Department of Computer Science & Automation

Indian Institute of Science

Nested Word Automata

Seminar Presentation 08 Dec 16

> Dara Singh Vohra Jibin Surendran Ashok Rawat

Motivation and background

Nested words and their acceptors

Determinization proof

Conclusion

Motivation and background

Common languages Visibly pushdown languages

Nested words and their acceptors

Determinization proof

Conclusion

Regular language

$$\mathcal{L}_1 = \{c \ r\}$$

Regular language

$$\mathcal{L}_1 = \{\mathsf{c} \mathsf{r}\}$$

Nested Word Automata Motivation and background

Common languages

(det.) Context-free language

$$\mathcal{L}_2 = \{c^n r^n \mid n > 0\}$$

Nested Word Automata Motivation and background

Common languages

(det.) Context-free language

$$\mathcal{L}_2 = \{ \mathsf{c}^n \; \mathsf{r}^n \mid n > 0 \}$$

0	regular	context-free
comparison	constants	two variables
of numbers		
closure		
decidability		
determinize		

0 0	regular	context-free
comparison	constants	two variables
of numbers		
closure	all standard properties	not under intersection
		and complementation
decidability		
determinize		

000	regular	context-free
comparison	constants	two variables
of numbers		
closure	all standard properties	not under intersection
		and complementation
decidability	all standard problems	intersection, inclusion,
		equivalence undecidable
determinize		

	regular	context-free
comparison	constants	two variables
of numbers		
closure	all standard properties	not under intersection
		and complementation
decidability	all standard problems	intersection, inclusion,
		equivalence undecidable
determinize	powerset construction	not possible

0000	regular	context-free
comparison	constants	two variables
of numbers		
closure	all standard properties	not under intersection
		and complementation
decidability	all standard problems	intersection, inclusion,
		equivalence undecidable
determinize	powerset construction	not possible

Question: Is there some class of languages in between that is more expressive than regular languages, but keeps their nice properties?

0000	regular	context-free
comparison	constants	two variables
of numbers		
closure	all standard properties	not under intersection
		and complementation
decidability	all standard problems	intersection, inclusion,
		equivalence undecidable
determinize	powerset construction	not possible

Question: Is there some class of languages in between that is more expressive than regular languages, but keeps their nice properties?

Answer (Alur & Madhusudan 2004): yes, at least in some sense

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a visibly pushdown automaton (VPA).

A VPA $\mathcal{A} = \langle Q, q_0, Q_f, \Sigma, \Gamma, \bot, \delta \rangle$ is a deterministic PDA with special rules: Determined by the input symbol, only one symbol per **push** is allowed and reading the stack implies a **pop**.

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a visibly pushdown automaton (VPA).

A VPA $\mathcal{A} = \langle Q, q_0, Q_f, \Sigma, \Gamma, \bot, \delta \rangle$ is a deterministic PDA with special rules: Determined by the input symbol, only one symbol per **push** is allowed and reading the stack implies a **pop**.

• states, initial state, final states, stack alphabet, bottom-of-stack symbol (no change here),

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a visibly pushdown automaton (VPA).

A VPA $\mathcal{A} = \langle Q, q_0, Q_f, \Sigma, \Gamma, \bot, \delta \rangle$ is a deterministic PDA with special rules: Determined by the input symbol, only one symbol per **push** is allowed and reading the stack implies a **pop**.

- states, initial state, final states, stack alphabet, bottom-of-stack symbol (no change here),
- partitioning of the input alphabet: $\Sigma = \Sigma_i \uplus \Sigma_c \uplus \Sigma_r$,

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a visibly pushdown automaton (VPA).

A VPA $\mathcal{A} = \langle Q, q_0, Q_f, \Sigma, \Gamma, \bot, \delta \rangle$ is a deterministic PDA with special rules: Determined by the input symbol, only one symbol per **push** is allowed and reading the stack implies a **pop**.

- states, initial state, final states, stack alphabet, bottom-of-stack symbol (no change here),
- partitioning of the input alphabet: $\Sigma = \Sigma_i \uplus \Sigma_c \uplus \Sigma_r$,
- $\delta = \delta_i \uplus \delta_c \uplus \delta_r$,
 - $\delta_i \subseteq Q \times \Sigma_i \to Q$
 - $\delta_c \subseteq Q \times \Sigma_c \to (\Gamma \setminus \{\bot\}) \times Q$
 - $\delta_r \subseteq Q \times \Sigma_r \times \Gamma \to Q$

Visibly pushdown languages (VPLs)

A visibly pushdown language (VPL) is the language accepted by a visibly pushdown automaton (VPA).

