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Büchi’s Logical Characterisation of Regular
Languages

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

16 August 2016



First-Order Logic of (N, <) The logic MSO(A) Proof of Büchi’s theorem
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Background

Büchi’s motivation: Decision procedure for deciding truth of
first-order logic statements about natural numbers and their
ordering. Eg.

∀x∃y(x < y).

Used finite-state automata to give a decision procedure.

By-product: a logical characterisation of regular languages.

Theorem (Büchi 1960)

L is regular iff L can be described in Monadic-Second Order Logic.
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First-Order logic of (N, <).

Interpreted over N = {0, 1, 2, 3, . . .}.
What you can say:

x < y , ∃xϕ, ∀xϕ, ¬,∧,∨.

Examples:
1 ∀x∃y(x < y).

2 ∀x∃y(y < x).
3 ∃x(∀y(y ≤ x)).
4 ∃x(∀y(x ≤ y)).
5 ∀x∀y((x < y) =⇒ ∃z(x < z < y)).

Sentences 1 and 4 are true while others are not.

Question: Is there an algorithm to decide if a given FO(N, <)
sentence is true or not?
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Monadic Second-Order logic over alphabet A: MSO(A)

Interpreted over a string w ∈ A∗.

876543210

babababaaw =

Domain is set of positions in w : {0, 1, 2, . . . , |w | − 1}.
“<” is interpretated as usual < over numbers.

What we can say in the logic:

Qa(x): “Position x is labelled a”.
x < y : “Position x is strictly less than position y”.
∃xϕ: “There exists a position x ...”
∀xϕ: “For all positions x ...”
∃Xϕ: “There exists a set of positions X ...”
∀Xϕ: “For all sets of positions X ...”
x ∈ X : “Position x belongs to the set of positions X ”.
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Example MSO({a, b}) formulas

Consider the alphabet {a, b}.

What language do the sentences below define?

1 ∃x(¬∃y(y < x) ∧ Qa(x)).

2 ∃y(¬∃x(y < x) ∧ Qb(y)).

3 ∃x∃y∃z(succ(x , y) ∧ succ(y , z) ∧ last(z) ∧ (Qb(x)).

Give sentences that describe the following languages:

1 Every a is immediately followed by a b.

2 Strings of odd length.
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MSO sentence for strings of odd length

Language L ⊆ {a, b}∗ of strings of odd length.

babababaa

0Xo 0 0 0 01 1 1 1
1Xe 1 1 1 10 0 0 0

∃Xe∃Xo(∃x(x ∈ Xe) ∧ (∀x((x ∈ Xe =⇒ ¬x ∈ Xo) ∧
(x ∈ Xo =⇒ ¬x ∈ Xe) ∧
(x ∈ Xe ∨ x ∈ Xo) ∧
(zero(x) =⇒ x ∈ Xe) ∧
(∀y((x ∈ Xe ∧ succ(x , y)) =⇒ y ∈ Xo)) ∧
(∀y((x ∈ Xo ∧ succ(x , y)) =⇒ y ∈ Xe)) ∧
(last(x) =⇒ x ∈ Xe)))).
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First-Order Logic

A First-Order Logic usually has a signature comprising the
constants, and function/relation symbols. Eg. (0, <,+).

Terms are expressions built out of the constants, variables and
function symbols. Eg. 0, x + y , (x + y) + 0. They are
interpreted as elements of the domain of interpretation.

Atomic formulas are obtained using the relation symbols on
terms of the logic. Eg. x < y , x = 0 + y , x + y < 0.

Formulas are obtained from atomic formulas using boolean
operators, and existential quantification (∃x) and universal
quantification (∀x). Eg. ¬(x < y), (x < 0) ∧ (x = y),
∃x(∀y(x < y) ∧ (z < x)).
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First-Order Logic

Given a “structure” (i.e. a domain, a concrete interpretation
for each constant and function/relation symbol) and an
assignment for variables to values in the domain) to interpret
the formulas in, each formula is either true or false.

A formula is called a sentence if it has no free (unquantified)
variables.
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Second-Order Logic

In Second-Order logic, one allows quantification over relations
over the domain (not just elements of the domain). Eg:

∃R(2)(R(2)(x , y) =⇒ x < y).

