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Visibly pushdown automata (VPA)

The alphabet Σ is partitioned into Σ̃ = 〈Σc ,Σr ,Σl〉

Σc : finite set of calls,
Σr : finite set of returns,
Σl : finite set of local actions.

A (nondeterministic) VPAA is a tuple (Q , Σ̃, Γ, δ, q0,⊥,F), where
Q is a finite set of states,
Σ̃ is input alphabet,
Γ is stack alphabet,
δ ⊆ Q × Σc × Q × (Γ \ {⊥}) ∪ Q × Σr × Γ × Q ∪ Q × Σl × Q ,
q0 is the initial state,
⊥ is the bottom symbol of the stack,
F ⊆ Q is the set of final states

Note:
No ε-transitions,
Exactly one symbol is pushed in each call transition.
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Q is a finite set of states,
Σ̃ is input alphabet,
Γ is stack alphabet,
δ ⊆ Q × Σc × Q × (Γ \ {⊥}) ∪ Q × Σr × Γ × Q ∪ Q × Σl × Q ,
q0 is the initial state,
⊥ is the bottom symbol of the stack,
F ⊆ Q is the set of final states

A deterministic VPA is a VPAA= (Q , Σ̃, Γ, δ, q0,F) such that
for every(q, a) ∈ Q × Σc , there is atmost one pair
(q
′

, γ) ∈ Q × (Γ \ {⊥}) such that (q, a, q
′

, γ) ∈ δ

for every(q, a, γ) ∈ Q × Σr × Γ, there is atmost one q
′

∈ Q such that
(q, a, γ, q

′

) ∈ δ

for every(q, a) ∈ Q × Σl , there is atmost one q
′

∈ Q such that
(q, a, q

′

) ∈ δ

A deterministic VPA is complete if atmost is replaced by exactly.
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Visibly pushdown automata (VPA): continued

For a word w = a1....an in Σ∗, a run of a VPAA over w is a sequence
(q0, α0)(q1, α1)...(qn, αn) s.t

∀i. qi ∈ Q ,
∀i. σi ∈ St ,where St = (Γ \ {⊥})∗.{⊥} denotes the set of all stacks.
α0 =⊥,
∀i : 1 ≤ i ≤ n, one of the following holds,
Call ai ∈ Σc , ∃γ ∈ Γ \ {⊥}. s.t. (qi , ai , qi+1, γ) ∈ δ, αi+1 = γαi ,
Return ai ∈ Σr ,

∃γ ∈ Γ \ {⊥}. s.t. (qi , ai , γ, qi+1) ∈ δ, αi = γαi+1,
or (qi , ai ,⊥, qi+1) ∈ δ, and αi = αi+1 =⊥,

Local ai ∈ Σl , (qi , ai , qi+1) ∈ δ and αi+1 = αi .

A run (q0, α0)(q1, α1)...(qn, αn) is accepting if qn ∈ F .
A word w is accepted by a VPAA if ∃ an accepting run ofA over w.
The set of words accepted byA is denoted by L(A)
Note: Acceptance by VPAs are defined by final states, not by empty stack.
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Well-matched words

Let Σ̃ = 〈Σc ,Σr ,Σl〉.
The set of well-matched words w ∈ Σ∗ is defined inductively as follows,

ε is well-matched.
if w′ is well matched, then

w = aw′ or w = w′a such that a ∈ Σl is well matched.
if w′ is well matched, then

w = aw′b such that a ∈ Σc , b ∈ Σr is well matched.
if w′ and w′′ is well matched, then

w = w′w′′ is well matched.
Example: (())() is well matched, while neither ())) nor (() is.
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Visibly pushdown languages (VPL)

A language L ⊆ Σ∗ is a visibly pushdown language with respect to Σ̃ (a
Σ̃ − VPL) if there is a VPAA over Σ̃, satisfying that L(A) = L .
Example 1:

The language {anbn |n ≥ 1} is a VPL
with respect to Σ̃ = 〈{a}, {b},Φ〉

Is every CFL a VPL?
Example 2:

The CFL {anban |n ≥ 1} is not a VPL with respect to any
partition Σ̃ of the alphabet Σ = {a, b}

The class of VPLs is a strictly subclass of the class of CFLs.