A VPA $\mathcal{A} = \langle Q, q_0, Q_f, \Sigma, \Gamma, \bot, \delta \rangle$ is a deterministic PDA with special rules: Determined by the input symbol, only one symbol per **push** is allowed and reading the stack implies a **pop**.

- states, initial state, final states, stack alphabet, bottom-of-stack symbol (no change here),
- partitioning of the input alphabet: $\Sigma = \Sigma_i \uplus \Sigma_c \uplus \Sigma_r$,
- $\delta = \delta_i \uplus \delta_c \uplus \delta_r$,

•
$$\delta_i \subseteq Q \times \Sigma_i \to Q$$

•
$$\delta_c \subseteq Q \times \Sigma_c \to (\Gamma \setminus \{\bot\}) \times Q$$

• $\delta_r \subseteq Q \times \Sigma_r \times \Gamma \to Q$

Note: pops occur implicitly, \perp never popped, no ε

Nested Word Automata Motivation and background Visibly pushdown languages

 \mathcal{L}_2 as VPL

Consider again $\mathcal{L}_2 = \{ c^n r^n \mid n > 0 \}.$

Nested Word Automata Motivation and background Visibly pushdown languages

 \mathcal{L}_2 as VPL

Consider again $\mathcal{L}_2 = \{c^n r^n \mid n > 0\}$. We construct a VPA for \mathcal{L}_2 .

Partitioning: $\Sigma_i = \emptyset, \ \Sigma_c = \{c\}, \ \Sigma_r = \{r\}$

Nested Word Automata Motivation and background Visibly pushdown languages

 \mathcal{L}_2 as VPL

Consider again $\mathcal{L}_2 = \{c^n r^n \mid n > 0\}$. We construct a VPA for \mathcal{L}_2 .

Partitioning: $\Sigma_{i} = \emptyset, \ \Sigma_{c} = \{c\}, \ \Sigma_{r} = \{r\}$ $\delta_{c} = \{ (q_{0}, c, A, q_{1}), (q_{1}, c, B, q_{1}) \}$ $\delta_{r} = \{ (q_{1}, r, A, q_{3}), (q_{1}, r, B, q_{2}), (q_{2}, r, A, q_{3}), (q_{2}, r, B, q_{2}) \}$

- main differences between VPAs and PDAs:
 - closed under determinism
 - partitioning of the alphabet
 - very limited use of the stack
- Do we really need the stack?

- main differences between VPAs and PDAs:
 - closed under determinism
 - partitioning of the alphabet
 - very limited use of the stack
- Do we really need the stack? (Alur & Madhusudan 2006): no, with some further treatment of the input → *nested words* (NWs)
- automaton model: nested word automata (NWAs)

- main differences between VPAs and PDAs:
 - closed under determinism
 - partitioning of the alphabet
 - very limited use of the stack
- Do we really need the stack? (Alur & Madhusudan 2006): no, with some further treatment of the input → *nested words* (NWs)
- automaton model: nested word automata (NWAs)
- *nested word languages* (NWLs) and VPLs have same power
 → NWAs ≤ deterministic PDAs

- main differences between VPAs and PDAs:
 - closed under determinism
 - partitioning of the alphabet
 - very limited use of the stack
- Do we really need the stack? (Alur & Madhusudan 2006): no, with some further treatment of the input → *nested words* (NWs)
- automaton model: *nested word automata* (NWAs)
- nested word languages (NWLs) and VPLs have same power
 → NWAs ≤ deterministic PDAs
- main idea: call and return symbols are matched in the input

Nested Word Automata Nested words and their acceptors

Motivation and background

Nested words and their acceptors Nested words Nested word automata

Determinization proof

Conclusion

Well nested sequences

A sequence of symbols is *well nested* if calls and returns are matched without crossing, i.e., for any different call-return-pairs $(c_i, r_i), (c_j, r_j), c_i < c_j < r_i < r_j$ is forbidden.

Well nested sequences

A sequence of symbols is *well nested* if calls and returns are matched without crossing, i.e., for any different call-return-pairs $(c_i, r_i), (c_j, r_j), c_i < c_j < r_i < r_j$ is forbidden.

