Visibly pushdown languages

Sabuj Kumar Jena

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

23 October 2013

Acknowledgment

I am thankfull to Prof. Deepak D'Souza for assigning the siad seminar topic. I would like to acknowledge Prof.Rajeev Alur and Prof. P. Madhusudan for their paper titled Visibly Pushdown Languages.

References

- Rajeev Alur, P. Madhusudan. Visibly Pushdown Languages. STOC'04, June 13-15, 2004, Chicago, Illinois, USA.
- Deepak D'Souza, Priti Shankar. Modern Applications of Automata Theory. ISBN: 978-981-4271-04-2.
- Wikipedia

Outline

- Visibly pushdown automata (VPA)
- Closure properties
- Visibly pushdown grammar (VPG)
- 4 Logical Characterisation
- Decision Problems
- 6 Relation to Regular Tree Languages
- \bigcirc Visibly pushdown ω-languages

Visibly pushdown automata (VPA)

The alphabet Σ is partitioned into $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$

- Σ_c : finite set of calls,
- Σ_r : finite set of returns,
- Σ_l : finite set of local actions.

A (nondeterministic) VPA \mathcal{A} is a tuple $(Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$, where

- Q is a finite set of states,
- Σ is input alphabet,
- $\delta \subseteq Q \times \Sigma_c \times Q \times (\Gamma \setminus \{\bot\}) \cup Q \times \Sigma_r \times \Gamma \times Q \cup Q \times \Sigma_l \times Q$,
- q_0 is the initial state,
- ⊥ is the bottom symbol of the stack,
- $F \subseteq Q$ is the set of final states

Visibly pushdown automata (VPA)

The alphabet Σ is partitioned into $\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$

- Σ_c : finite set of calls,
- \bullet Σ_r : finite set of returns,
- \bullet Σ_l : finite set of local actions.

A (nondeterministic) VPA \mathcal{F} is a tuple $(Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$, where

- Q is a finite set of states.
- \bullet Σ is input alphabet,
- Γ is stack alphabet,
- $\delta \subseteq Q \times \Sigma_c \times Q \times (\Gamma \setminus \{\bot\}) \cup Q \times \Sigma_c \times \Gamma \times Q \cup Q \times \Sigma_l \times Q$,
- q_0 is the initial state,
- ⊥ is the bottom symbol of the stack,
- $F \subseteq Q$ is the set of final states

Note:

- No ε -transitions,
- Exactly one symbol is pushed in each call transition.

Visibly pushdown automata (VPA)

A (nondeterministic) VPA \mathcal{A} is a tuple $(Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$, where

- Q is a finite set of states,
- $\tilde{\Sigma}$ is input alphabet,
- Γ is stack alphabet,
- $\delta \subseteq Q \times \Sigma_c \times Q \times (\Gamma \setminus \{\bot\}) \cup Q \times \Sigma_r \times \Gamma \times Q \cup Q \times \Sigma_l \times Q$,
- q_0 is the initial state,
- \bullet \perp is the bottom symbol of the stack,
- $F \subseteq Q$ is the set of final states

A deterministic VPA is a VPA $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, F)$ such that

- for every $(q, a) \in Q \times \Sigma_c$, there is at most one pair $(q', \gamma) \in Q \times (\Gamma \setminus \{\bot\})$ such that $(q, a, q', \gamma) \in \delta$
- for every $(q, a, \gamma) \in Q \times \Sigma_r \times \Gamma$, there is at most one $q' \in Q$ such that $(q, a, \gamma, q') \in \delta$
- for every $(q, a) \in Q \times \Sigma_l$, there is at most one $q' \in Q$ such that $(q, a, q') \in \delta$

A deterministic VPA is *complete* if atmost is replaced by exactly.

