
Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Finite-State Automata: Recap

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

09 August 2016



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Outline

1 Introduction

2 Formal Definitions and Notation

3 Closure under boolean ops

4 Induction

5 NFA’s



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Example DFA 1

DFA for “Odd number of a’s”

b
a

b

a

e o

How a DFA works.

Each state represents a property of the input string read so
far:

State e: Number of a’s seen is even.
State o: Number of a’s seen is odd.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Example DFA 1

DFA for “Odd number of a’s”

b
a

b

a
e o

How a DFA works.

Each state represents a property of the input string read so
far:

State e: Number of a’s seen is even.
State o: Number of a’s seen is odd.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Example DFA 2

Accept strings over {0, 1} which have even parity in each length 4
block.

Accept “0101 · 1010”
Reject “0101 · 1011”

DFA for “Even parity checker”

0

1
0, e

0 0

0

00

1

1

1

1

1

0

0, 1

1

1, o

1, e

2, o 3, o

0, o

2, e 3, e



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Example DFA 3

DFA for “Strings over {a, b} that contain the substring abb”

a

a b b

a

ab a, b

ab abbε

Each state represents a property of the input string read so far:

State ε: Not seen abb and no suffix in a or ab.

State a: Not seen abb and has suffix a.

State ab: Not seen abb and has suffix ab.

State abb: Seen abb.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Example DFA 3

DFA for “Strings over {a, b} that contain the substring abb”

a

a b b

a

ab a, b

ab abbε

Each state represents a property of the input string read so far:

State ε: Not seen abb and no suffix in a or ab.

State a: Not seen abb and has suffix a.

State ab: Not seen abb and has suffix ab.

State abb: Seen abb.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Definitions and notation

An alphabet is a finite set of symbols or “letters”. Eg.
A = {a, b, c} or Σ = {0, 1}.
A string or word over an alphabet A is a finite sequence of
letters from A. Eg. aaba is string over {a, b, c}.
Empty string denoted by ε.

Set of all strings over A denoted by A∗.

What is the “size” or “cardinality” of A∗?

Infinite but Countable: Can enumerate in lexicographic order:

ε, a, b, c , aa, ab, . . .

.

Operation of concatenation on words: String u followed by
string v : written u · v or simply uv .

Eg. aabb · aaa = aabbaaa.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Definitions and notation

An alphabet is a finite set of symbols or “letters”. Eg.
A = {a, b, c} or Σ = {0, 1}.
A string or word over an alphabet A is a finite sequence of
letters from A. Eg. aaba is string over {a, b, c}.
Empty string denoted by ε.

Set of all strings over A denoted by A∗.

What is the “size” or “cardinality” of A∗?
Infinite but Countable: Can enumerate in lexicographic order:

ε, a, b, c , aa, ab, . . .

.

Operation of concatenation on words: String u followed by
string v : written u · v or simply uv .

Eg. aabb · aaa = aabbaaa.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Definitions and notation

An alphabet is a finite set of symbols or “letters”. Eg.
A = {a, b, c} or Σ = {0, 1}.
A string or word over an alphabet A is a finite sequence of
letters from A. Eg. aaba is string over {a, b, c}.
Empty string denoted by ε.

Set of all strings over A denoted by A∗.

What is the “size” or “cardinality” of A∗?
Infinite but Countable: Can enumerate in lexicographic order:

ε, a, b, c , aa, ab, . . .

.

Operation of concatenation on words: String u followed by
string v : written u · v or simply uv .

Eg. aabb · aaa = aabbaaa.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Definitions and notation: Languages

A language over an alphabet A is a set of strings over A. Eg.
for A = {a, b, c}:

L = {abc, aaba}.
L1 = {ε, b, aa, bb, aab, aba, baa, bbb, . . .}.
L2 = {}.
L3 = {ε}.

How many languages are there over a given alphabet A?

Uncountably infinite
Use a diagonalization argument:

ε a b aa ab ba bb aaa aab aba abb bbb · · ·
L0 0 1 0 0 0 1 1 0 0 0 0 0 · · ·
L1 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
L2 1 1 0 1 0 1 1 0 0 1 0 1 · · ·
L3 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
L4 0 1 0 0 0 1 1 0 0 0 0 0 · · ·
L5 1 1 0 1 0 1 1 0 0 1 0 1 · · ·
L6 0 1 0 0 0 1 1 0 0 0 0 0 · · ·
L7 0 0 0 0 0 0 1 0 0 0 1 0 · · ·
.
.
.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Definitions and notation: Languages

A language over an alphabet A is a set of strings over A. Eg.
for A = {a, b, c}:

L = {abc, aaba}.
L1 = {ε, b, aa, bb, aab, aba, baa, bbb, . . .}.
L2 = {}.
L3 = {ε}.