Examples:

iciciirri

Well nested sequences

A sequence of symbols is *well nested* if calls and returns are matched without crossing, i.e., for any different call-return-pairs $(c_i, r_i), (c_j, r_j), c_i < c_j < r_i < r_j$ is forbidden.

Examples:

iciciirri

Well nested sequences

A sequence of symbols is *well nested* if calls and returns are matched without crossing, i.e., for any different call-return-pairs (c_i, r_i) , (c_j, r_j) , $c_i < c_j < r_i < r_j$ is forbidden.

Examples:

iciciirri rcrrcici

Well nested sequences

A sequence of symbols is *well nested* if calls and returns are matched without crossing, i.e., for any different call-return-pairs $(c_i, r_i), (c_j, r_j), c_i < c_j < r_i < r_j$ is forbidden.

Examples:

iciciirri rcrrcici

Well nested sequences

A sequence of symbols is *well nested* if calls and returns are matched without crossing, i.e., for any different call-return-pairs (c_i, r_i) , (c_j, r_j) , $c_i < c_j < r_i < r_j$ is forbidden.

Examples:

iciciirri rcrrcici

Note: Every sequence has a unique well nesting.

Nested words

A relation $\sim \subset \{-\infty, 1, 2, \dots, \ell\} \times \{1, 2, \dots, \ell, \infty\}$ of length $\ell \ge 0$ is a *matching relation* if the following holds:

Explanation:

I not r c, not reflexive

Il not c c r, not c r r

III not c c r r

ex post note: $(-\infty,\infty) \notin \sim$, $\pm \infty$ excluded from uniqueness

Nested words

A relation $\sim \subset \{-\infty, 1, 2, \dots, \ell\} \times \{1, 2, \dots, \ell, \infty\}$ of length $\ell \ge 0$ is a *matching relation* if the following holds:

If $i \rightsquigarrow j$, *i* is a *call position* and *j* is a *return position*. All the rest is an *internal position*. If $i \neq -\infty$ and $j \neq \infty$, they are *well-matched*, otherwise *pending*. $e \in \rightarrow$ is a *nesting edge*.

Nested words

A relation $\sim \subset \{-\infty, 1, 2, \dots, \ell\} \times \{1, 2, \dots, \ell, \infty\}$ of length $\ell \ge 0$ is a *matching relation* if the following holds:

If $i \rightsquigarrow j$, *i* is a *call position* and *j* is a *return position*. All the rest is an *internal position*. If $i \neq -\infty$ and $j \neq \infty$, they are *well-matched*, otherwise *pending*. $e \in \rightarrow$ is a *nesting edge*.

A *nested word* n over Σ is a pair $(a_1 \cdots a_\ell, \rightsquigarrow)$, where $a_i \in \Sigma$ and \rightsquigarrow is a matching relation of length ℓ .

Example 1

Here: $2 \rightsquigarrow 8$, $4 \rightsquigarrow 7$ and the whole word is well-matched.
Example 2

Here: $-\infty \rightsquigarrow 1$, $2 \rightsquigarrow 3$, $-\infty \rightsquigarrow 4$, $5 \rightsquigarrow \infty$, $7 \rightsquigarrow \infty$ and only $2 \rightsquigarrow 3$ is well-matched.

Definition of NWAs

 $\mathcal{A} = \langle Q, q_0, Q_f, P, p_0, P_f, \delta_i, \delta_c, \delta_r \rangle \text{ over alphabet } \Sigma$

Definition of NWAs

 $\mathcal{A} = \langle \mathbf{Q}, \mathbf{q}_0, \mathbf{Q}_f, \mathbf{P}, \mathbf{p}_0, \mathbf{P}_f, \delta_i, \delta_c, \delta_r \rangle \text{ over alphabet } \Sigma$

- Q finite set of *linear* states,
- $q_0 \in Q$ initial *linear* state,
- $Q_f \subseteq Q$ set of *linear* final states,

Definition of NWAs

 $\mathcal{A} = \langle Q, q_0, Q_f, \frac{P}{P}, \frac{p_0}{P_f}, \delta_i, \delta_c, \delta_r \rangle \text{ over alphabet } \Sigma$

- Q finite set of *linear* states,
- *q*₀ ∈ *Q* initial *linear* state,
- $Q_f \subseteq Q$ set of *linear* final states,
- P finite set of *hierarchical* states,
- *p*₀ ∈ *Q* initial *hierarchical* state,
- $P_f \subseteq P$ set of *hierarchical* final states,