Visibly pushdown automata (VPA): continued

For a word $w = a_1....a_n$ in Σ^* , a run of a VPA \mathcal{A} over w is a *sequence* $(q_0, \alpha_0)(q_1, \alpha_1)...(q_n, \alpha_n)$ s.t

- $\forall i. q_i \in Q$,
- $\forall i. \ \sigma_i \in St$, where $St = (\Gamma \setminus \{\bot\})^* \cdot \{\bot\}$ denotes the set of all stacks.
- \bullet $\alpha_0 = \perp$,
- $\forall i: 1 \leq i \leq n$, one of the following holds, Call $a_i \in \Sigma_c$, $\exists \gamma \in \Gamma \setminus \{\bot\}$. s.t. $(q_i, a_i, q_{i+1}, \gamma) \in \delta$, $\alpha_{i+1} = \gamma \alpha_i$, Return $a_i \in \Sigma_r$,
 - $\exists \gamma \in \Gamma \setminus \{\bot\}$. s.t. $(q_i, a_i, \gamma, q_{i+1}) \in \delta, \alpha_i = \gamma \alpha_{i+1}$,
 - or $(q_i, a_i, \bot, q_{i+1}) \in \delta$, and $\alpha_i = \alpha_{i+1} = \bot$,

Local $a_i \in \Sigma_l$, $(q_i, a_i, q_{i+1}) \in \delta$ and $\alpha_{i+1} = \alpha_i$.

Visibly pushdown automata (VPA): continued

For a word $w = a_1....a_n$ in Σ^* , a run of a VPA \mathcal{A} over w is a *sequence* $(q_0, \alpha_0)(q_1, \alpha_1)...(q_n, \alpha_n)$ s.t

- $\forall i. q_i \in Q$,
- $\forall i. \ \sigma_i \in St$, where $St = (\Gamma \setminus \{\bot\})^* \cdot \{\bot\}$ denotes the set of all stacks.
- \bullet $\alpha_0 = \perp$,
- $\forall i: 1 \leq i \leq n$, one of the following holds, Call $a_i \in \Sigma_c$, $\exists \gamma \in \Gamma \setminus \{\bot\}$. s.t. $(q_i, a_i, q_{i+1}, \gamma) \in \delta$, $\alpha_{i+1} = \gamma \alpha_i$, Return $a_i \in \Sigma_r$,
 - $\exists \gamma \in \Gamma \setminus \{\bot\}$. s.t. $(q_i, a_i, \gamma, q_{i+1}) \in \delta, \alpha_i = \gamma \alpha_{i+1}$,
 - or $(q_i, a_i, \bot, q_{i+1}) \in \delta$, and $\alpha_i = \alpha_{i+1} = \bot$,

Local
$$a_i \in \Sigma_i$$
, $(q_i, a_i, q_{i+1}) \in \delta$ and $\alpha_{i+1} = \alpha_i$.

A run $(q_0, \alpha_0)(q_1, \alpha_1)...(q_n, \alpha_n)$ is accepting if $q_n \in F$.

A word w is accepted by a VPA \mathcal{A} if \exists an accepting run of \mathcal{A} over w.

The set of words accepted by \mathcal{A} is denoted by $L(\mathcal{A})$

Note: Acceptance by VPAs are defined by final states, not by empty stack.

Well-matched words

Let
$$\widetilde{\Sigma} = \langle \Sigma_c, \Sigma_r, \Sigma_l \rangle$$
.

The set of *well-matched* words $w \in \Sigma^*$ is defined inductively as follows,

- \bullet is well-matched.
- if w' is well matched, then

$$w = aw'$$
 or $w = w'a$ such that $a \in \Sigma_l$ is well matched.

• if w' is well matched, then

$$w = aw'b$$
 such that $a \in \Sigma_c$, $b \in \Sigma_r$ is well matched.

• if w' and w'' is well matched, then

$$w = w'w''$$
 is well matched.

