neither can E
 - ⇒ No list can contain both final and non-final state.

Theorem - Proof Contd.

- If $M_1 \neq M_2$ some list contains final and non-final state
 - $\exists w \in \Sigma^* : \hat{\delta}(s_1, w) \in F \text{ and } \hat{\delta}(s_2, w) \notin F$
 - Since E is right invariant(Lemma), $\hat{\delta}(s_1, w) \to \hat{\delta}(s_2, w)$
 - $\Longrightarrow \hat{\delta}(s_1, w)$ and $\hat{\delta}(s_2, w)$ are in the same list
 - \Longrightarrow A list contains final and non-final state

Time Complexity Analysis

Theorem

Execution time of the algorithm is $n \times (|Q_1| + |Q_2|)$.

Time Complexity Analysis

Theorem

Execution time of the algorithm is $n \times (|Q_1| + |Q_2|)$.

Proof:

- Step 1, 2 and 3 take O(n) time.
- Step 3 takes $O(m \times |\Sigma|)$ time where m is the number of pairs pushed/popped on the stack
 - Each time a pair is pushed on to the stack, total number of sets are decreased by 1.
 - As there were n sets in the beginning, atmost (n-1) pairs are pushed/popped.
 - Number of pairs pushed/ popped from the stack is therefore bounded by n.

Questions??

Thank You!!