Definition of NWAs

 $\mathcal{A} = \langle Q, q_0, Q_f, P, p_0, P_f, \underline{\delta_i}, \underline{\delta_c}, \underline{\delta_r} \rangle \text{ over alphabet } \Sigma$

- Q finite set of *linear* states,
- *q*₀ ∈ *Q* initial *linear* state,
- $Q_f \subseteq Q$ set of *linear* final states,
- P finite set of *hierarchical* states,
- *p*₀ ∈ *Q* initial *hierarchical* state,
- $P_f \subseteq P$ set of *hierarchical* final states,
- $\delta_i \subseteq Q \times \Sigma \rightarrow Q$ internal transition function,
- $\delta_c \subseteq Q \times \Sigma \rightarrow Q \times P$ call transition function,
- $\delta_r \subseteq Q \times P \times \Sigma \rightarrow Q$ return transition function

Definition of NWAs

 $\mathcal{A} = \langle Q, q_0, Q_f, P, p_0, P_f, \delta_i, \delta_c, \delta_r \rangle \text{ over alphabet } \Sigma$

- Q finite set of *linear* states,
- *q*₀ ∈ *Q* initial *linear* state,
- $Q_f \subseteq Q$ set of *linear* final states,
- P finite set of *hierarchical* states,
- *p*₀ ∈ *Q* initial *hierarchical* state,
- $P_f \subseteq P$ set of *hierarchical* final states,
- $\delta_i \subseteq Q \times \Sigma \rightarrow Q$ internal transition function,
- $\delta_c \subseteq Q \times \Sigma \rightarrow Q \times P$ call transition function,
- $\delta_r \subseteq Q \times P \times \Sigma \rightarrow Q$ return transition function

acceptance via both Q_f and P_f

as VPAs: at return implicitly go to hierarchical state before matching call

\mathcal{L}_2 as NWA

Consider again $\mathcal{L}_2 = \{ c^n r^n \mid n > 0 \}.$

We construct an NWA for $\mathcal{L}'_2 := \{(\langle c \rangle^n \ (r \rangle)^n \mid n > 0\}.$

\mathcal{L}_2 as NWA

Consider again $\mathcal{L}_2 = \{ c^n r^n \mid n > 0 \}.$

We construct an NWA for $\mathcal{L}'_2 := \{(\langle c \rangle^n \ (r \rangle)^n \mid n > 0\}.$

$$P = \{p_0, p_1\}, P_f \subseteq \{p_0\}$$

\mathcal{L}_2 as NWA

Consider again $\mathcal{L}_2 = \{ c^n r^n \mid n > 0 \}.$

We construct an NWA for $\mathcal{L}'_2 := \{(\langle c \rangle^n \ (r \rangle)^n \mid n > 0\}.$

We can also use hierarchical states for acceptance.

$$P = \{p_0, p_1\}, P_f = \{p_0\}$$

• no stack anymore, but structure on the input word

Remarks

- no stack anymore, but structure on the input word
- nondeterministic NWAs: $Q_0 \subseteq Q$, $P_0 \subseteq P$, δ

Remarks

- no stack anymore, but structure on the input word
- nondeterministic NWAs: Q₀ ⊆ Q, P₀ ⊆ P, δ possibly exponentially more states for deterministic NWAs

Remarks

- no stack anymore, but structure on the input word
- nondeterministic NWAs: Q₀ ⊆ Q, P₀ ⊆ P, δ possibly exponentially more states for deterministic NWAs
- not all sets of NWs acceptable by NWAs $\{(\langle a \rangle^n (b \rangle)^n \mid n > 0\}$ vs. $\{a^n b^n \mid n > 0\}$

Comparison of properties

	DFA	DNWA	PDA	DPDA
pre-/suffix	\checkmark	\checkmark	\checkmark	 ✓
$\cup,\cdot,*$				
complement				
\cap				
emptiness				
equivalence				
inclusion				

Comparison of properties

	DFA	DNWA	PDA	DPDA
pre-/suffix	\checkmark	\checkmark	\checkmark	 Image: A start of the start of
$\cup,\cdot,*$	\checkmark	\checkmark	\checkmark	×
complement	\checkmark	\checkmark	×	\checkmark
\cap	\checkmark	\checkmark	×	×
emptiness				
equivalence				
inclusion				