How many languages are there over a given alphabet A?
Uncountably infinite
Use a diagonalization argument:

ε a b aa ab ba bb aaa aab aba abb bbb · · ·
L0 0 1 0 0 0 1 1 0 0 0 0 0 · · ·
L1 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
L2 1 1 0 1 0 1 1 0 0 1 0 1 · · ·
L3 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
L4 0 1 0 0 0 1 1 0 0 0 0 0 · · ·
L5 1 1 0 1 0 1 1 0 0 1 0 1 · · ·
L6 0 1 0 0 0 1 1 0 0 0 0 0 · · ·
L7 0 0 0 0 0 0 1 0 0 0 1 0 · · ·
.
.
.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Definitions and notation: Languages

Concatenation of languages:

L1 · L2 = {u · v | u ∈ L1, v ∈ L2}.

Eg. {abc, aaba} · {ε, a, bb} =
{abc, aaba, abca, aabaa, abcbb, aababb}.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Definitions and notation: DFA

A Deterministic Finite-State Automaton A over an alphabet A is a
structure of the form

(Q, s, δ,F )

where

Q is a finite set of “states”

s ∈ Q is the “start” state

δ : Q × A→ Q is the “transition function.”

F ⊆ Q is the set of “final” states.

Example of “Odd a’s” DFA:
Here: Q = {e, o}, s = e, F = {o},

and δ is given by:

δ(e, a) = o,
δ(e, b) = e,
δ(o, a) = e,
δ(o, b) = o.

b
a

b

a

e o



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Definitions and notation: DFA

A Deterministic Finite-State Automaton A over an alphabet A is a
structure of the form

(Q, s, δ,F )

where

Q is a finite set of “states”

s ∈ Q is the “start” state

δ : Q × A→ Q is the “transition function.”

F ⊆ Q is the set of “final” states.

Example of “Odd a’s” DFA:
Here: Q = {e, o}, s = e, F = {o},

and δ is given by:

δ(e, a) = o,
δ(e, b) = e,
δ(o, a) = e,
δ(o, b) = o.

b
a

b

a
e o



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Definitions and notation: Language accepted by a DFA

δ̂ tells us how the DFA A behaves on a given word u.

Define δ̂ : Q × A∗ → Q as

δ̂(q, ε) = q

δ̂(q,w · a) = δ(δ̂(q,w), a).

Language accepted by A, denoted L(A), is defined as:

L(A) = {w ∈ A∗ | δ̂(s,w) ∈ F}.

Eg. For A = DFA for “Odd a’s”,

L(A) = {a, ab, ba, aaa, abb, bab, bba, . . .}.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Regular Languages

A language L ⊆ A∗ is called regular if there is a DFA A over
A such that L(A) = L.

Examples of regular languages: “Odd a’s”, “strings that don’t
end inside a C-style comment”, {}, any finite language.

All languages over A

Regular

Are there non-regular languages?

Yes, uncountably many, since Reg is only countable while class
of all languages is uncountable.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Regular Languages

A language L ⊆ A∗ is called regular if there is a DFA A over
A such that L(A) = L.

Examples of regular languages: “Odd a’s”, “strings that don’t
end inside a C-style comment”, {}, any finite language.

All languages over A

Regular

Are there non-regular languages?
Yes, uncountably many, since Reg is only countable while class
of all languages is uncountable.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Closure properties

Class of Regular languages is closed under

Complement, intersection, and union.
Concatenation, Kleene iteration.

Non-deterministic Finite-state Automata (NFA) = DFA.

All strings over A

L M

All languages over A

Regular



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Closure under complementation

Idea: Flip final states.

Formal construction:

Let A = (Q, s, δ,F ) be a DFA over alpahet A.
Define B = (Q, s, δ,Q − F ).
Claim: L(B) = A∗ − L(A).

Proof of claim

L(B) ⊆ A∗ − L(A).

w ∈ L(B) =⇒ δ̂(s,w) ∈ (Q − F ).

=⇒ δ̂(s,w) 6∈ F
=⇒ w 6∈ L(A)
=⇒ w ∈ A∗ − L(A).

L(B) ⊇ A∗ − L(A).



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Closure under intersection

Product construction. Given DFA’s A = (Q, s, δ,F ),
B = (Q ′, s ′, δ′,F ′), define product C of A and B:

C = (Q × Q ′, (s, s ′), δ′′,F × F ′),

where δ′′((p, p′), a) = (δ(p, a), δ′(p′, a)).

