Equivalence of CFG's and PDA's

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

27 October 2016

Outline

$\mathsf{CFG} = \mathsf{PDA}$

Theorem (Chomsky-Evey-Schutzenberger 1962)

The class of languages definable by Context-Free Grammars and Pushdown Automata coincide.

From CFG to PDA

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

$\begin{array}{cccc} \mathsf{CFG} & \mathsf{G}_4 \\ & S & \rightarrow & (S) \mid SS \mid \epsilon. \end{array}$

Leftmost derivation in G_4 :

<u>S</u>

From CFG to PDA

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

$\begin{array}{rcl} \mathsf{CFG} & \mathsf{G}_4 \\ & & \mathcal{S} & \rightarrow & (\mathcal{S}) \mid \mathcal{SS} \mid \epsilon. \end{array}$

$$\underline{S} \Rightarrow (\underline{S})$$

From CFG to PDA

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

$\begin{array}{cccc} \mathsf{CFG} & \mathsf{G}_4 \\ & & & \\ & & S & \rightarrow & (S) \mid SS \mid \epsilon. \end{array}$

$$\begin{array}{ccc} \underline{S} & \Rightarrow & (\underline{S}) \\ & \Rightarrow & (\underline{S}S) \end{array}$$

From CFG to PDA

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

$\begin{array}{cccc} \mathsf{CFG} & \mathsf{G}_4 \\ & & S & \rightarrow & (S) \mid SS \mid \epsilon. \end{array}$

$$\begin{array}{rcl} \underline{S} & \Rightarrow & (\underline{S}) \\ & \Rightarrow & (\underline{S}S) \\ & \Rightarrow & (\underline{S}SS) \end{array}$$

From CFG to PDA

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

$\begin{array}{cccc} \mathsf{CFG} & \mathsf{G}_4 \\ & & \mathsf{S} & \to & (\mathsf{S}) \mid \mathsf{SS} \mid \epsilon. \end{array}$

$$\begin{array}{rcl} \underline{S} & \Rightarrow & (\underline{S}) \\ & \Rightarrow & (\underline{S}S) \\ & \Rightarrow & (\underline{S}SS) \\ & \Rightarrow & ((\underline{S})SS \end{array}$$

From CFG to PDA

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

$\begin{array}{cccc} \mathsf{CFG} & \mathsf{G}_4 \\ & & \mathsf{S} & \to & (\mathsf{S}) \mid \mathsf{SS} \mid \epsilon. \end{array}$

$$\begin{array}{rcl} \underline{S} & \Rightarrow & (\underline{S}) \\ & \Rightarrow & (\underline{S}S) \\ & \Rightarrow & (\underline{S}SS) \\ & \Rightarrow & ((\underline{S})SS) \\ & \Rightarrow & ((\underline{S}S)SS) \end{array}$$

From CFG to PDA

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

$\begin{array}{cccc} \mathsf{CFG} & \mathsf{G}_4 \\ & & \mathsf{S} & \to & (\mathsf{S}) \mid \mathsf{SS} \mid \epsilon. \end{array}$

$$\underline{\underline{S}} \quad \Rightarrow \quad (\underline{\underline{S}}) \\ \Rightarrow \quad (\underline{\underline{S}}S) \\ \Rightarrow \quad (\underline{\underline{S}}SS) \\ \Rightarrow \quad ((\underline{\underline{S}})SS) \\ \Rightarrow \quad ((\underline{\underline{S}}S)SS) \\ \Rightarrow \quad (((\underline{\underline{S}})S)SS)$$