Comparison of properties

	DFA	DNWA	PDA	DPDA
pre-/suffix	 ✓ 	\checkmark	 ✓ 	\checkmark
$\cup,\cdot,*$	\checkmark	\checkmark	\checkmark	×
complement	\checkmark	\checkmark	×	\checkmark
\cap	\checkmark	\checkmark	×	×
emptiness	NLOGSPACE	PTIME	PTIME	PTIME
equivalence	NLOGSPACE	PTIME	undecidable	decidable
inclusion	NLOGSPACE	PTIME	undecidable	undecidable

Comparison of properties

	DFA	DNWA	PDA	DPDA
pre-/suffix	 ✓ 	\checkmark	 ✓ 	\checkmark
$\cup,\cdot,*$	\checkmark	\checkmark	\checkmark	×
complement	\checkmark	\checkmark	×	\checkmark
\cap	\checkmark	\checkmark	×	×
emptiness	NLOGSPACE	PTIME	PTIME	PTIME
equivalence	NLOGSPACE	PTIME	undecidable	decidable
inclusion	NLOGSPACE	PTIME	undecidable	undecidable

Note: Equivalence and inclusion problem are EXPTIME-complete for nondeterministic NWAs.

Implication: determinization $\in \Omega(\text{EXPTIME})$ if at all possible

Motivation and background

Nested words and their acceptors

Determinization proof Intuition Construction

Conclusion

Idea behind the proof

• goal: determinize a nondeterministic NWA (NNWA)

- goal: determinize a nondeterministic NWA (NNWA)
- state of automaton A for nested word n with position k: deterministic NWA (DNWA): (q_k, p_k) NNWA: one of (q_{k1}, p_{k1}), ..., (q_{ki}, p_{ki})

- goal: determinize a nondeterministic NWA (NNWA)
- state of automaton A for nested word n with position k: deterministic NWA (DNWA): (qk, pk) NNWA: one of (qk1, pk1), ..., (qki, pkj)
- finite automata: call the states $\{q_{k_1},\ldots,q_{k_i}\}$

- goal: determinize a nondeterministic NWA (NNWA)
- state of automaton A for nested word n with position k: deterministic NWA (DNWA): (q_k, p_k) NNWA: one of (q_{k1}, p_{k1}), ..., (q_{ki}, p_{kj})
- finite automata: call the states $\{q_{k_1}, \ldots, q_{k_i}\}$
- NWAs: also need information about hierarchical states
 → powerset construction over nesting edges
 hierarchical states = nesting edges + call symbol so far

- goal: determinize a nondeterministic NWA (NNWA)
- state of automaton A for nested word n with position k: deterministic NWA (DNWA): (q_k, p_k) NNWA: one of (q_{k1}, p_{k1}), ..., (q_{ki}, p_{kj})
- finite automata: call the states $\{q_{k_1}, \ldots, q_{k_i}\}$
- NWAs: also need information about hierarchical states
 → powerset construction over nesting edges
 hierarchical states = nesting edges + call symbol so far
- handle hierarchical proceeding when reading return symbols

The states: definition

The states: definition

Consider the NNWA
$$\mathcal{A} = \langle Q, Q_0, Q_f, P, P_0, \overset{\text{wlog}}{P_f}, \delta_i, \delta_c, \delta_r \rangle$$
.
We construct the DNWA $\mathcal{B} = \langle Q', q'_0, Q'_f, P', p'_0, P'_f, \delta'_i, \delta'_c, \delta'_r \rangle$:

•
$$Q' := 2^{Q \times Q} = \{S_1, \dots, S_i\}$$

The states: definition

Consider the NNWA
$$\mathcal{A} = \langle Q, Q_0, Q_f, P, P_0, \overset{\text{wlog}}{P_f}, \delta_i, \delta_c, \delta_r \rangle$$
.
We construct the DNWA $\mathcal{B} = \langle Q', q'_0, Q'_f, P', p'_0, P'_f, \delta'_i, \delta'_c, \delta'_r \rangle$:

•
$$Q' := 2^{Q \times Q} = \{S_1, \dots, S_i\}$$

•
$$q'_0 := Q_0 \times Q_0$$

The states: definition

•
$$Q' := 2^{Q \times Q} = \{S_1, \dots, S_i\}$$

•
$$q_0' := Q_0 \times Q_0$$

•
$$Q'_f := \{S \mid \exists q, q'.(q, q') \in S \land q' \in Q_f\}$$

or: $S \in Q'_f :\Leftrightarrow S$ contains (q, q') with $q' \in Q_f$

The states: definition

•
$$Q' := 2^{Q \times Q} = \{S_1, \dots, S_i\}$$

•
$$q_0' := Q_0 \times Q_0$$

•
$$Q'_f := \{S \mid \exists q, q'.(q, q') \in S \land q' \in Q_f\}$$

or: $S \in Q'_f :\Leftrightarrow S$ contains (q, q') with $q' \in Q_f$

•
$$P' := \{p'_0\} \cup (Q' \times \Sigma)$$

The states: definition

•
$$Q' := 2^{Q \times Q} = \{S_1, \dots, S_i\}$$

•
$$q_0' := Q_0 \times Q_0$$

•
$$Q'_f := \{S \mid \exists q, q'.(q, q') \in S \land q' \in Q_f\}$$

or: $S \in Q'_f :\Leftrightarrow S$ contains (q, q') with $q' \in Q_f$

•
$$P' := \{p'_0\} \cup (Q' \times \Sigma)$$

•
$$p'_0$$
 := fresh hierarchical state

The states: definition

•
$$Q' := 2^{Q \times Q} = \{S_1, \dots, S_i\}$$

•
$$q_0' := Q_0 \times Q_0$$

•
$$Q'_f := \{S \mid \exists q, q'.(q, q') \in S \land q' \in Q_f\}$$

or: $S \in Q'_f :\Leftrightarrow S$ contains (q, q') with $q' \in Q_f$

•
$$P' := \{p'_0\} \cup (Q' \times \Sigma)$$

•
$$P'_f := P'$$

The states: semantics

Consider a nested word n with k pending calls. We can write this

$$n = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} \rangle$$

where the n_i have no pending calls.

The states: semantics

Consider a nested word n with k pending calls. We can write this

$$n = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} \rangle$$

where the n_i have no pending calls.

Invariants

After reading *n*, \mathcal{B} will be in state S_{k+1} , where (S_i, c_i) will be the hierarchical state for each $\langle c_i$.

The states: semantics

Consider a nested word n with k pending calls. We can write this

$$n = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} \rangle$$

where the n_i have no pending calls.

Invariants

- After reading *n*, \mathcal{B} will be in state S_{k+1} , where (S_i, c_i) will be the hierarchical state for each $\langle c_i$.
- If S_i contains the pair (q, q') iff $q \stackrel{n_i}{\to}_{\mathcal{A}} q'$.

The states: semantics

Consider a nested word n with k pending calls. We can write this

$$n = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} \rangle$$

where the n_i have no pending calls.

Invariants

- After reading *n*, \mathcal{B} will be in state S_{k+1} , where (S_i, c_i) will be the hierarchical state for each $\langle c_i$.
- If S_i contains the pair (q, q') iff $q \stackrel{n_i}{\to}_{\mathcal{A}} q'$.

Question: acceptance condition of \mathcal{B} for *n*?

The states: semantics

Consider a nested word n with k pending calls. We can write this

$$n = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} \rangle$$

where the n_i have no pending calls.

Invariants

- After reading *n*, \mathcal{B} will be in state S_{k+1} , where (S_i, c_i) will be the hierarchical state for each $\langle c_i \rangle$.
- If S_i contains the pair (q, q') iff $q \stackrel{n_i}{\to}_{\mathcal{A}} q'$.

Question: acceptance condition of \mathcal{B} for *n*? **Answer:** $S_{k+1} \in Q'_f$

The states: semantics

Consider a nested word n with k pending calls. We can write this

$$n = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} \rangle$$

where the n_i have no pending calls.

Invariants

- After reading *n*, \mathcal{B} will be in state S_{k+1} , where (S_i, c_i) will be the hierarchical state for each $\langle c_i$.
- If S_i contains the pair (q, q') iff $q \stackrel{n_i}{\to}_{\mathcal{A}} q'$.

