Kleene Algebra and Arden's Theorem

Anshul Kumar Inzemamul Haque

Motivation

- Regular Expression is a Kleene Algebra.
- We can use the properties and theorems of Kleene Algebra to simplify regular expressions
- We can use Kleene Algebra to find an equivalent regular expression for a DFA

Semi-group and Monoid

A semi-group is an algebraic structure (S, *), where S is a set and * is an associative binary operation on S.

A monoid is an algebraic structure (M, ., 1), where M is a set, . is an associative binary operation on M and 1 is the identity for . (i.e. 1.x=x.1=x for all $x \in M$).

A commutative monoid is a monoid in which

$$x \cdot y = y \cdot X$$

Note: Here 1 is just a symbol to represent identity element.

Examples

Set of natural numbers N with operation multiplication is a semi-group because multiplication of natural numbers is associative

Set of natural numbers \mathbb{N} with operation addition is a monoid because addition of natural numbers is associative and there exists an identity element 0 (i.e. x + 0 = 0 + x = x for every $x \in \mathbb{N}$).

Semi-ring

A semi-ring is an algebraic structure (S, +, ., 0, 1) such that

- (S, +, 0) is a commutative monoid
- (S, ., 1) is a monoid
- . distributes over + on both left and right i.e.

$$x \cdot (y + z) = x \cdot y + x \cdot z$$
 and $(x + y) \cdot z = x \cdot z + y \cdot z$

• 0 is an annihilator for .

i.e.
$$x \cdot 0 = 0 \cdot x = 0$$
 for all x

A semi-ring is idempotent if x + x = x for all x.

What is Kleene Algebra?

An algebraic structure (K, +, ., *, 0, 1) such that

- (K, +, ., 0, 1) is an idempotent semi-ring
- $1 + xx^* \le x^*$
- $1 + x^*x \le x^*$
- $b + ax \le x \rightarrow a^*b \le x$
- $b + xa \le x \rightarrow ba^* \le x$

where

$$a \le b \leftrightarrow a + b = b$$

It can be shown that ≤ is partial order.

≤ is a partial order (1)

```
Reflexive –
       Since K is an idempotent semiring, hence
        a + a = a
    \Rightarrow a \leq a
    \Rightarrow Hence \leq is reflexive
Anti-Symmetric –
        a \le b and b \le a
    \Rightarrow a + b = b and b + a = a
    \Rightarrow a + b = b and a + b = a
                                       [Since K is a semi-ring
                                       hence + is commutative
    \Rightarrow a = b
        Hence ≤ is anti-symmetric
```

≤ is a partial order (2)

```
Transitive –
a \le b \text{ and } b \le c
\Rightarrow a + b = b \quad \text{and} \quad b + c = c
\Rightarrow (a + b) + c = c \quad [Since a + b = b]
\Rightarrow a + (b + c) = c \quad [+ \text{ is associative}]
\Rightarrow a + c = c \quad [Since b + c = c]
\Rightarrow a \le c
```

Hence ≤ is transitive

Hence ≤ is a partial order.

Examples of Kleene-Algebra (1)

Boolean Algebra (B, $^{\wedge}$, $^{\vee}$, , 0, 1) is a Kleene Algebra under

$$a + b \equiv a \lor b$$
 $a \cdot b \equiv a \land b$
 $a^* \equiv 1$
 $0 \equiv 0$
 $1 \equiv 1$

Examples of Kleene-Algebra (2)

The set of languages forms a Kleene Algebra under

$$A + B \equiv A \cup B$$

$$A \cdot B \equiv \{ xy \mid x \in A, y \in B \}$$

$$A^* \equiv U_{n \ge 0} A^n$$

$$0 \equiv \varphi$$

$$1 \equiv \{ \epsilon \}$$

Some typical Theorems of Kleene-Algebra

$$a^*a^* = a^*$$
 $a^{**} = a^*$
 $(a^*b)^*a^* = (a+b)^*$ denesting rule
 $a(ba)^* = (ab)^*a$ shifting rule
 $a^* = (aa)^* + a(aa)^*$

Matrices over Kleene-Algebra (1)

Given an arbitrary Kleene Algebra K, the set of n x n matrices over K denoted by M(n,K) also form Kleene Algebra.

In general, + and . are ordinary matrix addition and multiplication respectively.

Identity for + is zero matrix

Identity for . is identity matrix

E* is defined by induction on n for an n x n matrix over K.

Matrices over Kleene-Algebra (2)

Definition of E*

If n=1, M(n,K) = K, we already know * for K For n>1, break E up into four submatrices

$$E = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

E* is defined as

$$E^* = \begin{bmatrix} (A + BD^*C)^* & (A + BD^*C)^*BD^* \\ (D + CA^*B)^*CA^* & (D + CA^*B)^* \end{bmatrix}$$

Arden's Theorem (1)

Statement:

In any Kleene Algebra, a^*b is the \leq -least solution of the equation x = ax + b.

As we know that set of languages under the operation union and concatenation is also a Kleene Algebra.

Hence Arden's theorem can also be stated in terms of languages as:

 $A^* \cdot B$ is the smallest language that is a solution for X in the linear equation $X = A \cdot X \cup B$ where X, A, B are sets of strings. Moreover, if the set A does not contain the empty word, then this solution is unique.

Arden's Theorem (2)

Note: This proof is not correct. But you can get some idea from this

Proof:

It can be easily shown that a*b is the solution of the equation x = ax + b because it satisfies the given equation.

Let c be any solution to x = ax + b

Thus we have to show that a*b ≤ c for every solution c

Arden's Theorem (3)

Since c is the solution to x = ax + b, c satisfies the given equation

```
i.e. c = ac + b

Hence c \le ac + b (1)

and ac + b \le c (2)

Hence from (2),

ac \le c and b \le c

b \le c \Rightarrow ab \le ac but ac \le c

\Rightarrow ab \le c
```

Similarly we can show aab $\leq c$, aaab $\leq c$,... and so on Hence it can be shown that $a*b \leq c$

References

- Dexter Kozen, Automata and Computability, Springer
- Dexter Kozen, Lecture-2, Introduction to Kleene Algebra, http://www.cs.cornell.edu/Courses/cs786/2004sp/Lectures/l02-axioms.pdf
- Dexter Kozen, Lecture-7, Introduction to Kleene Algebra, http://www.cs.cornell.edu/Courses/cs786/2004sp/Lectures/l07-complete.pdf
- Riccardo Pucella, Introduction to Kleene Algebra, www.ccs.neu.edu/home/riccardo
- Dan Dougherty, CS-503 Lecture Notes, http://web.cs.wpi.edu/~dd/courses/503/

Queries