
What we study Some results we do Course details

Overview of
E0 222: Automata and Computability

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

August 4, 2016

What we study Some results we do Course details

Different Kinds of “Automata” or “State Machines”

b
a

b

a

e o

Finite-State Automata

Pushdown Automata

Turing Machines

a a b a b a a b

q

` a b

a a b a b a a b

⊥
X

X

Y

X
q

` a b

a a b a b a a a [[

p

`

What we study Some results we do Course details

Different Kinds of “Automata” or “State Machines”

b
a

b

a
e o

Finite-State Automata

Pushdown Automata

Turing Machines

a a b a b a a b

q

` a b

a a b a b a a b

⊥
X

X

Y

X
q

` a b

a a b a b a a a [[

p

`

What we study Some results we do Course details

Kind of results we study in Automata Theory

Expressive power of the models in terms of the class of
languages they define.

Characterisations of this class of languages

Myhill-Nerode theorem.
Büchi’s logical characterisation.

Necessary conditions these classes satisfy

Pumping Lemma and ultimate periodicity (for Regular/CFL).
Parikh’s Theorem (for Context-Free Languages).

Decision procedures

Emptiness problem
Language inclusion problem
Configuration reachability problem.

Computability (most compelling notion of computable
function is via Turing Machines), Rice’s Theorem.

What we study Some results we do Course details

Why study automata theory?

Corner stone of many subjects in CS:
1 Compilers

Lexical analysis, parsing, regular expression search

2 Digital circuits (state minimization, analysis).

3 Complexity Theory (algorithmic hardness of problems)
4 Mathematical Logic

Decision procedures for logical problems.

5 Formal Verification

Configuration reachability
Is L(A) ⊆ L(B)?

What we study Some results we do Course details

Uses in Verification

1 System models are natural extensions of automata models

Programs with no dynamic memory allocation, no procedures
= Finite State systems.
No dynamic memory allocation = Pushdown systems.
General program = Turing machine.
Programs with integer variables = Counter machines.

Decision procedures for emptiness, configuration reachability,
etc, directly translate to decision procedures for programs.

2 To solve “model-checking” problem for logics that talk about
infinite behaviour.

What we study Some results we do Course details

Uses in Logic

Obtain decision procedure for satisfiability of a logic by
translating a formula to an automaton and checking
emptiness.

Argue undecidability/incompleteness of a proof system.

What we study Some results we do Course details

What this course is about

What we study

Connections between Logic and Automata

Büchi’s logical characterization of regular languages
Decision procedures for logic (Büchi, Presburger logic, Gödel’s
Incompleteness).

Pushdown Systems

Parikh’s theorem on semi-linearity of CFL’s
Reachability in pushdown systems
Deterministic PDA’s and complementation
Visibly Pushdown Automata
Decision procedures

Automata on infinite words

Automata on Trees

What we study Some results we do Course details

Büchi’s logical characterisation of automata

Describe properties of strings in a logical language
Eg. “For all positions x in a word which are labelled a, there
is a later position labelled b”

∀x(Qa(x) ⇒ ∃y(y > x & Qb(y))).

DFA for the language:

a
b

b

a
¬b b

Büchi’s result:
A language is regular iff it is definable by a sentence
in this logic.

What we study Some results we do Course details

First-Order logic of (N, <).

Interpreted over N = {0, 1, 2, 3, . . .}.
What you can say:

x < y , ∃xϕ, ∀xϕ, ¬, & ,∨.

Examples:
1 ∀x∃y(x < y).

2 ∀x∃y(y < x).
3 ∃x(∀y(y ≤ x)).
4 ∀x∀y((x < y) =⇒ ∃z(x < z < y)).

Question: Is there an algorithm to decide if a given FO(N, <)
sentence is true or not?

Büchi used automata to give such an algorithm.

What we study Some results we do Course details

First-Order logic of (N, <).

Interpreted over N = {0, 1, 2, 3, . . .}.
What you can say:

x < y , ∃xϕ, ∀xϕ, ¬, & ,∨.

Examples:
1 ∀x∃y(x < y).
2 ∀x∃y(y < x).

3 ∃x(∀y(y ≤ x)).
4 ∀x∀y((x < y) =⇒ ∃z(x < z < y)).

Question: Is there an algorithm to decide if a given FO(N, <)
sentence is true or not?

Büchi used automata to give such an algorithm.

What we study Some results we do Course details

First-Order logic of (N, <).

Interpreted over N = {0, 1, 2, 3, . . .}.
What you can say:

x < y , ∃xϕ, ∀xϕ, ¬, & ,∨.

Examples:
1 ∀x∃y(x < y).
2 ∀x∃y(y < x).
3 ∃x(∀y(y ≤ x)).

4 ∀x∀y((x < y) =⇒ ∃z(x < z < y)).

Question: Is there an algorithm to decide if a given FO(N, <)
sentence is true or not?

Büchi used automata to give such an algorithm.

What we study Some results we do Course details

First-Order logic of (N, <).

Interpreted over N = {0, 1, 2, 3, . . .}.
What you can say:

x < y , ∃xϕ, ∀xϕ, ¬, & ,∨.

Examples:
1 ∀x∃y(x < y).
2 ∀x∃y(y < x).
3 ∃x(∀y(y ≤ x)).
4 ∀x∀y((x < y) =⇒ ∃z(x < z < y)).

Question: Is there an algorithm to decide if a given FO(N, <)
sentence is true or not?

Büchi used automata to give such an algorithm.

What we study Some results we do Course details

First-Order logic of (N, <).

