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Example DFA 1

DFA for “Odd number of a’s”

b
a

b
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e o

How a DFA works.

Each state represents a property of the input string read so
far:

State e: Number of a’s seen is even.
State o: Number of a’s seen is odd.
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Example DFA 2

Accept strings over {0, 1} which have even parity in each length 4
block.

Accept “0101 · 1010”
Reject “0101 · 1011”

DFA for “Even parity checker”
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Example DFA 3

DFA for “Strings over {a, b} that contain the substring abb”

a

a b b

a

ab a, b

ab abbε

Each state represents a property of the input string read so far:

State ε: Not seen abb and no suffix in a or ab.

State a: Not seen abb and has suffix a.

State ab: Not seen abb and has suffix ab.

State abb: Seen abb.
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Definitions and notation

An alphabet is a finite set of symbols or “letters”. Eg.
A = {a, b, c} or Σ = {0, 1}.
A string or word over an alphabet A is a finite sequence of
letters from A. Eg. aaba is string over {a, b, c}.
Empty string denoted by ε.

Set of all strings over A denoted by A∗.

What is the “size” or “cardinality” of A∗?

Infinite but Countable: Can enumerate in lexicographic order:

ε, a, b, c , aa, ab, . . .

.

Operation of concatenation on words: String u followed by
string v : written u · v or simply uv .

Eg. aabb · aaa = aabbaaa.
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Definitions and notation: Languages

A language over an alphabet A is a set of strings over A. Eg.
for A = {a, b, c}:

L = {abc, aaba}.
L1 = {ε, b, aa, bb, aab, aba, baa, bbb, . . .}.
L2 = {}.
L3 = {ε}.

How many languages are there over a given alphabet A?

Uncountably infinite
Use a diagonalization argument:

ε a b aa ab ba bb aaa aab aba abb bbb · · ·
L0 0 1 0 0 0 1 1 0 0 0 0 0 · · ·
L1 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
L2 1 1 0 1 0 1 1 0 0 1 0 1 · · ·
L3 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
L4 0 1 0 0 0 1 1 0 0 0 0 0 · · ·
L5 1 1 0 1 0 1 1 0 0 1 0 1 · · ·
L6 0 1 0 0 0 1 1 0 0 0 0 0 · · ·
L7 0 0 0 0 0 0 1 0 0 0 1 0 · · ·
.
.
.
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Definitions and notation: Languages

Concatenation of languages:

L1 · L2 = {u · v | u ∈ L1, v ∈ L2}.

Eg. {abc, aaba} · {ε, a, bb} =
{abc, aaba, abca, aabaa, abcbb, aababb}.
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Definitions and notation: DFA

A Deterministic Finite-State Automaton A over an alphabet A is a
structure of the form

(Q, s, δ,F )

where

Q is a finite set of “states”

s ∈ Q is the “start” state

δ : Q × A→ Q is the “transition function.”

F ⊆ Q is the set of “final” states.

Example of “Odd a’s” DFA:
Here: Q = {e, o}, s = e, F = {o},

and δ is given by:

δ(e, a) = o,
δ(e, b) = e,
δ(o, a) = e,
δ(o, b) = o.

b
a

b

a

e o
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Definitions and notation: Language accepted by a DFA

δ̂ tells us how the DFA A behaves on a given word u.

Define δ̂ : Q × A∗ → Q as

δ̂(q, ε) = q

δ̂(q,w · a) = δ(δ̂(q,w), a).

Language accepted by A, denoted L(A), is defined as:

L(A) = {w ∈ A∗ | δ̂(s,w) ∈ F}.

Eg. For A = DFA for “Odd a’s”,

L(A) = {a, ab, ba, aaa, abb, bab, bba, . . .}.
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Regular Languages

A language L ⊆ A∗ is called regular if there is a DFA A over
A such that L(A) = L.

Examples of regular languages: “Odd a’s”, “strings that don’t
end inside a C-style comment”, {}, any finite language.

All languages over A

Regular

Are there non-regular languages?

Yes, uncountably many, since Reg is only countable while class
of all languages is uncountable.
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Closure properties

Class of Regular languages is closed under

Complement, intersection, and union.
Concatenation, Kleene iteration.

Non-deterministic Finite-state Automata (NFA) = DFA.

All strings over A

L M

All languages over A

Regular
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Closure under complementation

Idea: Flip final states.