From CFG to PDA

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

$\begin{array}{cccc} \mathsf{CFG} & \mathsf{G}_4 \\ & & \mathsf{S} & \to & (\mathsf{S}) \mid \mathsf{SS} \mid \epsilon. \end{array}$

$$\underline{\underline{S}} \quad \Rightarrow \quad (\underline{\underline{S}}) \\ \Rightarrow \quad (\underline{\underline{S}}S) \\ \Rightarrow \quad (\underline{\underline{S}}SS) \\ \Rightarrow \quad ((\underline{\underline{S}})SS) \\ \Rightarrow \quad ((\underline{\underline{S}}S)SS) \\ \Rightarrow \quad (((\underline{\underline{S}}S)SSS) \\ \Rightarrow \quad (((\underline{\underline{S}}S)SS) \\ \Rightarrow \quad (((\underline{\underline{S}}S)SS) \\ \Rightarrow \quad (((\underline{\underline{S}}S)SS) \\ \Rightarrow \quad (((\underline{\underline{S}}S)SS) \\ \Rightarrow \quad (((\underline{\underline{S}}S)S) \\ \Rightarrow \quad (((\underline{\underline{S}}S)SS) \\ \Rightarrow \quad (((\underline{\underline{S}}S)SS) \\ \Rightarrow \quad (((\underline{\underline{S}}S)SS) \\ \Rightarrow \quad ((\underline{\underline{S}}S)SS) \\ \Rightarrow \quad (((\underline{\underline{S}}S)SS) \\ \Rightarrow \quad (((\underline{\underline{S}}S)S) \\ \Rightarrow \quad (((\underline{S})S) \\ \Rightarrow \quad ((\underline{S})S) \\ \Rightarrow \quad (((\underline{S})S) \\ \Rightarrow \quad (((\underline{S})S) \\ = ((\underline{S})S) \\ \Rightarrow \quad (((\underline{S})S) \\ = ((\underline{S})S) \\ \Rightarrow \quad (((\underline{S})S) \\ = ((\underline{S})S) \\ = ((\underline{S})S)$$

From CFG to PDA

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

$\begin{array}{cccc} \mathsf{CFG} & \mathsf{G}_4 \\ & & \mathsf{S} & \to & (\mathsf{S}) \mid \mathsf{SS} \mid \epsilon. \end{array}$

$$\begin{array}{rcl} \underline{S} & \Rightarrow & (\underline{S}) \\ & \Rightarrow & (\underline{S}S) \\ & \Rightarrow & (\underline{S}SS) \\ & \Rightarrow & ((\underline{S})SS) \\ & \Rightarrow & (((\underline{S})S)SS) \\ & \Rightarrow & ((((\underline{S})S)SS) \\ & \Rightarrow & (((()\underline{S})SS) \\ & \Rightarrow & (((())\underline{S}S) \end{array}) \end{array}$$

From CFG to PDA

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

$\begin{array}{cccc} \mathsf{CFG} & \mathsf{G}_4 \\ & & \mathsf{S} & \to & (\mathsf{S}) \mid \mathsf{SS} \mid \epsilon. \end{array}$

$$\begin{array}{rcl} \underline{S} & \Rightarrow & (\underline{S}) \\ & \Rightarrow & (\underline{S}S) \\ & \Rightarrow & (\underline{S}SS) \\ & \Rightarrow & ((\underline{S})SS) \\ & \Rightarrow & (((\underline{S})S)SS) \\ & \Rightarrow & ((\underline{S})SS) \\ & \Rightarrow$$

From CFG to PDA

Leftmost derivation: A derivation in which at each step the left-most non-terminal is rewritten.

> \Rightarrow ((())(<u>S</u>)S) $((())()\underline{S})$

 \Rightarrow

CFG G₄ $S \rightarrow (S) \mid SS \mid \epsilon$. Leftmost derivation in G_4 : $\underline{S} \Rightarrow (\underline{S})$ \Rightarrow (<u>S</u>S) \Rightarrow (<u>S</u>SS) \Rightarrow ((<u>S</u>)SS) \Rightarrow ((<u>S</u>S)SS) \Rightarrow (((<u>S</u>)S)SS) \Rightarrow ((()<u>S</u>)SS) \Rightarrow ((())<u>S</u>S)

From CFG to PDA

Let G = (N, A, S, P) be a CFG. Assume WLOG that all rules of G are of the form

$$X \to cB_1B_2 \cdots B_k$$

where $c \in A \cup \{\epsilon\}$ and $k \ge 0$.