Example: (())() is well matched, while neither ())) nor (() is.

```
A language L \subseteq \Sigma^* is a visibly pushdown language with respect to \Sigma (a \widetilde{\Sigma} - VPL) if there is a VPA \mathcal{A} over \widetilde{\Sigma}, satisfying that L(\mathcal{A}) = L. Example 1:
```

```
The language \{a^nb^n|n \ge 1\} is a VPL with respect to \widetilde{\Sigma} = \langle \{a\}, \{b\}, \Phi \rangle
```

```
A language L \subseteq \Sigma^* is a visibly pushdown language with respect to \Sigma (a \widetilde{\Sigma} - VPL) if there is a VPA \mathcal{A} over \widetilde{\Sigma}, satisfying that L(\mathcal{A}) = L. Example 1:
```

```
The language \{a^nb^n|n \ge 1\} is a VPL with respect to \widetilde{\Sigma} = \langle \{a\}, \{b\}, \Phi \rangle
Is every CFL a VPL?
```

```
A language L \subseteq \Sigma^* is a visibly pushdown language with respect to \overline{\Sigma} (a \widetilde{\Sigma} - VPL) if there is a VPA \mathcal{A} over \widetilde{\Sigma}, satisfying that L(\mathcal{A}) = L. Example 1:

The language \{a^nb^n|n \ge 1\} is a VPL

with respect to \widetilde{\Sigma} = \langle \{a\}, \{b\}, \Phi \rangle

Is every CFL a VPL?

Example 2:

The CFL \{a^nba^n|n \ge 1\} is not a VPL with respect to any partition \widetilde{\Sigma} of the alphabet \Sigma = \{a, b\}
```

```
A language L \subseteq \Sigma^* is a visibly pushdown language with respect to \Sigma (a \widetilde{\Sigma} - VPL) if there is a VPA \mathcal{A} over \widetilde{\Sigma}, satisfying that L(\mathcal{A}) = L. Example 1:
```

The language
$$\{a^nb^n|n \ge 1\}$$
 is a VPL with respect to $\widetilde{\Sigma} = \langle \{a\}, \{b\}, \Phi \rangle$
Is every CFL a VPL?

Example 2:

The CFL $\{a^nba^n|n \ge 1\}$ is not a VPL with respect to any partition $\widetilde{\Sigma}$ of the alphabet $\Sigma = \{a,b\}$

The class of VPLs is a strictly subclass of the class of CFLs.

```
A language L \subseteq \Sigma^* is a visibly pushdown language with respect to \widetilde{\Sigma} (a \widetilde{\Sigma} - VPL) if there is a VPA \mathcal{A} over \widetilde{\Sigma}, satisfying that L(\mathcal{A}) = L. Example 1:
```

The language
$$\{a^nb^n|n \ge 1\}$$
 is a VPL with respect to $\widetilde{\Sigma} = \langle \{a\}, \{b\}, \Phi \rangle$
Is every CFL a VPL?

Example 2:

The CFL $\{a^nba^n|n \ge 1\}$ is not a VPL with respect to any partition $\widetilde{\Sigma}$ of the alphabet $\Sigma = \{a,b\}$

The class of VPLs is a strictly subclass of the class of CFLs.

But, for every CFL we can associate a VPL over a different alphabet .

Embedding of CFL as VPLs

```
Proposition. For every CFL L \subseteq \Sigma^*, there exists a VPL L' \subseteq (\Sigma')^* with respect to some \widetilde{\Sigma}' and a homomorphism h: (\Sigma')^* \to \Sigma^* such that L = h(L')

Let L be a CFL defined by a PDA \mathcal{A} = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)

W.l.o.g, suppose that each (q, a, X, \alpha) \in \delta satisfies that \alpha = \epsilon (pop) or \alpha = X (stable) or \alpha = YX (push).

Let \Sigma' = (\Sigma \cup \{\sigma_{\epsilon}\}) \times \{c, r, l\} and \widetilde{\Sigma}' = ((\Sigma \cup \{\sigma_{\epsilon}\}) \times \{c\}, (\Sigma \cup \{\sigma_{\epsilon}\}) \times \{r\}, (\Sigma \cup \{\sigma_{\epsilon}\}) \times \{l\})

From \mathcal{A}, define VPA \mathcal{A}' = (Q', \widetilde{\Sigma}', \Gamma, \delta', q_0, Z_0, F) over \widetilde{\Sigma}', where Q \subseteq Q' and \delta' is defined by the following rules,
```

