Context Sensitive Grammars

Rajaguru K

CSA, IISc

Automata Seminar, Dec,2016

Rajaguru K (CSA, IISc)

Context Sensitive Grammars

Automata Seminar, Dec,2016 1 / 17

Overview

Introduction

- 2 Formal definition
- 3 Context Sensitive Language
 - 4 Closure properties
- 5 Relation Between Recursive and CSL

Definition

• A context sensitive grammar (CSG) is a grammar where all productions are of the form

$$lpha A eta
ightarrow lpha \gamma eta$$
 where $\gamma
eq \epsilon$

- During derivation non-terminal A will be changed to γ only when it is present in context of α and β.
- Note the constraint that the replacement string $\gamma \neq \epsilon$; as a consequence we have

$$\alpha \Rightarrow \beta \text{ implies } |\alpha| \le |\beta|$$

• CSG is a Noncontracting grammar.

Chomsky Hierarchy

Туре	Language	Automaton	Production rules
Type 0 Unrestricted	Recursively enumerable	Turing Machine	$\alpha \rightarrow \beta$
Type 1 Context-sensitive	Context-sensitive	Linear-bounded automaton	$\alpha A \beta ightarrow \alpha \gamma \beta$
Type 2 Context-free	Context-free	Pushdown automaton	$A ightarrow \gamma$
Type 3 Regular	Regular	Finite state automaton	A ightarrow a and $A ightarrow$ a B

Table: Chomsky Hierarchy (1956)

Rajaguru	KI	(CSA	IISc)
i tajaguru		(00),	150,

Automata Seminar, Dec.2016

2

Formal definition

- A context sensitive grammar $G=(\mathsf{N},\, \Sigma,\,\mathsf{P},\,\mathsf{S}),$ where
 - N is a set of nonterminal symbols
 - $\boldsymbol{\Sigma}$ is a set of terminal symbols
 - S is the start symbol, and
 - P is a set of production rules, of the form $\alpha A\beta \rightarrow \alpha \gamma \beta$ where A in N, $\alpha, \beta \in (N \cup \Sigma)$ and $\gamma \in (N \cup \Sigma)^+$
- The production S → e is also allowed if S is the start symbol and it does not appear on the right side of any production.

- The language generated by the Context Sensitive Grammar is called context sensitive language.
- If G is a Context Sensitive Grammar then,

$$L(G) = \{w \mid (w \in \Sigma^*) \land (S \Rightarrow^+_G w)\}$$

- The language generated by the Context Sensitive Grammar is called context sensitive language.
- If G is a Context Sensitive Grammar then,

$$L(G) = \{w \mid (w \in \Sigma^*) \land (S \Rightarrow^+_G w)\}$$

• Example. The following grammar(G) is context-sensitive.

$$S
ightarrow aTb|ab$$

 $aT
ightarrow aaTb|ac$
 $L(G) = \{ab\} \cup \{a^ncb^n|n>0\}$

$$L(G) = \{ab\} \cup \{a^n c b^n | n > 0\}$$

- This language is also a context-free.
- For example, Context free grammar(G1) for this.

S
ightarrow aTb|abT
ightarrow aTb|c

- Any context-free language is context sensitive.
- Not all Context-sensitive but not context-free.

Context Sensitive Language

Example

 $L = \{1^n 2^n 3^n \mid n > 0\}$

• Context sensitive grammar(G) $N = \{S, B, C\}, \Sigma = \{1, 2, 3\}, S = S$ and P:

 $S \rightarrow 1SBC \mid 123$

Context Sensitive Language

Example

 $L = \{1^n 2^n 3^n \mid n > 0\}$

• Context sensitive grammar(G) $N = \{S, B, C\} , \Sigma = \{1, 2, 3\} , S = S \\ \text{and P:} \end{cases}$

$$S \rightarrow 1SBC \mid 123$$
$$1B \rightarrow 12$$
$$2B \rightarrow 22$$
$$2C \rightarrow 23$$
$$3C \rightarrow 33$$
$$CB \rightarrow BC$$

Context Sensitive Language

Example

 $L = \{1^n 2^n 3^n \mid n > 0\}$

• Context sensitive grammar(G) $N = \{S, B, C\} , \Sigma = \{1, 2, 3\} , S = S \\ \text{and P:} \end{cases}$

$$S \rightarrow 1SBC \mid 123$$

$$1B \rightarrow 12$$

$$2B \rightarrow 22$$

$$2C \rightarrow 23$$

$$3C \rightarrow 33$$

$$CB \rightarrow HB, HB \rightarrow HC, HC \rightarrow BC$$

Example

$$L = \{x \in \{a, b, c\}^* \mid \#_a x = \#_b x = \#_c x, \ \#_a x \ge 1\}$$

• Context sensitive grammar(G) $N = \{S, A, B, C\} \text{ , } \Sigma = \{a, b, c\} \text{ , } S = S \\ \text{and } P:$

$$S
ightarrow ABCS \mid ABC$$

 $XY
ightarrow YX$ for all $X, Y \in \{A, B, C\}$
 $A
ightarrow a$
 $B
ightarrow b$
 $C
ightarrow c$