Question: acceptance condition of \mathcal{B} for *n*? Answer: $S_{k+1} \in Q'_f$, i.e., $\exists q, q'.(q, q') \in S_{k+1} \land q \xrightarrow{n_{k+1}}_{\mathcal{A}} q' \land q' \in Q_f$
Internal transitions

- After reading *n*, \mathcal{B} will be in state S_{k+1} , where (S_i, c_i) will be the hierarchical state for each $\langle c_i$.
- If S_i contains the pair (q, q') iff $q \stackrel{n_i}{\to}_{\mathcal{A}} q'$.

$$n' = n \cdot i = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} i \rangle$$

 $\delta_i'(S_{k+1},i) =$

Internal transitions

- After reading *n*, \mathcal{B} will be in state S_{k+1} , where (S_i, c_i) will be the hierarchical state for each $\langle c_i$.
- If S_i contains the pair (q, q') iff $q \xrightarrow{n_i} A q'$. $q \xrightarrow{n_{k+1}} q' \xrightarrow{i} q''$

$$n' = n \cdot i = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} i \rangle$$

 $\delta_i'(S_{k+1},i) = \{(q,q'') \mid (q,q') \in S_{k+1} \land q'' \in \delta_i(q',i)\}$

Example

 δ'_c

Call transitions

- After reading *n*, \mathcal{B} will be in state S_{k+1} , where (S_i, c_i) will be the hierarchical state for each $\langle c_i$.
- II S_i contains the pair (q, q') iff $q \stackrel{n_i}{\to}_{\mathcal{A}} q'$.

$$n' = n \cdot \langle c_{k+1} = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} \langle c_{k+1} \rangle$$
$$(S_{k+1}, c_{k+1}) =$$

new hierarchical state that keeps track of the old state/symbol

Call transitions

- After reading *n*, \mathcal{B} will be in state S_{k+1} , where (S_i, c_i) will be the hierarchical state for each $\langle c_i$.
- II S_i contains the pair (q, q') iff $q \stackrel{n_i}{\to}_{\mathcal{A}} q'$.

$$n' = n \cdot \langle c_{k+1} = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} \langle c_{k+1} \rangle \\ \delta'_c(S_{k+1}, c_{k+1}) = (S', (S_{k+1}, c_{k+1})),$$

new hierarchical state that keeps track of the old state/symbol

Call transitions

After reading *n*, \mathcal{B} will be in state S_{k+1} , where (S_i, c_i) will be the hierarchical state for each $\langle c_i$.

I
$$S_i$$
 contains the pair (q, q') iff $q \xrightarrow{n_i}_{\mathcal{A}} q'$.
 $q \xrightarrow{n_{k+1}}_{c_{k+1}/p} q'$
 $n' = n \cdot \langle c_{k+1} = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} \langle c_{k+1} q''$

$$\begin{split} \delta_c'(S_{k+1}, c_{k+1}) &= (S', (S_{k+1}, c_{k+1})), \\ S' &= \{(q'', q'') \mid (q, q') \in S_{k+1} \land \exists p \in P.(q'', p) \in \delta_c(q', c_{k+1})\} \\ \text{new hierarchical state that keeps track of the old state/symbol} \end{split}$$

Return transitions

- After reading *n*, \mathcal{B} will be in state S_{k+1} , where (S_i, c_i) will be the hierarchical state for each $\langle c_i$.
- If S_i contains the pair (q, q') iff $q \stackrel{n_i}{\to}_{\mathcal{A}} q'$.

$$n' = n \cdot r \rangle = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} r \rangle$$

We have two cases here:

k = 0 no matching call, like internal transition $\delta'_r(S_{k+1}, p'_0, r) =$

Return transitions

- After reading *n*, \mathcal{B} will be in state S_{k+1} , where (S_i, c_i) will be the hierarchical state for each $\langle c_i$.
- If S_i contains the pair (q, q') iff $q \stackrel{n_i}{\to}_{\mathcal{A}} q'$.

$$n' = n \cdot r \rangle = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} r \rangle$$
 r/r

We have two cases here:

k = 0 no matching call, like internal transition

$$\delta_r'(S_{k+1},p_0',r) = \{(q,q'') \mid (q,q') \in S_{k+1} \land \exists p \in P_0.q'' \in \delta_r(q',p,r)\}$$

Return transitions

- After reading *n*, \mathcal{B} will be in state S_{k+1} , where (S_i, c_i) will be the hierarchical state for each $\langle c_i$.
- If S_i contains the pair (q, q') iff $q \stackrel{n_i}{\to}_{\mathcal{A}} q'$.

$$n' = n \cdot r \rangle = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} r \rangle$$

We have two cases here:

 $\begin{aligned} &k = 0 & \text{no matching call, like internal transition} \\ &\delta'_r(S_{k+1}, p'_0, r) = \\ & \{(q, q'') \mid (q, q') \in S_{k+1} \land \exists p \in P_0.q'' \in \delta_r(q', p, r)\} \\ &k > 0 & \text{subword } n_k \langle c_k n_{k+1} r \rangle, \text{ hierarchical state} = (S_k, c_k) \\ &\delta'_r(S_{k+1}, (S_k, c_k), r) = \end{aligned}$

Return transitions

- After reading *n*, \mathcal{B} will be in state S_{k+1} , where (S_i, c_i) will be the hierarchical state for each $\langle c_i, q \xrightarrow{n_k} q' \xrightarrow{q''} q''$
- If S_i contains the pair (q, q') iff $q \xrightarrow{n_i}_{\mathcal{A}} q'$. $c_k/p \downarrow \qquad \uparrow r/p$

$$n' = n \cdot r \rangle = n_1 \langle c_1 n_2 \langle c_2 \cdots n_k \langle c_k n_{k+1} r \rangle \qquad q_1 \xrightarrow{\cdots + 1} q_2$$

We have two cases here:

$$\begin{split} &k = 0 \text{ no matching call, like internal transition} \\ &\delta'_r(S_{k+1}, p'_0, r) = \\ &\{(q, q'') \mid (q, q') \in S_{k+1} \land \exists p \in P_0.q'' \in \delta_r(q', p, r)\} \\ &k > 0 \text{ subword } n_k \langle c_k n_{k+1} r \rangle, \text{ hierarchical state} = (S_k, c_k) \\ &\delta'_r(S_{k+1}, (S_k, c_k), r) = \{(q, q'') \mid (q, q') \in S_k \land (q_1, q_2) \in S_{k+1} \\ &\land \exists p \in P.(q_1, p) \in \delta_c(q', c_k) \land q'' \in \delta_r(q_2, p, r)\} \end{split}$$

- now all components of $\ensuremath{\mathcal{B}}$ defined

- $\bullet\,$ now all components of ${\cal B}$ defined
- correctness results from invariants

- now all components of ${\mathcal B}$ defined
- correctness results from invariants
- complexity: if |Q| = s, then $|Q'| = 2^{s^2}$ and $|P'| \in \mathcal{O}(2^{s^2})$ This is succinct, so there exists an example where the DNWA cannot have less states.

Motivation and background

Nested words and their acceptors

Determinization proof

 nested word languages as a (proper) fragment of deterministic context-free languages strictly more expressive than regular languages

- nested word languages as a (proper) fragment of deterministic context-free languages strictly more expressive than regular languages
- visibly pushdown automata and nested word automata as suitable models for this class

- nested word languages as a (proper) fragment of deterministic context-free languages strictly more expressive than regular languages
- visibly pushdown automata and nested word automata as suitable models for this class
- no stack, but complexity shifted to the input word

- nested word languages as a (proper) fragment of deterministic context-free languages strictly more expressive than regular languages
- visibly pushdown automata and nested word automata as suitable models for this class
- no stack, but complexity shifted to the input word
- all relevant closure properties, all interesting problems decidable

- nested word languages as a (proper) fragment of deterministic context-free languages strictly more expressive than regular languages
- visibly pushdown automata and nested word automata as suitable models for this class
- no stack, but complexity shifted to the input word
- all relevant closure properties, all interesting problems decidable
- determinization always possible in $\mathcal{O}(2^{s^2})$

- nested word languages as a (proper) fragment of deterministic context-free languages strictly more expressive than regular languages
- visibly pushdown automata and nested word automata as suitable models for this class
- no stack, but complexity shifted to the input word
- all relevant closure properties, all interesting problems decidable
- determinization always possible in $\mathcal{O}(2^{s^2})$
- many practical problems describable as nested words

- nested word languages as a (proper) fragment of deterministic context-free languages strictly more expressive than regular languages
- visibly pushdown automata and nested word automata as suitable models for this class
- no stack, but complexity shifted to the input word
- all relevant closure properties, all interesting problems decidable
- determinization always possible in $\mathcal{O}(2^{s^2})$
- many practical problems describable as nested words
- recent concept, time will show the relevance

References

Rajeev Alur and Parthasarathy Madhusudan.
 Visibly Pushdown Languages.
 In STOC '04, 2004.