- if $(q, a, X, q', \epsilon) \in \delta$, then $(q, (a, r), X, q') \in \delta'$,
- if $(q, a, X, q', X) \in \delta$, then add a new state q_1 , $(q, (a, r), X, q_1), (q_1, (\sigma_{\epsilon}, c), q_2, X) \in \delta'$.
- if $(q, a, X, q', YX) \in \delta$, then add two new states q_1, q_2 and $(q, (a, r), X, q_1), (q_1, (\sigma_{\epsilon}, c), q_2, X), (q_2, (\sigma_{\epsilon}, c), q', Y) \in \delta'$.

Embedding of CFL as VPLs continued

A word $w = a_1 a_2 ... a_n$ is accepted by PDA \mathcal{A} iff there is some augmentation w' of w, $w' = (a'_1, b_1)(a'_2, b_2)....(a'_m, b_m)$ where each $b_i \in \{c, r, l\}$ and each $a'_i \in \Sigma \cup \{\sigma_{\epsilon}\}$, such that w' is accepted by \mathcal{A}'

Let $h: (\Sigma')^* \to \Sigma^*$ be a homomorphism defined by $\forall a \in \Sigma, s \in \{c, r, l\}$. s.t. $h((a, s)) = a, h((\sigma_{\epsilon}, s)) = \epsilon$. Then $L = h(L(\mathcal{H}'))$.

Outline

- Visibly pushdown automata (VPA)
- Closure properties
- Visibly pushdown grammar (VPG)
- 4 Logical Characterisation
- Decision Problems
- Relation to Regular Tree Languages
- \bigcirc Visibly pushdown ω-languages

Union and intersection

Proposition. VPLs with respect to $\widetilde{\Sigma}$ are closed under union and intersection.

Let
$$\mathcal{A}_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, q_0^1, \bot_1, F_1)$$
 and

$$\mathcal{A}_2 = (Q_2, \widetilde{\Sigma}, \Gamma_2, \delta_2, q_0^2, \bot_2, F_2)$$
 be two VPAs.

Union.

Without loss of generality, suppose $\perp_1 = \perp_2 = \perp$.

The VPA
$$\mathcal{A} = (Q_1 \cup Q_2 \cup q_0, \Sigma, \Gamma_1 \cup \Gamma_2, \delta, q_0, \bot, F_1 \cup F_2)$$
 s.t.

$$\delta = \delta_1 \cup \delta_2 \cup \{ (q_0, a, q', \gamma) | (q_0^1, a, q', \gamma) \in \delta_1 \text{ or } (q_0^2, a, q', \gamma) \in \delta_2 \} \cup \{ (q_0, a, \gamma, q') | (q_0^1, a, \gamma, q') \in \delta_1 \text{ or } (q_0^2, a, \gamma, q') \in \delta_2 \}$$

$$\{(q_0, a, \gamma, q) | (q_0, a, \gamma, q) \in o_1 \text{ or } (q_0, a, \gamma, q) \in o_2\}$$

defines
$$L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$$

Intersection.

The VPA
$$\mathcal{A} = (Q_1 \times Q_2, \widetilde{\Sigma}, \Gamma_1 \times \Gamma_2, \delta, (q_0^1, q_0^2), (\bot_1, \bot_2), F_1 \times F_2)$$
 s.t.