But, for every CFL we can associate a VPL over a different alphabet .
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Embedding of CFL as VPLs

Proposition. For every CFL L ⊆ Σ∗, there exists a VPL L ′ ⊆ (Σ′)∗ with
respect to some Σ̃′ and a homomorphism h : (Σ′)∗ → Σ∗ such that
L = h(L ′)

Let L be a CFL defined by a PDA A = (Q ,Σ, Γ, δ, q0,Z0,F)
W.l.o.g, suppose that each (q, a,X , α) ∈ δ satisfies that

α = ε (pop) or α = X (stable) or α = YX (push).
Let Σ′ = (Σ ∪ {σε}) × {c, r , l} and

Σ̃′ = 〈(Σ ∪ {σε}) × {c}, (Σ ∪ {σε}) × {r}, (Σ ∪ {σε}) × {l}〉
FromA, define VPAA′ = (Q ′, Σ̃′, Γ, δ′, q0,Z0,F) over Σ̃′, where

Q ⊆ Q ′ and δ′ is defined by the following rules,
if (q, a,X , q′, ε) ∈ δ, then (q, (a, r),X , q′) ∈ δ′,
if (q, a,X , q′,X) ∈ δ, then add a new state q1,

(q, (a, r),X , q1), (q1, (σε , c), q2,X) ∈ δ′.
if (q, a,X , q′,YX) ∈ δ, then add two new states q1, q2 and

(q, (a, r),X , q1), (q1, (σε , c), q2,X), (q2, (σε , c), q′,Y) ∈ δ′.
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Embedding of CFL as VPLs continued

A word w = a1a2...an is accepted by PDAA iff there is some augmentation
w′ of w, w′ = (a′1, b1)(a′2, b2).....(a′m, bm) where each bi ∈ {c, r , l} and each
a′i ∈ Σ ∪ {σε}, such that w′ is accepted byA′

Let h : (Σ′)∗ → Σ∗ be a homomorphism defined by ∀a ∈ Σ, s ∈ {c, r , l}. s.t.
h((a, s)) = a, h((σε , s)) = ε. Then L = h(L(A′)).
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Union and intersection

Proposition. VPLs with respect to Σ̃ are closed under union and intersection.
LetA1 = (Q1, Σ̃, Γ1, δ1, q1

0 ,⊥1,F1) and
A2 = (Q2, Σ̃, Γ2, δ2, q2

0 ,⊥2,F2) be two VPAs.
Union.

Without loss of generality, suppose ⊥1=⊥2=⊥.
The VPAA = (Q1 ∪ Q2 ∪ q0, Σ̃, Γ1 ∪ Γ2, δ, q0,⊥,F1 ∪ F2) s.t.
δ = δ1 ∪ δ2 ∪ {(q0, a, q′, γ)|(q1

0 , a, q
′, γ) ∈ δ1or(q2

0 , a, q
′, γ) ∈ δ2}∪

{(q0, a, γ, q′)|(q1
0 , a, γ, q

′) ∈ δ1or(q2
0 , a, γ, q

′) ∈ δ2}

defines L(A1) ∪ L(A2)
Intersection.
The VPAA = (Q1 × Q2, Σ̃, Γ1 × Γ2, δ, (q1

0 , q
2
0), (⊥1,⊥2),F1 × F2) s.t.

δ = {((q1, q2), a, (q′1, q
′
2), (γ1, γ2))|(q1, a, q′1, γ1) ∈ δ1, (q2, a, q′2, γ2) ∈ δ2}∪

{((q1, q2), a, (γ1, γ2), (q′1, q
′
2))|(q1, a, γ1, q′1) ∈ δ1, (q2, a, γ2, q′2) ∈ δ2}

defines L(A1) ∩ L(A2)
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Complementation

Theorem. For every VPAA, a deterministic VPAA′ can be constructed
such that L(A) = L(A′).
Corollary. VPLs with respect to Σ̃ are closed under complementation.
Proof.

Suppose L is defined by a complete deterministic VPA
A = (Q , Σ̃, Γ, δ, q0,⊥,F).

ThenA = (Q , Σ̃, Γ, δ, q0,⊥,Q \ F) defines Σ∗ \ L(A). �
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Determinisation of VPA

The construction of the deterministic VPAA′ = (Q ′, Σ̃, Γ′, δ′, q0,⊥,F ′).

....NOT COMPLETE....
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Summary of Closure Properties

Closed Under
∪ ∩ Complement Concat. Kleene-*

Regular YES YES YES YES YES
CFL YES NO NO YES YES
DCFL NO NO YES NO NO
VPL YES YES YES YES YES
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Visibly pushdown grammar (VPG)

A CFG G = (N,Σ,P,S) is a VPG over Σ̃ if N can be partitioned
into N0 and N1, and each rule in P is of the following forms,

X → ε,
X → aY such that if X ∈ N0, then a ∈ Σl , Y ∈ N0

X → aYbZ such that a ∈ Σc , b ∈ Σr Y ∈ N0 and if X ∈ N0, then
Z ∈ N0.

Example. LetΣ̃ = ({a}, {b},Φ). Then the VPG
S → aSbC |aTbC ,T → ε,C → ε, such that

N0 = {S,T ,C} defines {anbn |n ≥ 1}.
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Equivalence of VPA and VPG

Theorem. VPA ≡ VPG.
From VPA to VPG.
LetA = (Q , Σ̃, Γ, δ, q0,⊥,F) be a VPA.

