Biichi's Logical Characterisation of Regular
Languages

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

16 August 2016

Outline

@ First-Order Logic of (N, <)

© The logic MSO(A)

© Proof of Biichi's theorem

First-Order Logic of (N, <)

Background

@ Biichi's motivation: Decision procedure for deciding truth of
first-order logic statements about natural numbers and their
ordering. Eg.

Vx3Jy(x < y).

@ Used finite-state automata to give a decision procedure.

@ By-product: a logical characterisation of regular languages.

Theorem (Biichi 1960)

L is regular iff L can be described in Monadic-Second Order Logic.

First-Order Logic of (N, <)

First-Order logic of (N, <).

@ Interpreted over N ={0,1,2,3,...}.
@ What you can say:

x <y, Idxp, Vxp, =, A, V.

@ Examples:
Q VxIy(x < y).

First-Order Logic of (N, <)

First-Order logic of (N, <).

@ Interpreted over N ={0,1,2,3,...}.
@ What you can say:
x <y, Idxp, Vxp, =, A, V.

@ Examples:

Q VxIy(x < y).
Q Vxdy(y < x).

First-Order Logic of (N, <)

First-Order logic of (N, <).

@ Interpreted over N ={0,1,2,3,...}.
@ What you can say:

x <y, Idxp, Vxp, =, A, V.

@ Examples:

Q Vxdy(x < y).
Q Vxdy(y < x).
Q Ix(Vy(y < x)).

First-Order Logic of (N, <)

First-Order logic of (N, <).

@ Interpreted over N ={0,1,2,3,...}.
@ What you can say:

x <y, Idxp, Vxp, =, A, V.

@ Examples:

Q VxIy(x < y).
Q Vxdy(y < x).
Q Ix(Vy(y <x)).
Q Ix(Vy(x <y)).

First-Order Logic of (N, <)

First-Order logic of (N, <).

@ Interpreted over N ={0,1,2,3,...}.
@ What you can say:

x <y, Idxp, Vxp, =, A, V.

@ Examples:

Q VxIy(x < y).

Q Vxdy(y < x).

© Ix(Vy(y < x)).

Q x(Vy(x < y)).

Q VxVy((x <y) = Fz(x < z < y)).

First-Order Logic of (N, <)

First-Order logic of (N, <).

@ Interpreted over N ={0,1,2,3,...}.
@ What you can say:

x <y, EngO, VX% AS

@ Examples:

Q VxIy(x < y).

Q Vxdy(y < x).

© Ix(Vy(y < x)).

0 Ix(Wy(x <)),

Q VxVy((x <y) = Fz(x < z < y)).

@ Sentences 1 and 4 are true while others are not.

First-Order Logic of (N, <)

First-Order logic of (N, <).

@ Interpreted over N ={0,1,2,3,...}.
@ What you can say:

x <y, EngO, VX% AS

@ Examples:
Q VxIy(x < y).
Q Vxdy(y < x).
Q Ix(Vy(y <x)).
Q Ix(Vy(x <y)).
Q VxVy((x <y) = Fz(x < z < y)).
@ Sentences 1 and 4 are true while others are not.

@ Question: Is there an algorithm to decide if a given FO(N, <)
sentence is true or not?

The logic MSO(A)

Monadic Second-Order logic over alphabet A: MSO(A)

@ Interpreted over a string w € A*.

e Domain is set of positions in w: {0,1,2,...,|w| —1}.
@ “<" is interpretated as usual < over numbers.

o What we can say in the logic:

Qa(x): "Position x is labelled a".

x < y: "Position x is strictly less than position y".
dx: “There exists a position x ..."

Vxp: “For all positions x ..."

IX: “There exists a set of positions X ..."

VXp: “For all sets of positions X ..."

x € X: "Position x belongs to the set of positions X".

The logic MSO(A)

Example MSO({a, b}) formulas

Consider the alphabet {a, b}.

What language do the sentences below define?
O Ix(—Iy(y < x) A Qa(x)).
@ Jy(—3x(y < x) A Qu(y))-
@ Ix3y3Iz(succ(x,y) A succ(y, z) A last(z) A (Qp(x)).

The logic MSO(A)

Example MSO({a, b}) formulas

Consider the alphabet {a, b}.

What language do the sentences below define?
O Ix(—Iy(y < x) A Qa(x)).
@ Jy(—3x(y < x) A Qu(y))-
@ Ix3y3Iz(succ(x,y) A succ(y, z) A last(z) A (Qp(x)).

Give sentences that describe the following languages:
© Every a is immediately followed by a b.
@ Strings of odd length.