- Idea: Define a PDA M that simulates a leftmost derivation of G.
- Define $M = (\{s\}, A, N, s, \delta, S)$ where δ is given by:

$$(s,c,X) \rightarrow (s,B_1B_2\cdots B_k),$$

whenever $X \rightarrow cB_1B_2 \cdots B_k$ is a production in *G*.

CFG to PDA

Leftmost sentential form of ${\cal G}$

Corresponding configuration of ${\cal M}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Construct a PDA for the CFG below.

$\begin{array}{rcl} \mathsf{CFG} & \mathsf{G}_4 \\ & & \mathcal{S} & \to & (\mathcal{S}) \mid \mathcal{SS} \mid \epsilon. \end{array}$

Simulate it on the input "((())())".

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

From PDA to CFG

Given a PDA M, how would you construct an "equivalent" context-free grammar from M?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

From PDA to CFG

Given a PDA M, how would you construct an "equivalent" context-free grammar from M? One approach:

- First show that we can go over to a PDA *M*' with a single state.
- Then simulate M' by a CFG.

Simulating a single-state PDA by a CFG

- Add the rule $X \to aY_1Y_2 \cdots Y_k$ in *G*.
- If $(s, c, \bot) \rightarrow (s, \alpha)$ then add $S \rightarrow c\alpha$ in G.

From PDA to single-state PDA

- Let M = (Q, A, Γ, s, δ, ⊥, {t}) be the given PDA which
 WLOG accepts by final state t and can empty its stack in t.
- Define M' = ({u}, A, Q × Γ × Q, u, δ', (s, ⊥, t), ∅), which accepts by empty stack and where δ' is given by

$$(u, c, (p, A, r)) \rightarrow (u, (q_0 B_1 q_1)(q_1 B_2 q_2) \cdots (q_{k-1} B_k q_k))$$

whenever $(p, c, A) \rightarrow (q, (B_1B_2 \cdots B_k))$ is a transition of M, and $q_0 = q$ and $q_k = r$. In particular:

 $(u, c, (p, A, q)) \rightarrow (u, \epsilon)$

if $(p, c, A) \rightarrow (q, \epsilon)$ is a transition of M.

Example to illustrate construction

Example PDA (acceptance by final state t) for $\{a^nb^n \mid n \geq 1\} \cup \{a^nc^n \mid n \geq 1\}$			
(p, a (p, k (p, c (q, k (r, c (q, k (r, c		$\begin{array}{l} \cdot (r,\epsilon).\\ \cdot (q,\epsilon).\\ \cdot (r,\epsilon).\\ \cdot (t,\epsilon).\\ \cdot (t,\epsilon). \end{array}$	

Correctness of construction

To show that L(M') = L(M), sufficient to show that:

Claim 1

In
$$M$$
, $(s, x, A) \stackrel{*}{\Rightarrow} (t, \epsilon, \epsilon)$ iff in $M'(u, x, (s, A, t)) \stackrel{*}{\Rightarrow} (u, \epsilon, \epsilon)$.

For this in turn, it is sufficient to show that:

Claim 2

 $(p, x, B_1B_2...B_k) \stackrel{n}{\Rightarrow} (q, \epsilon, \epsilon)$ in M iff exists $q_0, ..., q_k$ such that $q_0 = p, q_k = q$, and $(u, x, (s, \langle q_0B_1q_1 \rangle \langle q_1B_2q_2 \rangle ... \langle q_{k-1}B_kq_k \rangle)) \stackrel{n}{\Rightarrow} (u, \epsilon, \epsilon)$

Proof is easy by induction on n.