The intuition: Utilising the nonterminals [q, γ, p] with the meaning

the top symbol of the stack is γ, and from state q, by reading a well matched
word,state p can be reached
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Equivalence of VPA and VPG

Theorem. VPA ≡ VPG.
From VPA to VPG.

LetA = (Q , Σ̃, Γ, δ, q0,⊥,F) be a VPA.
Construct a VPG (N0,N1, Σ̃,P,S) as follows.

N = {(q,⊥)|q ∈ Q} ∪ {q|q ∈ Q} ∪ {[q, γ, p]|q, p ∈ Q , γ ∈ Γ \ {⊥}},
(q,⊥):the state is q and the stack is empty,
q :the state is q and the stack is nonempty.

N0 = {[q, γ, p]|q, p ∈ Q , γ ∈ Γ \ {⊥}},S = (q0,⊥),
P is defined by the following rules,

if (q, a, q′) ∈ δ s.t a ∈ Σl , then
(q,⊥)→ a(q′,⊥), q → aq′, [q, γ, p]→ a[q′, γ, p]
if (q, a, q′, γ), (p′, b , γ, p) ∈ δ s.t a ∈ Σc , b ∈ Σr , then
[q, γ1, r]→ a[q′, γ, p′]b[p, γ1, r], (q,⊥)→ a(q′, γ, p′)b(p,⊥),
q → a(q′, γ, p′)bp.
if (q, a, q′, γ) ∈ δ s.t.a ∈ Σc , then
(q,⊥)→ aq′, q → aq′(q,⊥)→ a[q′, γ, p], q → a[q′, γ, p].
if (q, a,⊥, q′) ∈ δ s.t. a ∈ Σr , then (q,⊥)→ a(q′,⊥).
∀q ∈ Q . [q, γ, q]→ ε,
∀q ∈ F . q → ε, (q,⊥)→ ε,
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Equivalence of VPA and VPG : continued

From VPG to VPA.
Let G = (N0,N1, Σ̃,P,S) be a VPG.
Construct a VPAA = (N, Σ̃,Σr × N ∪ {⊥, $}, δ,S,F) as follows.

δ is defined by the following rules,
if X → aY s.t. a ∈ Σl , then (X , a,Y) ∈ δ,
if X → aY s.t. a ∈ Σc , then (X , a,Y , $) ∈ δ,
if X → aY s.t. a ∈ Σr , then (X , a, $,Y) ∈ δ and (X , a,⊥,Y) ∈ δ,
if X → aYbZ , then (X , a,Y , (b ,Z)) ∈ δ,
if X → ε and X ∈ N0 , then (X , b , (b ,Y),Y) ∈ δ,

A accepts if the state is in X s.t. X → ε and the top symbol is $ or ⊥.

AdaptA intoVPA
A = (N × Γ, Σ̃, Γ, δ′, (S,⊥), {(X , γ)|X → ε, γ = $,⊥}) by adding the
top symbol of the stack into the states.

if X → aY s.t. a ∈ Σl , then ∀γ. s.t. ((X , γ), a, (Y , γ)) ∈ δ′,
if X → aY s.t. a ∈ Σc , then ∀γ. s. t. ((X , γ), a, (Y , $), ($, γ)) ∈ δ′,
if X → aY s.t. a ∈ Σr , then ∀γ. s.t. ((X , γ), a,⊥, (Y ,⊥)) ∈ δ and ∀γ. s.t.
((X , $), a, ($, γ), (Y , γ)) ∈ δ′,
if X → aYbZ , then ∀γ. s.t. ((X , γ), a, (Y , (b ,Z)), ((b ,Z), γ)) ∈ δ′,
if X → ε and X ∈ N0 , then ∀γ. s.t ((X , (b ,Z)), b , ((b ,Z), γ), (Z , γ)) ∈ δ′,
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Equivalence of VPA and MSOµ

The monadic second order logic MSOµ over Σ̃ is defined as:

φ := Qa(x)|x ∈ X |x ≤ y |µ(x, y)|φ|φ ∨ φ|∃x.φ|∃X .φ

where
a ∈ Σ

x is a first order variable
X is a set variable
Qa(i) is true iff w[i] = a

µ(i, j) is true if w[i] is a call and w[j] is its matching return.

Theorem A language L over Σ̃ is a VPL iff there is an MSOµ sentence φ
over Σ̃ that defines L
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Decision Problems

Decision problems for automata
Emptinesss Univ./Equiv. Inclusion

Regular NLOG PSPACE PSPACE
CFL PTIME Undecidable Undecidable
DCFL PTIME Decidable Undecidable
VPL PTIME EXPTIME EXPTIME
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Relation to Regular Tree Languages

–NOT COMPLETE –
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Visibly pushdown ω-languages

–NOT COMPLETE –
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Queries?
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