In Monadic second-order logic, one allows quantification over
monadic relations (i.e. relations of arity one, or equivalently,
subsets of the domain). Eg:

∃X (x ∈ X =⇒ 0 < x).
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Formal Semantics of MSO

An interpretation for the logic will be a pair (w , I) where
w ∈ A∗ and I is an assignment of “individual” variables to a
position in w , and “set” variables to a set of positions in w .

I : Var → pos(w) ∪ 2pos(w).

I[i/x ] denotes the assignment which maps x to i and agrees
with I on all other individual and set variables.

Similarly for I[S/X ].
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Formal Semantics of MSO

The satisfaction relation w , I |= ϕ is given by:

w , I |= Qa(x) iff w(I(x)) = a
w , I |= x < y iff I(x) < I(y)
w , I |= x ∈ X iff I(x) ∈ I(X )
w , I |= ¬ϕ iff w , I 6|= ϕ
w , I |= ϕ ∨ ϕ′ iff w , I |= ϕ or w , I |= ϕ′

w , I |= ∃xϕ iff exists i ∈ pos(w) s.t. w , I[i/x ] |= ϕ
w , I |= ∃Xϕ iff exists S ⊆ pos(w)s.t w , I[S/X ] |= ϕ
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Example to illustrate semantics

Consider the word w = aaba and the formula

∃x(Qa(x) ∧ ¬∃y(y < x)).
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MSO sentences

A sentence is a formula with no free variables.

For example ∃X (y ∈ X =⇒ 0 < y) is not a sentence since y
occurs free.

∃X (0 ∈ X =⇒ ∃y(0 < y ∧ y ∈ X )) is a sentence.

If ϕ is a sentence, then we don’t need an interpretation for
variables to say if ϕ is true or false of a given word w :

w |= ϕ.

For a sentence ϕ, we can define the language of words that
satisfy ϕ:

L(ϕ) = {w ∈ A∗ | w |= ϕ}.



First-Order Logic of (N, <) The logic MSO(A) Proof of Büchi’s theorem

Languages definable by MSO

We say that a language L ⊆ A∗ is definable in MSO(A) if
there is a sentence ϕ in MSO(A) such that L(ϕ) = L.

Theorem (Büchi 1960 (also Elgot ’61 and Traktenbrot 62))

L ⊆ A∗ is regular iff L is definable in MSO(A).
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From automata to MSO sentence

Let L ⊆ A∗ be regular. Let A = (Q, s, δ,F ) be a DFA for L.

To show L is definable in MSO(A).

Idea: Construct a sentence ϕA describing an accepting run of
A on a given word.
That is: ϕA is true over a given word w precisely when A has
an accepting run on w .

Let Q = {q1, . . . , qn}, with q1 = s.
Define ϕA as

∃X1 · · · ∃Xn(∀x( (
∧

i 6=j(x ∈ Xi =⇒ ¬x ∈ Xj) ∧
∨

i x ∈ Xi ) ∧
(zero(x) =⇒ x ∈ X1) ∧
(
∧

a∈A, i,j∈{1,...n}, δ(qi ,a)=qj
((x ∈ Xi ∧ Qa(x) ∧ ¬last(x)) =⇒
∃y(succ(x , y) ∧ y ∈ Xj))) ∧

(last(x) =⇒
∨

a∈A, δ(qi ,a)∈F (Qa(x) ∧ x ∈ Xi )))).
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Example

Consider language L ⊆ {a, b}∗ of strings of even length.

DFA A for L:

a, b
e o

a, b

babababaa

0Xo 0 0 0 01 1 1 1
1Xe 1 1 1 10 0 0 0

ϕA:

∃Xe∃Xo(∀x( (x ∈ Xe =⇒ ¬x ∈ Xo) ∧ (x ∈ Xo =⇒ ¬x ∈ Xe) ∧
(x ∈ Xe ∨ x ∈ Xo) ∧
(zero(x) =⇒ x ∈ Xe) ∧
((x ∈ Xe ∧ Qa(x) ∧ ¬last(x)) =⇒ ∃y(succ(x , y) ∧ y ∈ Xo)) ∧
((x ∈ Xe ∧ Qb(x) ∧ ¬last(x)) =⇒ ∃y(succ(x , y) ∧ y ∈ Xo)) ∧
((x ∈ Xo ∧ Qa(x) ∧ ¬last(x)) =⇒ ∃y(succ(x , y) ∧ y ∈ Xe)) ∧
((x ∈ Xo ∧ Qb(x) ∧ ¬last(x)) =⇒ ∃y(succ(x , y) ∧ y ∈ Xe)) ∧
(last(x) =⇒ ((Qa(x) ∧ x ∈ Xo) ∨ (Qb(x) ∧ x ∈ Xo))))).
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From MSO sentence to automaton

Idea: Inductively describe the language of extended models of
a given MSO formula ϕ by an automaton Aϕ.