Product construction example

b
a

b

a
e o

a
b

b

a
¬b b

b b

a

a

b

a a

e, b o, b

o,¬b
e,¬b

b
A B A× B



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Correctness of product construction

Claim: L(C) = L(A) ∩ L(B).

Proof of claim L(C) = L(A) ∩ L(B).

L(C) ⊆ L(A) ∩ L(B).

w ∈ L(C) =⇒ δ̂′′((s, s ′),w) ∈ F × F ′.

=⇒ (δ̂(s,w), δ̂′(s ′,w)) ∈ F × F ′ (by subclaim)

=⇒ δ̂(s,w) ∈ F and δ̂′(s ′,w) ∈ F ′

=⇒ w ∈ L(A) and w ∈ L(B)
=⇒ w ∈ L(A) ∩ L(B).

L(C) ⊇ L(A) ∩ L(B).

Subclaim: δ̂′′((s, s ′),w) = (δ̂(s,w), δ̂′(s ′,w)).



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Closure under union

Follows from closure under complement and intersection since

L1 ∪ L2 = L1 ∩ L2.

Can also do directly by product construction: Given DFA’s
A = (Q, s, δ,F ), B = (Q ′, s ′, δ′,F ′), define C:
C = (Q × Q ′, (s, s ′), δ′′, (F × Q ′) ∪ (Q × F ′)), where
δ′′((p, p′), a) = (δ(p, a), δ(p′, a)).

Union construction

b
a

b

a
e o

a
b

b

a
¬b b

b b

a

a

b

a a

e, b o, b

o,¬b
e,¬b

b
A B A× B



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Closure under union

Follows from closure under complement and intersection since

L1 ∪ L2 = L1 ∩ L2.
Can also do directly by product construction: Given DFA’s
A = (Q, s, δ,F ), B = (Q ′, s ′, δ′,F ′), define C:
C = (Q × Q ′, (s, s ′), δ′′, (F × Q ′) ∪ (Q × F ′)), where
δ′′((p, p′), a) = (δ(p, a), δ(p′, a)).

Union construction

b
a

b

a
e o

a
b

b

a
¬b b

b b

a

a

b

a a

e, b o, b

o,¬b
e,¬b

b
A B A× B



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Principle of Mathematical Induction

N = {0, 1, 2 . . .}
P(n): A statement P about a natural number n.
Example:

P(n) = “n is even.”
P1(n) = “Sum of the numbers 1 . . . n equals n(n + 1)/2.”
P2(n) = “For all w ∈ A∗, if length of w is n then

δ̂′′((s, s ′),w) = (δ̂(s,w), δ̂′(s ′,w)).”

Principle of Induction

If a statement P about natural numbers

is true for 0 (i.e P(0) is true), and,

is true for n + 1 whenever it is true for n (i.e.
P(n) =⇒ P(n + 1))

then P is true of all natural numbers (i.e. “For all n, P(n)” is
true).



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Proof of subclaim

Exercise: Prove the Subclaim:

δ̂′′((s, s ′),w) = (δ̂(s,w), δ̂′(s ′,w)).

using induction.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Nondeterministic Finite-state Automata (NFA)

Allows multiple start states.

Allows more than one transition from a state on a given letter.

Non-deterministic transitions
a

a
p

q

r

A word is accepted if there is some path on it from a start to
a final state.



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Example NFA’s

NFA for “contains abb as a subword”

a

a b

a, b

ab abbε

b

a, b



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

NFA definition

Mathematical representation of NFA

A = (Q,S ,∆,F ), where S ⊆ Q, and ∆ : Q × A→ 2Q .

Define relation p
w→ q which says there is a path from state p

to state q labelled w .

p
ε→ p

p
ua→ q iff there exists r ∈ Q such that p

u→ r and q ∈ ∆(r , a).

Define L(A) = {w ∈ A∗ | ∃s ∈ S , f ∈ F : s
w→ f }.

NFA → DFA: Subset construction

Example: determinize NFA for “contains abb.”
Formal construction
Correctness



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Closure under concatenation and Kleene iteration

Concatenation of languages:

L ·M = {u · v | u ∈ L, v ∈ M}.

Kleene iteration of a language:

L∗ = {ε} ∪ L ∪ L2 ∪ L3 ∪ · · · ,

where

Ln = L · L · · · L (n times).
= {w1 · · ·wn | each wi ∈ L}.


	Introduction
	Formal Definitions and Notation
	Closure under boolean ops
	Induction
	NFA's

