Automata Theory and Computability

Assignment 2

(Due on Fri 30 September 2016)

1. Minimize the following DFA using the algorithm described in class:

- 2. Describe the equivalence classes of the Myhill-Nerode relation \equiv_L for the language $L = \{x \in \{a, b\}^* \mid \#_a(x) = \#_b(x)\}$. Use your answer to prove that L is not regular.
- 3. Consider the language $(a+b)^*ab(a+b)^*$.
 - (a) Describe the equivalence classes of the canonical Myhill-Nerode relation for this language.
 - (b) Describe the syntactic monoid M(L) for this language.
 - (c) Describe the equivalence classes of the syntactic congruence for this language.
- 4. We know that the syntactic congruence \cong_L of a language L refines the canonical MN relation \equiv_L of L. If \equiv_L has n classes, what is the maximum number of classes that \cong_L can have? Give a language L that achieves this number.
- 5. Show that the class of languages over an alphabet A that are recognizable by finite monoids, are closed under the prefix operation. Recall that for a language $L \subseteq A^*$, the language of prefixes of L, denoted pref(L), is defined to be the set $\{u \in A^* \mid \exists v \in A^* : u \cdot v \in L\}$.
- 6. Show that the class of languages over an alphabet A that are recognizable by finite monoids, are closed under concatenation. More precisely, show how, given finite monoids M_1 and M_2 that accept languages L_1 and L_2 via morphisms and state-set pairs (φ_1, X_1) and (φ_2, X_2) respectively, we can directly construct a monoid recognizing $L_1 \cdot L_2$.

- 7. Give FO(<)-sentences, counter-free DFA's, and star-free regular expressions for the languages below:
 - (a) $\{\epsilon\}$
 - (b) a^*b^*
 - (c) Strings over $\{a, b\}$ which contain the factor ab but not the factor ba.
- 8. Give a procedure to check whether a given DFA is counter-free or not.