$$\delta = \{((q_1, q_2), a, (q'_1, q'_2), (\gamma_1, \gamma_2)) | (q_1, a, q'_1, \gamma_1) \in \delta_1, (q_2, a, q'_2, \gamma_2) \in \delta_2\} \cup \{((q_1, q_2), a, (\gamma_1, \gamma_2), (q'_1, q'_2)) | (q_1, a, \gamma_1, q'_1) \in \delta_1, (q_2, a, \gamma_2, q'_2) \in \delta_2\} \cup \{((q_1, q_2), a, (\gamma_1, \gamma_2), (q'_1, q'_2)) | (q_1, a, \gamma_1, q'_1) \in \delta_1, (q_2, a, \gamma_2, q'_2) \in \delta_2\} \cup \{((q_1, q_2), a, (\gamma_1, \gamma_2), (q'_1, q'_2)) | (q_1, a, \gamma_1, q'_1) \in \delta_1, (q_2, a, \gamma_2, q'_2) \in \delta_2\} \cup \{((q_1, q_2), a, (q'_1, q'_2), (q'_1, q'_2)) | (q_1, a, \gamma_1, q'_1) \in \delta_1, (q_2, a, q'_2, q'_2) \in \delta_2\} \cup \{((q_1, q_2), a, (q'_1, q'_2), (q'_1, q'_2)) | (q_1, a, q'_1, q'_1) \in \delta_1, (q'_2, a, q'_2, q'_2) \in \delta_2\} \cup \{((q_1, q_2), a, (q'_1, q'_2), (q'_1, q'_2)) | (q'_1, a, q'_1, q'_1) \in \delta_1, (q'_2, a, q'_2, q'_2) \in \delta_2\} \cup \{((q'_1, q'_2), a, (q'_1, q'_2), (q'_1, q'_2)) | (q'_1, a, q'_1, q'_1) \in \delta_1, (q'_2, a, q'_2, q'_2) \in \delta_2\} \cup \{((q'_1, q'_2), a, (q'_1, q'_2), (q'_1, q'_2)) | (q'_1, a, q'_1, q'_1) \in \delta_1, (q'_2, a, q'_2, q'_2) \in \delta_2\} \cup \{((q'_1, q'_2), (q'_1, q'_2), (q'_1,$$

Complementation

Theorem. For every VPA \mathcal{A} , a deterministic VPA \mathcal{A}' can be constructed such that $L(\mathcal{A}) = L(\mathcal{A}')$.

Corollary. VPLs with respect to $\widetilde{\Sigma}$ are closed under complementation. *Proof.*

Suppose *L* is defined by a complete deterministic VPA

$$\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F).$$

Then $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, Q \setminus F)$ defines $\Sigma^* \setminus L(\mathcal{A})$.

Determinisation of VPA

The construction of the deterministic VPA $\mathcal{H}' = (Q', \widetilde{\Sigma}, \Gamma', \delta', q_0, \bot, F')$.

....NOT COMPLETE....

Summary of Closure Properties

	Closed Under				
	U	Λ	Complement	Concat.	Kleene-*
Regular	YES	YES	YES	YES	YES
CFL	YES	NO	NO	YES	YES
DCFL	NO	NO	YES	NO	NO
VPL	YES	YES	YES	YES	YES

Outline

- Visibly pushdown automata (VPA)
- Closure properties
- 3 Visibly pushdown grammar (VPG)
- 4 Logical Characterisation
- Decision Problems
- 6 Relation to Regular Tree Languages
- \bigcirc Visibly pushdown ω-languages

Visibly pushdown grammar (VPG)

A CFG $G = (N, \Sigma, P, S)$ is a VPG over $\widetilde{\Sigma}$ if N can be partitioned into N_0 and N_1 , and each rule in P is of the following forms,

- $X \to \epsilon$,
- $X \to aY$ such that if $X \in N_0$, then $a \in \Sigma_1$, $Y \in N_0$
- $X \to aYbZ$ such that $a \in \Sigma_c$, $b \in \Sigma_r$ $Y \in N_0$ and if $X \in N_0$, then $Z \in N_0$.

Example. Let $\widetilde{\Sigma} = (\{a\}, \{b\}, \Phi)$. Then the VPG $S \to aSbC | aTbC, T \to \epsilon, C \to \epsilon$, such that $N_0 = \{S, T, C\}$ defines $\{a^nb^n | n \ge 1\}$.