Extended models wrt set of first-order and second-order
variables T = {x1, . . . , xm,X1, . . . ,Xn}: (w , I)
Can be represented as a word over A× {0, 1}m+n.

babababaa

1 1 1 10 0 0 0 1X1

0X2 0 0 0 01 1 1 1

0 0 0 01 0 0 0 0x1
0 0 1 00 0 0 0 0x2

For example, the extended word above satisfies the formula

Qa(x1) ∧ (x2 ∈ X1).
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Inductive construction of AT
ϕ .

If ϕ is a formula whose free variables are in T , then we have
the notion of whether w ′ |= ϕ based on whether the (w , I)
encoded by w ′ satisfies ϕ or not.

Let the set of valid extended words wrt T be validT (A).

We can define an automaton AT
val which accepts this set.

Claim: with every formula ϕ in MSO(A), and any finite set of
variables T containing at least the free variables of ϕ, we can
construct an automaton AT

ϕ which accepts the language

LT (ϕ).

Proof: by induction on structure of ϕ.

Qa(x), x < y , x ∈ Y , ¬ϕ, ϕ ∨ ψ, ∃xϕ, ∃Xϕ.
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Example formula

∃x(Qa(x) ∧ ¬∃y(x < y)) ¬

∃y

x < y

∃x

∧

Qa(x)
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Back to First-Order logic of (N, <).

Interpreted over N = {0, 1, 2, 3, . . .}.
What you can say:

x < y , ∃xϕ, ∀xϕ, ¬,∧,∨.

Examples:
1 ∀x∃y(x < y).
2 ∀x∃y(y < x).
3 ∃x(∀y(y ≤ x)).
4 ∀x∀y((x < y) =⇒ ∃z(x < z < y)).

Question: Is there an algorithm to decide if a given FO(N, <)
sentence is true or not?
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Büchi’s decision procedure for MSO(N, <)

Büchi considered finite automata over infinite strings (so
called ω-automata).

An infinite word is accepted if there is a run of the automaton
on it that visits a final state inifinitely often.

Büchi showed that ω-automata have similar properties to
classical automata: are closed under boolean operations,
projection, and can be effectively checked for emptiness.

MSO characterisation works similarly for ω-automata as well.

Given a sentence ϕ in MSO(N, <) we can now view it as an
MSO({a}) sentence.

Construct an ω-automaton Aϕ that accepts precisely the
words that satisfy ϕ.

Check if L(Aϕ) is non-empty.

If non-empty say “Yes, ϕ is true”, else say “No, it is not true.”
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Büchi automata

Finite state automata that run over infinite words.

How do we accept an infinite word? Acceptance mechanism
proposed by Büchi: see if run visits a final state infinitely
often.

Büchi automaton for infinitely many b’s

b

a

ba

Büchi automaton for finitely many a’s

b
ba, b
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Checking non-emptiness of Büchi automata

Büchi automata have similar closure properties to classical
FSA’s: closed under union, intersection, and complement.

Non-emptiness is efficiently decidable: Look for a path from
initial state to a final state that can reach itself.

Can be checked efficiently: in time linear in the number of
states and transitions of automaton.

Checking non-emptiness
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Summary

We saw another characterisation of the class of regular
languages, this time via logic:

Theorem (Büchi 1960)

L ⊆ A∗ is regular iff L is definable in MSO(A).

We saw an application of automata theory to solve a decision
procedure in logic:

Theorem (Büchi 1960)

The Monadic Second-Order (MSO) logic of (N, <) is decidable.
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Related seminar topics

Büchi automata, closure properties, decision procedures.

Characterization of FO-definable langauges via counter-free
automata.
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