Formal construction:

Let A = (Q, s, δ,F ) be a DFA over alpahet A.
Define B = (Q, s, δ,Q − F ).
Claim: L(B) = A∗ − L(A).

Proof of claim

L(B) ⊆ A∗ − L(A).

w ∈ L(B) =⇒ δ̂(s,w) ∈ (Q − F ).

=⇒ δ̂(s,w) 6∈ F
=⇒ w 6∈ L(A)
=⇒ w ∈ A∗ − L(A).

L(B) ⊇ A∗ − L(A).
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Closure under intersection

Product construction. Given DFA’s A = (Q, s, δ,F ),
B = (Q ′, s ′, δ′,F ′), define product C of A and B:

C = (Q × Q ′, (s, s ′), δ′′,F × F ′),

where δ′′((p, p′), a) = (δ(p, a), δ′(p′, a)).

Product construction example

b
a

b

a
e o

a
b

b

a
¬b b

b b

a

a

b

a a

e, b o, b

o,¬b
e,¬b

b
A B A× B



Introduction Formal Definitions and Notation Closure under boolean ops Induction NFA’s

Correctness of product construction

Claim: L(C) = L(A) ∩ L(B).

Proof of claim L(C) = L(A) ∩ L(B).

L(C) ⊆ L(A) ∩ L(B).

w ∈ L(C) =⇒ δ̂′′((s, s ′),w) ∈ F × F ′.

=⇒ (δ̂(s,w), δ̂′(s ′,w)) ∈ F × F ′ (by subclaim)

=⇒ δ̂(s,w) ∈ F and δ̂′(s ′,w) ∈ F ′

=⇒ w ∈ L(A) and w ∈ L(B)
=⇒ w ∈ L(A) ∩ L(B).

L(C) ⊇ L(A) ∩ L(B).

Subclaim: δ̂′′((s, s ′),w) = (δ̂(s,w), δ̂′(s ′,w)).
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Closure under union

Follows from closure under complement and intersection since

L1 ∪ L2 = L1 ∩ L2.

Can also do directly by product construction: Given DFA’s
A = (Q, s, δ,F ), B = (Q ′, s ′, δ′,F ′), define C:
C = (Q × Q ′, (s, s ′), δ′′, (F × Q ′) ∪ (Q × F ′)), where
δ′′((p, p′), a) = (δ(p, a), δ(p′, a)).

Union construction
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Principle of Mathematical Induction

N = {0, 1, 2 . . .}
P(n): A statement P about a natural number n.
Example:

P(n) = “n is even.”
P1(n) = “Sum of the numbers 1 . . . n equals n(n + 1)/2.”
P2(n) = “For all w ∈ A∗, if length of w is n then

δ̂′′((s, s ′),w) = (δ̂(s,w), δ̂′(s ′,w)).”

Principle of Induction

If a statement P about natural numbers

is true for 0 (i.e P(0) is true), and,

is true for n + 1 whenever it is true for n (i.e.
P(n) =⇒ P(n + 1))

then P is true of all natural numbers (i.e. “For all n, P(n)” is
true).
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Proof of subclaim

Exercise: Prove the Subclaim:

δ̂′′((s, s ′),w) = (δ̂(s,w), δ̂′(s ′,w)).

using induction.
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Nondeterministic Finite-state Automata (NFA)

Allows multiple start states.

Allows more than one transition from a state on a given letter.

Non-deterministic transitions
a

a
p

q

r

A word is accepted if there is some path on it from a start to
a final state.
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Example NFA’s

NFA for “contains abb as a subword”

a

a b

a, b

ab abbε

b

a, b
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NFA definition

Mathematical representation of NFA

A = (Q,S ,∆,F ), where S ⊆ Q, and ∆ : Q × A→ 2Q .

Define relation p
w→ q which says there is a path from state p

to state q labelled w .

p
ε→ p

p
ua→ q iff there exists r ∈ Q such that p

u→ r and q ∈ ∆(r , a).

Define L(A) = {w ∈ A∗ | ∃s ∈ S , f ∈ F : s
w→ f }.

NFA → DFA: Subset construction

Example: determinize NFA for “contains abb.”
Formal construction
Correctness
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Closure under concatenation and Kleene iteration

Concatenation of languages:

L ·M = {u · v | u ∈ L, v ∈ M}.

Kleene iteration of a language:

L∗ = {ε} ∪ L ∪ L2 ∪ L3 ∪ · · · ,

where

Ln = L · L · · · L (n times).
= {w1 · · ·wn | each wi ∈ L}.
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