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Pushdown Automata + CFG: history

CFG’s were introduced by Noam Chomsky in 1956.

Oettinger introduced PDA’s for parsing applications in 1961.

Chomsky, Schutzenberger, and Evey showed equivalence of
CFG’s and PDA’s in 1962.
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How a PDA works
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Each step of the PDA looks like:
Read current symbol and advance head;
Read and pop top-of-stack symbol;
Push in a string of symbols on the stack;
Change state.

Each transition Looks like

(p, a,X)→ (q,Y1Y2 · · ·Yk ).



Pushdown Automata Definitions Exercise Equivalence of acceptance by FS and ES

Two mechanisms of acceptance

Mechanism used must be specified a priori in the PDA definition.

Empty stack Final State
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Accept input if
Input is consumed and stack is empty (Acceptance by Empty
Stack).
Or, input is consumed and PDA is in a final state (Acceptance
by Final State).
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Example PDA

Example PDA (acceptance by empty stack) for {anbn | n ≥ 0}

(s, ε,⊥) → (s, ε)
(s, a,⊥) → (p,A)
(p, a,A) → (p,AA)
(p, b ,A) → (q, ε).
(q, b ,A) → (q, ε).

Illustrate run on input “aaabbb”.

What happens on input “aaabbbb”?
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PDA’s more formally

A Pushdown Automaton is a structure of the form

M = (Q ,A , Γ, s, δ,⊥,F)

where

Q is a finite set of states,

A is the input alphabet,

Γ is the stack alphabet,

s ∈ Q is the start state,

δ ⊆fin Q × (A ∪ {ε}) × Γ × Q × Γ∗ is the (non-deterministic)
transition relation,

⊥ ∈ Γ is the bottom-of-stack symbol,

F ⊆ Q is the set of final states.
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Configurations, runs, etc. of a PDA

A configuration ofM is of the form (p, u, γ) ∈ Q × A∗ × Γ∗,
which says “A is in state p, with unread input u, and stack
contents γ”.
Initial configuration ofM on input w is (s,w,⊥).
1-step transition ofM: If (p, a,X)→ (q, α) is a transition in δ,
then

(p, au,Xβ)
1
⇒ (q, u, αβ).

Similarly, if (p, ε,X)→ (q, α) is a transition in δ, then

(p, u,Xβ)
1
⇒ (q, u, αβ).

M accepts w by empty stack if (s,w,⊥)
∗
⇒ (q, ε, ε).

M accepts w by final state if (s,w,⊥)
∗
⇒ (f , ε, γ) for some

f ∈ F and γ ∈ Γ∗.
Language accepted byM is denoted L(M).
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Exercise

Design PDA’s for the following languages:

Balanced Parenthesis

{a, b}∗ − {ww | w ∈ {a, b}∗}.
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Solution

PDA (acceptance by empty stack) for BP

(s, ε,⊥) → (s, ε)
(s, (,⊥) → (s,A⊥)
(s, (,A) → (s,AA)
(s, ),A) → (s, ε).



Pushdown Automata Definitions Exercise Equivalence of acceptance by FS and ES

Equivalence of acceptance criteria

Claim
Given a PDAM that accepts by Final State we can give a
PDAM′ that accepts by Empty Stack such that
L(M′) = L(M).

Conversely, given a PDAM that accepts by Empty Stack we
can give a PDAM′ that accepts by Final State such that
L(M′) = L(M).

In fact given a PDAM we can construct a PDAM′ that accepts
the same language asM, by both acceptance criteria.
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From Final State to ES/FS

What is the problem in doing this?

M may reject an input by emptying its stack.

LetM = (Q ,A , Γ, s, δ,⊥,F).

DefineM′ = (Q ∪ {s′, t},A , Γ ∪ {y}, s′, δ′,y, {t}), where δ′ is δ
plus the transitions:

(s′, ε,y) → (s,⊥y)
(s, a,⊥) → (p,A) original transition in δ
(f , ε,X) → (t ,X) for X ∈ Γ ∪ {y}
(t , ε,X) → (t , ε) for X ∈ Γ ∪ {y}.

Argue that if w ∈ L(M) then w ∈ L(M′).

Argue that if w ∈ L(M′) then w ∈ L(M).
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From Empty Stack to ES/FS
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