Equivalence of VPA and VPG

```
Theorem. VPA \equiv VPG.

From VPA to VPG.

Let \mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F) be a VPA.
```

The intuition: Utilising the nonterminals $[q, \gamma, p]$ with the meaning

the top symbol of the stack is γ , and from state \mathbf{q} , by reading a well matched word, state \mathbf{p} can be reached

Equivalence of VPA and VPG

Theorem. $VPA \equiv VPG$.

From VPA to VPG.

Let $\mathcal{A} = (Q, \widetilde{\Sigma}, \Gamma, \delta, q_0, \bot, F)$ be a VPA.

Construct a VPG (N_0, N_1, Σ, P, S) as follows.

- $N = \{(q, \bot) | q \in Q\} \cup \{q | q \in Q\} \cup \{[q, \gamma, p] | q, p \in Q, \gamma \in \Gamma \setminus \{\bot\}\},\$
 - (q, \perp) :the state is q and the stack is empty,
 - q: the state is q and the stack is nonempty.
- $N_0 = \{[q, \gamma, p] | q, p \in Q, \gamma \in \Gamma \setminus \{\bot\}\}, S = (q_0, \bot),$
- *P* is defined by the following rules,
 - if $(q, a, q') \in \delta$ s.t $a \in \Sigma_l$, then $(q, \bot) \to a(q', \bot), q \to aq', [q, \gamma, p] \to a[q', \gamma, p]$
 - if $(q, a, q', \gamma), (p', b, \gamma, p) \in \delta$ s.t $a \in \Sigma_c, b \in \Sigma_r$, then $[q, \gamma_1, r] \rightarrow a[q', \gamma, p']b[p, \gamma_1, r], (q, \bot) \rightarrow a(q', \gamma, p')b(p, \bot), q \rightarrow a(q', \gamma, p')bp.$
 - if $(q, a, q', \gamma) \in \delta$ s.t. $a \in \Sigma_c$, then $(q, \bot) \to aq', q \to aq'(q, \bot) \to a[q', \gamma, p], q \to a[q', \gamma, p]$
 - if $(q, a, \bot, q') \in \delta$ s.t. $a \in \Sigma_r$, then $(q, \bot) \to a(q', \bot)$.
 - $\forall q \in Q. [q, \gamma, q] \rightarrow \epsilon$,
 - $\forall q \in F. \ q \to \epsilon, (q, \bot) \to \epsilon$,

Equivalence of VPA and VPG: continued

From VPG to VPA.

Let $G = (N_0, N_1, \Sigma, P, S)$ be a VPG.

Construct a VPA $\mathcal{A} = (N, \Sigma, \Sigma_r \times N \cup \{\bot, \$\}, \delta, S, F)$ as follows.

- \bullet δ is defined by the following rules,
 - if $X \to aY$ s.t. $a \in \Sigma_l$, then $(X, a, Y) \in \delta$,
 - if $X \to aY$ s.t. $a \in \Sigma_c$, then $(X, a, Y, \$) \in \delta$,
 - if $X \to aY$ s.t. $a \in \Sigma_r$, then $(X, a, \$, Y) \in \delta$ and $(X, a, \bot, Y) \in \delta$,
 - if $X \to aYbZ$, then $(X, a, Y, (b, Z)) \in \delta$,
 - if $X \to \epsilon$ and $X \in N_0$, then $(X, b, (b, Y), Y) \in \delta$,
- \mathcal{A} accepts if the state is in X s.t. $X \to \epsilon$ and the top symbol is \$ or \bot .

Equivalence of VPA and VPG: continued

From VPG to VPA.

Let $G = (N_0, N_1, \Sigma, P, S)$ be a VPG.

Construct a VPA $\mathcal{A} = (N, \widetilde{\Sigma}, \Sigma_r \times N \cup \{\bot, \$\}, \delta, S, F)$ as follows.