The logic MSO(A)

MSO sentence for strings of odd length

Language L C {a, b}* of strings of odd length.

a ab ab ab ab
Xe 1 01010101
Xo 01 0101010

IXIXo(Ix(x € X) A (VX(x € Xe = —x€X,) A

(xeXo = xeX)A

(xeXeVxeEXS) A

(zero(x) = x € X)) A

(Vy((x € Xe Asuce(x,y)) = y € X,)) A
(Vy((x € Xo Asuce(x,y)) = y € X)) A
(last(x) = x € X.)))).

The logic MSO(A)

First-Order Logic

@ A First-Order Logic usually has a signature comprising the
constants, and function/relation symbols. Eg. (0, <, +).

@ Terms are expressions built out of the constants, variables and
function symbols. Eg. 0, x +y, (x+y)+ 0. They are
interpreted as elements of the domain of interpretation.

@ Atomic formulas are obtained using the relation symbols on
terms of the logic. Eg. x <y, x=0+y, x+y <0.

@ Formulas are obtained from atomic formulas using boolean
operators, and existential quantification (3x) and universal
quantification (Vx). Eg. =(x <y), (x <0) A (x=y),
Ix(Vy(x < y) A (z < x)).

The logic MSO(A)

First-Order Logic

e Given a “structure” (i.e. a domain, a concrete interpretation
for each constant and function/relation symbol) and an
assignment for variables to values in the domain) to interpret
the formulas in, each formula is either true or false.

e A formula is called a sentence if it has no free (unquantified)
variables.

The logic MSO(A)

Second-Order Logic

@ In Second-Order logic, one allows quantification over relations
over the domain (not just elements of the domain). Eg:

FRA(RO)(x,y) = x < y).

@ In Monadic second-order logic, one allows quantification over
monadic relations (i.e. relations of arity one, or equivalently,
subsets of the domain). Eg:

IX(x e X = 0<x).

The logic MSO(A)

Formal Semantics of MSO

@ An interpretation for the logic will be a pair (w,I) where
w € A* and [is an assignment of “individual” variables to a
position in w, and “set” variables to a set of positions in w.

I: Var — pos(w) U 2Pos(W),

e I[i/x] denotes the assignment which maps x to i and agrees
with I on all other individual and set variables.

e Similarly for I[S/X].

The logic MSO(A)

Formal Semantics of MSO

The satisfaction relation w, I |= ¢ is given by:

w, 1= Qa(x)
w,lE=x<y
w,lE=xeX
Wv]H:_'SO

w,ITE Ve

w, I = Ixp
w, I = 3IXep

w(I(x)) = a

I(x) <1(y)

I(x) € I(X)

w, T ¢

w, 1= porw,IE¢

exists i € pos(w) s.t. w,I[i/x] = ¢
exists S C pos(w)s.t w,I[S/X] = ¢

The logic MSO(A)

Example to illustrate semantics

Consider the word w = aaba and the formula

Ix(Qa(x) A =3Fy(y < x)).

The logic MSO(A)

MSO sentences

A sentence is a formula with no free variables.

For example 3X(y € X = 0 < y) is not a sentence since y
occurs free.

dX(0e X = FJy(0 <y Ay e X)) is a sentence.

If ¢ is a sentence, then we don't need an interpretation for
variables to say if ¢ is true or false of a given word w:

w E .

For a sentence , we can define the language of words that
satisfy ¢:

Lp) ={we A" |w ¢}

The logic MSO(A)

Languages definable by MSO

e We say that a language L C A* is definable in MSO(A) if
there is a sentence ¢ in MSO(A) such that L(y) = L.

Theorem (Biichi 1960 (also Elgot '61 and Traktenbrot 62))

L C A* is regular iff L is definable in MSO(A).

Proof of Biichi's theorem

From automata to MSO sentence

o Let L C A* be regular. Let A= (Q,s,d, F) be a DFA for L.
@ To show L is definable in MSO(A).

@ Idea: Construct a sentence ¢ 4 describing an accepting run of
A on a given word.
That is: @4 is true over a given word w precisely when A has
an accepting run on w.

Let @ ={q1,...,qn}, with g1 =s.
Define ¢ 4 as

Xy - - AX(Vx((/\,.#j(x eEXi = xeX)NV;xeXi)A
(zero(x) = x € X1) A
(/\aeA, i.je{l,...n}, 5(qi,a):qj((x € Xi N Qa(X) A _'/aSt(X)) =
Jy(succ(x, y) Ny € Xj))) A
(fast(x) = Vaea, 5(qa)er(Qa(x) A x € Xi)))).

Proof of Biichi's theorem

Example

Consider language L C {a, b}* of strings of even length.

