Automata Theory and Computability

Assignment 3 (Context-Free Grammars, PDAs)

(Due on Fri 18 Nov 2016)

- 1. Consider the language BP_2 of "balanced parenthesis" over the alphabet $\{(,),[,]\}$. For example, the string "(()[])" is in the language but not "([)]". Thus BP_2 is similar to BP except that the type of a closing bracket must match the type of the last unmatched opening bracket. Give a CFG for BP_2 . There is no need to prove your answer correct, but check your answer by doing an informal proof of correctness.
- 2. Consider the CFG G below:

$$\begin{array}{rrrr} S & \rightarrow & aSb \mid aA \mid Bb \\ A & \rightarrow & aA \mid \epsilon \\ B & \rightarrow & Bb \mid \epsilon. \end{array}$$

- (a) Describe the language accepted by G.
- (b) Use the construction in Parikh's theorem to construct a semi-linear expression for $\psi(L(G))$. That is, first identify the basic pumps for G, and the \leq -minimal parse trees. Use these to obtain an expression for $\psi(L(G))$.
- (c) Use the semi-linear expression above to give a regular expression that is letter-equivalent to L(G).
- 3. Give the state diagram of PDAs for the following languages:
 - (a) $\{w \in \{a, b\}^* \mid \#_a(w) \ge 2 \cdot \#_b(w)\}.$
 - (b) The complement of the language $\{ww \mid w \in \{a, b\}^*\}$.
- 4. Consider the DPDA \mathcal{M} given below.

Follow the steps discussed in class to construct a DPDA \mathcal{N} that accepts the complement of the language accepted by \mathcal{M} .

(a) First construct a language-equivalent PDA \mathcal{M}' that has sink accepting states, and a single reject state r'. \mathcal{M}' must read all its inputs, except possibly for inputs that cause it to enter into an infinite sequence of ϵ -moves.

- (b) Use the pushdown reachability algorithm to find the spurious transitions in \mathcal{M}' . Describe the PDS and set of configurations C you consider. Apply the algorithm for $Pre^*(C)$, showing the saturated P-automaton.
- (c) Identify the spurious transitions. Describe the DPDA \mathcal{M}'' you obtain by "removing" the spurious transitions.
- (d) Describe the complemented DPDA \mathcal{N} obtained from \mathcal{M}'' .
- 5. Describe how you would check whether a given PDA accepts a non-empty language using the pushdown reachability algorithm.
- 6. Prove that the class of DCFLs are *not* the largest subset of CFL's that are closed under complementation. (*Hint*: Exhibit a language L such that both L and its complement are accepted by non-deterministic PDAs but not by DPDAs. You can give an informal justification for why they are not accepted by any DPDA).
- 7. Is the class of DCFLs closed under concatenation? Justify your answer.
- 8. (a) Prove that PDAs are closed under the prefix operation. That is, given a PDA M you can construct a PDA M' that accepts the prefix closure of L(M).
 - (b) Prove similarly that DPDAs are closed under prefixes.