- δ is defined by the following rules,
 - if $X \to aY$ s.t. $a \in \Sigma_l$, then $(X, a, Y) \in \delta$, • if $X \to aY$ s.t. $a \in \Sigma_c$, then $(X, a, Y, \$) \in \delta$,
 - if $X \to aY$ s.t. $a \in \Sigma_r$, then $(X, a, \$, Y) \in \delta$ and $(X, a, \bot, Y) \in \delta$,
 - if $X \to aYbZ$, then $(X, a, Y, (b, Z)) \in \delta$,
 - if $X \to \epsilon$ and $X \in N_0$, then $(X, b, (b, Y), Y) \in \delta$,
- \mathcal{A} accepts if the state is in X s.t. $X \to \epsilon$ and the top symbol is \$ or \bot .

Adapt \mathcal{A} into VPA

 $\mathcal{A} = (N \times \Gamma, \widetilde{\Sigma}, \Gamma, \delta', (S, \bot), \{(X, \gamma) | X \to \epsilon, \gamma = \$, \bot\})$ by adding the top symbol of the stack into the states.

- if $X \to aY$ s.t. $a \in \Sigma_l$, then $\forall \gamma$. s.t. $((X, \gamma), a, (Y, \gamma)) \in \delta'$,
- if $X \to aY$ s.t. $a \in \Sigma_c$, then $\forall \gamma$. s. t. $((X, \gamma), a, (Y, \$), (\$, \gamma)) \in \delta'$,
- if $X \to aY$ s.t. $a \in \Sigma_r$, then $\forall \gamma$. s.t. $((X, \gamma), a, \bot, (Y, \bot)) \in \delta$ and $\forall \gamma$. s.t. $((X, \$), a, (\$, \gamma), (Y, \gamma)) \in \delta'$,
- if $X \to aYbZ$, then $\forall \gamma$. s.t. $((X, \gamma), a, (Y, (b, Z)), ((b, Z), \gamma)) \in \delta'$,
- if $X \to \epsilon$ and $X \in N_0$, then $\forall \gamma$. s.t $((X, (b, Z)), b, ((b, Z), \gamma), (Z, \gamma)) \in \delta'$,

Outline

- Visibly pushdown automata (VPA)
- Closure properties
- Visibly pushdown grammar (VPG)
- 4 Logical Characterisation
- Decision Problems
- Relation to Regular Tree Languages
- \bigcirc Visibly pushdown ω-languages

Equivalence of VPA and MSO μ

The monadic second order logic MSO μ over Σ is defined as:

$$\phi := Q_a(x)|x \in X|x \le y|\mu(x,y)|\phi|\phi \lor \phi|\exists x.\phi|\exists X.\phi$$

where

- $a \in \Sigma$
- x is a first order variable
- X is a set variable
- $Q_a(i)$ is true iff w[i] = a
- $\mu(i, j)$ is true if w[i] is a call and w[j] is its matching return.

Theorem A language L over $\widetilde{\Sigma}$ is a VPL iff there is an MSO_{μ} sentence ϕ over $\widetilde{\Sigma}$ that defines L

Decision Problems

	Decision problems for automata				
	Emptinesss	Univ./Equiv.	Inclusion		
Regular	NLOG	PSPACE	PSPACE		
CFL	PTIME	Undecidable	Undecidable		
DCFL	PTIME	Decidable	Undecidable		
VPL	PTIME	EXPTIME	EXPTIME		

Outline

- Visibly pushdown automata (VPA)
- Closure properties
- Visibly pushdown grammar (VPG)
- 4 Logical Characterisation
- Decision Problems
- Relation to Regular Tree Languages
- \bigcirc Visibly pushdown ω-languages

Relation to Regular Tree Languages

-NOT COMPLETE -

Outline

- Visibly pushdown automata (VPA)
- Closure properties
- Visibly pushdown grammar (VPG)
- 4 Logical Characterisation
- Decision Problems
- Relation to Regular Tree Languages
- \bigcirc Visibly pushdown ω-languages

Visibly pushdown ω -languages

-NOT COMPLETE -

Queries?

Queries?

Thanks!

Thanks!!!!