DFA A for L: AN

PA-

XX (VX((xEXe = xEXo) AN(XxEXo = xEXe) A
(xeXeVxeXo) A
(zero(x) = x € Xe) A
((x € Xe A Qa(x) A —last(x)) = Fy(succ(x,y) Ay € Xo)) A
((x € Xe A Qp(x) A —last(x)) = y(succ(x,y) Ay € X)) A
((x € Xo A Qa(x) A —last(x)) = Ty(suce(x,y) Ay € Xe)) A
((x € Xo A Qp(x) A —last(x)) = Fy(succ(x,y) Ay € Xe)) A
(last(x) = ((Qa(x) Ax € Xo) V (Qp(x) Ax € Xo)))))-

Proof of Biichi's theorem

From MSO sentence to automaton

@ Idea: Inductively describe the language of extended models of
a given MSO formula ¢ by an automaton A,.

@ Extended models wrt set of first-order and second-order
variables T = {xy,...,Xm, X1, ..., Xp}: (w,])

e Can be represented as a word over A x {0,1}"m*".

X1
X2
X1

a b
00
00
01
X 10

o oo T

a
0
0
0
1

O OO v
HOOK o
o oo T
O OO W
o +=O T

@ For example, the extended word above satisfies the formula

Qa(Xl) A (X2 € Xl).

Proof of Biichi's theorem

Inductive construction of A;.

e If v is a formula whose free variables are in T, then we have
the notion of whether w’ |= ¢ based on whether the (w,I)
encoded by w’ satisfies ¢ or not.

o Let the set of valid extended words wrt T be valid " (A).
@ We can define an automaton A‘L, which accepts this set.

e Claim: with every formula ¢ in MSO(A), and any finite set of
variables T containing at least the free variables of ¢, we can
construct an automaton AZ which accepts the language
LT (p).

@ Proof: by induction on structure of .

Q:(x), x <y, xe€Y, np, oV, Ixp, IXp.

Proof of Biichi's theorem

Example formula

Ix(Qa(x) A =Ty (x < y)) Qu(x) -

x <y

Proof of Biichi's theorem

Back to First-Order logic of (N, <).

o Interpreted over N = {0,1,2,3,...}.
@ What you can say:

x <y, dxp, Vxp, =, A\, V.

@ Examples:
Q VxIy(x < y).
Q Vx3dy(y < x).
Q Ix(Vy(y < x)).
Q YxVy((x <y) = Fz(x <z <y)).
@ Question: Is there an algorithm to decide if a given FO(N, <)
sentence is true or not?

Proof of Biichi's theorem

Biichi's decision procedure for MSO(N, <)

@ Biichi considered finite automata over infinite strings (so
called w-automata).

@ An infinite word is accepted if there is a run of the automaton
on it that visits a final state inifinitely often.

@ Biichi showed that w-automata have similar properties to
classical automata: are closed under boolean operations,
projection, and can be effectively checked for emptiness.

@ MSO characterisation works similarly for w-automata as well.

e Given a sentence ¢ in MSO(N, <) we can now view it as an
MSO({a}) sentence.

@ Construct an w-automaton A, that accepts precisely the
words that satisfy .

o Check if L(.Ay) is non-empty.
o If non-empty say “Yes, ¢ is true”, else say “No, it is not true.”

Proof of Biichi's theorem

Buchi automata

@ Finite state automata that run over infinite words.

@ How do we accept an infinite word? Acceptance mechanism
proposed by Biichi: see if run visits a final state infinitely
often.

Biichi automaton for infinitely many b's

Proof of Biichi's theorem

Buchi automata

@ Finite state automata that run over infinite words.

@ How do we accept an infinite word? Acceptance mechanism
proposed by Biichi: see if run visits a final state infinitely
often.

Biichi automaton for infinitely many b's

a b

_o 06

a

<

Blichi automaton for finitely many a's

a, b b

3—08

A,

Proof of Biichi's theorem

Checking non-emptiness of Biichi automata

@ Biichi automata have similar closure properties to classical
FSA's: closed under union, intersection, and complement.

@ Non-emptiness is efficiently decidable: Look for a path from
initial state to a final state that can reach itself.

@ Can be checked efficiently: in time linear in the number of
states and transitions of automaton.

Checking non-emptiness

Proof of Biichi's theorem

Summary

@ We saw another characterisation of the class of regular
languages, this time via logic:

Theorem (Biichi 1960)

L C A* is regular iff L is definable in MSO(A).

@ We saw an application of automata theory to solve a decision
procedure in logic:

Theorem (Biichi 1960)

The Monadic Second-Order (MSO) logic of (N, <) is decidable.

Proof of Biichi's theorem

Related seminar topics

@ Biichi automata, closure properties, decision procedures.

@ Characterization of FO-definable langauges via counter-free
automata.

	First-Order Logic of (N,<)
	The logic MSO(A)
	Proof of Büchi's theorem