Interpreted over N = {0, 1, 2, 3, . . .}.
What you can say:

x < y , ∃xϕ, ∀xϕ, ¬, & ,∨.

Examples:
1 ∀x∃y(x < y).
2 ∀x∃y(y < x).
3 ∃x(∀y(y ≤ x)).
4 ∀x∀y((x < y) =⇒ ∃z(x < z < y)).

Question: Is there an algorithm to decide if a given FO(N, <)
sentence is true or not?

Büchi used automata to give such an algorithm.

What we study Some results we do Course details

Büchi automata

Finite state automata that run over infinite words.

How do we accept an infinite word? Acceptance mechanism
proposed by Büchi: see if run visits a final state infinitely
often.

Büchi automaton for infinitely many b’s

b

a

ba

Büchi automaton for finitely many a’s

b
ba, b

What we study Some results we do Course details

Büchi automata

Finite state automata that run over infinite words.

How do we accept an infinite word? Acceptance mechanism
proposed by Büchi: see if run visits a final state infinitely
often.

Büchi automaton for infinitely many b’s

b

a

ba

Büchi automaton for finitely many a’s

b
ba, b

What we study Some results we do Course details

Presburger Logic

First-Order logic of (N, <,+).

Interpreted over N = {0, 1, 2, 3, . . .}.
What you can say:

x + 2y < z + 1, ∃xϕ, ∀xϕ, ¬, & ,∨.

Examples:
1 ∀x∀y((x < y) =⇒ ∃z(x < z < y)) (Also in FO(<)).
2 Solutions to a system of linear inequalities:
∃x∃y(x + 2y ≤ 1 & x = y).

3 “Every number is odd or even”: ∀x∃y(x = 2y ∨ x = 2y + 1).

Studied by Mojzesz Presburger, who gave a sound and
complete axiomatization, as well as a decision procedure for
validity, circa 1929.

What we study Some results we do Course details

Overall idea

Represent interpretation of variables as (rows of) binary
strings

x 001111
y 100011
z 011100

Construct automata over such words, that accept all satisfying
assignments of the variables, for atomic formulas.

Use closure properties of automata to inductively construct
automata for more complex formulas.

What we study Some results we do Course details

Representing numbers as binary strings

Represent the number 3 by “011” or “0011” or “00011” etc.

The automata will read the strings from right to left.

Will read a tuple of bits: For example for the formula
x ≤ 2y + 1 it will read inputs from the alphabet

{0, 1}2

which we represent as:(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)
.

Thus, automaton constructed for a given formula will accept
the reverse of actual interpretations.

What we study Some results we do Course details

Automaton for x + 2y − 3z = 1

Accepting run on:

x (= 0) : 000
y (= 2) : 010
z (= 1) : 001

x (= 15) : 001111
y (= 35) : 100011
z (= 28) : 011100

but none on:

x (= 1) : 001
y (= 2) : 010
z (= 1) : 001

0

1

1

1

0

0

1

1

1

0

0

0

0

0

0

1

1

1

0

1

1

1

0

0

0

0

0

1

1

1

−2 0 2

−1 1

1

0

1

0

1

0

0

0

1

1

1

0

1

0

1

0

1

0

0

0

1

1

1

0

0

0

1

1

1

0

What we study Some results we do Course details

Gödel’s Incompleteness result

There cannot be a sound and complete proof system for
first-order arithmetic.

What we study Some results we do Course details

What we can say in FO(N,+, ·)

“Every number has a successor”

∀n∃m(m = n + 1).

“Every number has a predecessor”

∀n∃m(n = m + 1).

“There are only finitely many primes”

∃n∀p(prime(p) =⇒ p < n).

“There are infinitely many primes”

∀n∃p(prime(p) & p > n).

What we study Some results we do Course details

Gödel’s Incompleteness result

There cannot be a sound and complete proof system for
first-order arithmetic.

Formal language-theoretic proof: Th(N,+, .) is not even
recursively enumerable.

What we study Some results we do Course details

Myhill-Nerode Theorem

Myhill-Nerode Theorem:

Every regular language has a canonical DFA accepting it.

b
a

b

a

a

a

aa

b b

bb

Some consequences:

Any DFA for L is a refinement of its canonical DFA.

“minimal” DFA’s for L are isomorphic.

What we study Some results we do Course details

Parikh’s Theorem for CFL’s

ψ(w): “Letter-count” of a string w :

Eg : ψ(aabab) = (3, 2).

If L is a context-free language, then ψ(L) is semi-linear
(Every CFL is letter-equivalent to a regular language).

〈〈(1, 1), (1, 2)〉〉

Can be used to show certain languages are not context-free: Eg.
L = {a2n | n ≥ 0}.

a, aa, aaaa, aaaaaaaa, aaaaaaaaaaaaaaaa, . . .

What we study Some results we do Course details

Reachable configurations of a Pushdown automaton

CPre∗(C) Post∗(C)

The set of reachable configurations of a Pushdown
automaton is regular.

Useful for program analysis and verification of pushdown systems.

What we study Some results we do Course details

Course details

Weightage: 40% assignments + seminar, 20% midsem exam,
40% final exam.

Assignments to be done on your own.

Dishonesty Policy: Any instance of copying in an assignment
will fetch you a 0 in that assignment + one grade reduction.

Seminar (in pairs) can be chosen from list on course webpage
or your own topic.

Course webpage:
www.csa.iisc.ernet.in/~deepakd/atc-2016/

Teaching assistants for the course: P. Ezudheen and
Inzemamul Haque.

Those interested in crediting/auditing please send me an
email so that I can add you to the course mailing list.

	What we study
	Some results we do
	Course details

