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What we study

Different Kinds of “Automata” or “State Machines”
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What we study

Kind of results we study in Automata Theory

@ Expressive power of the models in terms of the class of
languages they define.
o Characterisations of this class of languages

o Myhill-Nerode theorem.
e Biichi's logical characterisation.

o Necessary conditions these classes satisfy
e Pumping Lemma and ultimate periodicity (for Regular/CFL).
e Parikh’s Theorem (for Context-Free Languages).
@ Decision procedures
e Emptiness problem
e Language inclusion problem
e Configuration reachability problem.
e Computability (most compelling notion of computable
function is via Turing Machines), Rice’s Theorem.



What we study

Why study automata theory?

Corner stone of many subjects in CS:
@ Compilers
o Lexical analysis, parsing, regular expression search
@ Digital circuits (state minimization, analysis).
© Complexity Theory (algorithmic hardness of problems)
@ Mathematical Logic
e Decision procedures for logical problems.
© Formal Verification

o Configuration reachability
o Is L(A) C L(B)?



What we study

Uses in Verification

@ System models are natural extensions of automata models
e Programs with no dynamic memory allocation, no procedures
= Finite State systems.

e No dynamic memory allocation = Pushdown systems.

e General program = Turing machine.

e Programs with integer variables = Counter machines.
Decision procedures for emptiness, configuration reachability,
etc, directly translate to decision procedures for programs.

@ To solve “model-checking” problem for logics that talk about
infinite behaviour.



What we study

Uses in Logic

@ Obtain decision procedure for satisfiability of a logic by
translating a formula to an automaton and checking
emptiness.

@ Argue undecidability /incompleteness of a proof system.



What we study

What this course is about

What we study
@ Connections between Logic and Automata
e Biichi's logical characterization of regular languages

o Decision procedures for logic (Biichi, Presburger logic, Gédel's
Incompleteness).
@ Pushdown Systems
Parikh’s theorem on semi-linearity of CFL's
Reachability in pushdown systems
Deterministic PDA’s and complementation
Visibly Pushdown Automata
Decision procedures

@ Automata on infinite words

@ Automata on Trees



Some results we do

Blchi's logical characterisation of automata

@ Describe properties of strings in a logical language
Eg. “For all positions x in a word which are labelled a, there
is a later position labelled b"

Vx(Qa(x) = Jy(y > x & Qu(y)))-
@ DFA for the language:

SN

a

@ Biichi's result:
A language is regular iff it is definable by a sentence
in this logic.



Some results we do

First-Order logic of (N, <).

o Interpreted over N = {0,1,2,3,...}.

@ What you can say:
x <y, dxp, Vxp, o, &, V.

@ Examples:
Q VxIy(x < y).
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Some results we do

First-Order logic of (N, <).

o Interpreted over N = {0,1,2,3,...}.
@ What you can say:

x <y, dxp, Vxp, o, &, V.

@ Examples:

Q Vxdy(x < y).
Q Vx3dy(y < x).
Q Ix(Vy(y < x)).
Q xVy((x <y) = Fz(x <z <y)).
@ Question: Is there an algorithm to decide if a given FO(N, <)
sentence is true or not?

Biichi used automata to give such an algorithm.



Some results we do

Buchi automata

@ Finite state automata that run over infinite words.

@ How do we accept an infinite word? Acceptance mechanism
proposed by Biichi: see if run visits a final state infinitely
often.

Biichi automaton for infinitely many b's
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Some results we do

Presburger Logic

First-Order logic of (N, <, +).
Interpreted over N = {0,1,2,3,...}.
What you can say:

x+2y <z+1, dxp, Vxp, 0, & V.

Examples:
Q YxVy((x <y) = 3Fz(x <z <y)) (Also in FO(<)).
@ Solutions to a system of linear inequalities:
IxJy(x+2y <1 & x=y).
© “Every number is odd or even”: VxJy(x =2y V x =2y +1).

Studied by Mojzesz Presburger, who gave a sound and
complete axiomatization, as well as a decision procedure for
validity, circa 1929.



Some results we do

Overall idea

@ Represent interpretation of variables as (rows of) binary

strings
x 001111
y 100011
z 011100

o Construct automata over such words, that accept all satisfying
assignments of the variables, for atomic formulas.

@ Use closure properties of automata to inductively construct
automata for more complex formulas.



Some results we do

Representing numbers as binary strings

@ Represent the number 3 by “011" or “0011" or “00011" etc.
@ The automata will read the strings from right to left.

@ Will read a tuple of bits: For example for the formula
x <2y + 1 it will read inputs from the alphabet

{01}

which we represent as:

(2):(2)-(e)(1)

@ Thus, automaton constructed for a given formula will accept
the reverse of actual interpretations.



Some results we do

Automaton for x +2y — 3z =1

Accepting run on:

x(=0):
y(=2):
z(=1):

000
010
001

001111
100011
011100

but none on:

x(=1):
y(=2):
z(=1):

001
010
001




Some results we do

Godel's Incompleteness result

There cannot be a sound and complete proof system for
first-order arithmetic.



Some results we do

What we can say in FO(N, +, -)

@ “Every number has a successor”

Vnim(m = n+1).

“Every number has a predecessor”
Vndm(n = m+1).
@ “There are only finitely many primes”

AnVp(prime(p) = p < n).

“There are infinitely many primes”

Vn3p(prime(p) & p > n).



Some results we do

Godel's Incompleteness result

There cannot be a sound and complete proof system for
first-order arithmetic.

Formal language-theoretic proof: Th(N,+,.) is not even
recursively enumerable.



Some results we do

Myhill-Nerode Theorem

Myhill-Nerode Theorem:

Every regular language has a canonical DFA accepting it.

Some consequences:
@ Any DFA for L is a refinement of its canonical DFA.

@ “minimal” DFA’s for L are isomorphic.



Some results we do

Parikh's Theorem for CFL's

Y(w): “Letter-count” of a string w:

Eg : ¢(aabab) = (3,2).

If L is a context-free language, then (L) is semi-linear
(Every CFL is letter-equivalent to a regular language).

o e «(,1),(1,2))




Some results we do

Reachable configurations of a Pushdown automaton

/‘
The set of reachable configurations of a Pushdown
automaton is regular.

Useful for program analysis and verification of pushdown systems.



Course details

Course details

Weightage: 40% assignments + seminar, 20% midsem exam,
40% final exam.

@ Assignments to be done on your own.

@ Dishonesty Policy: Any instance of copying in an assignment
will fetch you a 0 in that assignment + one grade reduction.

@ Seminar (in pairs) can be chosen from list on course webpage
or your own topic.

@ Course webpage:
www.csa.iisc.ernet.in/"deepakd/atc-2016/

@ Teaching assistants for the course: P. Ezudheen and
Inzemamul Haque.

@ Those interested in crediting/auditing please send me an
email so that | can add you to the course mailing list.
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