Closure properties

• Context Sensitive Languages are closed under

- Union
- Intersection
- Complement
- Concatenation
- Kleene closure
- Reversal

э

Closure properties

Union

L(CS) closed under union

- Let $G_1 = (N_1, T_1, P_1, S_1)$ and $G_2 = (N_2, T_2, P_2, S_2)$, s.t $L(G_1) = L_1$ and $L(G_2) = L_2$.
- Construct $G = (S \cup N_1 \cup N_2, T_1 \cup T_2, \{S \to S_1, S \to S_2\} \cup P_1 \cup P_2, S)$, s.t $N_1 \cap N_2 = \emptyset$ and $S \notin \{N_1 \cup N_2\}$.
- G also CSG and any derivation has the form $S \Rightarrow S_i \Rightarrow^*_{G} w \in L(G_i)$ for some $i \in \{1, 2\}$.
- We cannot merge the productions of P_1 and P_2 .
- We can derive only words and all words of $L(G_1) \cup L(G_2) = L_1 \cup L_2$. Therefore $L_1 \cup L_2 = L(G) \in L(CS)$.

3

Concatenation

L(CS) closed under concatenation

- Let $G_1 = (N_1, T, P_1, S_1)$ and $G_2 = (N_2, T, P_2, S_2)$, s.t $L(G_1) = L_1$ and $L(G_2) = L_2$.
- Construct $G = (S \cup N_1 \cup N_2, T, \{S \rightarrow S_1S_2\} \cup P_1 \cup P_2, S)$, s.t $N_1 \cap N_2 = \emptyset$ and $S \notin \{N_1 \cup N_2\}$.
- Any derivation in G has the form

$$S \Rightarrow S_1 S_2 \Rightarrow^*_{G_1} w_1 S_2 \Rightarrow^*_{G_2} w_1 w_2$$

for $i \in \{1, 2\}$, $S_i \Rightarrow w_i$ is a derivation in G_i . i.e. the derivation only uses rules of P_i .

• The derivations in G₁ and G₂ cannot be influenced by the contexts of the other part. So G is a context sensitive grammar, L(G) is a CSL.

Theorem

Every context-sensitive language L is recursive.

For CSL L, CSG G, Derivation of $w \ S \Rightarrow x_1 \Rightarrow x_2 \Rightarrow x_3 \cdots \Rightarrow w$ has bound on no of steps.(Bound on possible derivations). We know that $|x_i| \le |x_{i+1}|$ (G is non contracting). We can check whether w is in L(G) as follows

- Construct a transition graph whose vertices are the strings of length $\leq |w|$.
- Paths correspond to derivation in grammars.
- Add edge from x to y if $x \Rightarrow y$
- $w \in L(G)$ iff there is a path from S to w.
- Use path fining algorithm to find.

Theorem

There exists a recursive language that is not context sensitive.

Language L is recursive

- Create possible CSG G_i = (N_i, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, S_i, P_i) which generates numbers.
- Now, define language L, which contains the numbers of the grammars which does not generate the number of its position in the list: L = {i | i ∉ L(G_i)}.
- We can create a list of all context-sensitive generative grammars which generates numbers, and we can decide whether or not a context-sensitive grammar generates its position in the list.
- So language L is recursive.

Theorem

There exists a recursive language that is not context sensitive.

Language L is not context sensitive

- Assume, for contradiction, that L is a CSL
- So there is a CSG G_k , s.t $L(G_k) = L$ for some k.
- If k ∈ L(G_k), by the definition of L, we have k ∉ L, but L = L(G_k). So a contradiction.
- If $k \notin L(G_k)$, then $k \in L$ is also a contradiction since $L = L(G_k)$.
- So language L is not context sensitive.

- Context sensitive languages are closed under union, intersection, complement, concatenation, kleene star, reversal.
- Every Context sensitive language is recursive.
- Further study
 - Proof for other closure properties
 - There is a recursive language that is not context-sensitive.

- An Introduction to Formal Languages and Automata by Peter Linz Jones & Bartlett Publishers, 2011
- Algebraic Properties of Language Families, by Prof. Dr. Jrgen Dassow http://theo.cs.ovgu.de/lehre/lehre09w/ti_1/
- Context Sensitive Grammars Klaus Sutner, Carnegie Mellon University, Spring 2016
- Theory of Automata, languages and computation by Rajendra Kumar Tata McGraw-Hill, 2010
- and old seminars.