
Automata Theory and Computability

Assignment 1

(Due on Tue 6th Sep 2016)

1. Let L be a regular language. Prove that the language

mid-thirds(L) = {v | ∃u,w : |u| = |v| = |w| and uvw ∈ L}

is also regular. Argue for yourself that your construction is correct, but
don’t write the proof of correctness.

2. Consider the language L over the alphabet {a, b} defined by the following
MSO sentence:

∀x∀y(((Qa(x) ∧Qb(y)) =⇒ x < y) ∧ (Qa(x) =⇒ ∃zQb(z))).

Give a regular expression describing the language L.

3. Give Monadic Second Order (MSO) logic sentence over the alphabet {a, b}
which defines the following languages:

(a) (ab)∗.

(b) All strings over {a, b} satisfying the condition that “between any two
consecutive a’s there are an even number of b’s.”

4. Construct an automaton that accepts all the satisfying assignments of
the Presburger formula ∃y(x = 2y + 1), using the procedure described
in class. What should be the output of the resulting automaton on the
strings “00000” and “10011” respectively?

5. A (straight-line) Presburger program is a sequence of if-statements, and
uses two variables x and y. The guard of each if-statement is a Presburger
logic formula with free variables in {x, y}, and the body is an assignment
statement of the form x := e where e is a term (over the variables x and
y) in Presburger logic. More precisely, such a program can be modelled
as sequence of control locations l1, . . . , ln+1 (n ≥ 1), and transitions ti
from li to li+1 being labelled with a Presburger guard g(ti) and an update
statement u(ti). The program executes in the expected manner, beginning
in the initial location l1, in an initial state s where x and y take arbitrary
values in N, checking whether the state satisfies the guard of transition t1,
and if so, applying the update u(t1) to s and going to location l2. A similar
step is then performed from l2, and so on. If the guard of a transition is
not satisfied by the current state, or if the update assigns a negative value
to a variable, the program gets “stuck.”

For example the figure below shows a Presburger program. When started
in a state (x 7→ 2, y 7→ 5), it goes to l2 in the state (x 7→ 3, y 7→ 5), and
finally to l3 in the state (x 7→ 3, y 7→ 4).

∃k(x = 2k), 2 ≤ x ≤ y,

x := x + 1 y := y − 1

l1 l2 l3

Given a precondition pre on the initial states, and a post-condition post
on the final states, we say a Presburger program P satisfies the conditions
(pre, post) iff every execution of P that begins in a state satisfying pre
either never reaches ln+1, or reaches there in a state satisfying post . For
example, because of the given execution, the program above does not
satisfy the pre/post-condition (x < y, x > y).

Give a procedure to check whether a given Presburger program P , with
Presburger conditions pre and post , satisfies the pair (pre, post).

6. McNaughton and Papert showed that the class of languages definable by
the first-order fragment of MSO(Σ) (where we disallow quantification over
set variables) coincides with the class of languages defined by counter-free
automata over Σ. A DFA A = (Q, s, δ, F) is said to have a counter if there
exist distinct states q0, q1, . . . , qn in A, with n ≥ 1, and a string w ∈ Σ∗,
such that δ(qi, w) = qi+1 for each i ∈ {0, . . . , n− 1} and δ(qn, w) = q0. A
DFA is said to counter-free if it has no such counter, and a regular language
is said to be counter-free if the minimal automaton accepting it is counter-
free. Prove the following characterisation of counter-free languages: Let
L ⊆ Σ∗ be regular. Then L is counter-free iff there do not exist words u,
v, and w in Σ∗ such that uviw ∈ L for infinitely many i and uviw 6∈ L for
infinitely many i.

2

