< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Finite-State Automata: Recap

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

09 August 2016

Outline

- 2 Formal Definitions and Notation
- 3 Closure under boolean ops

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example DFA 1

DFA for "Odd number of a's"

• How a DFA works.

Example DFA 1

- How a DFA works.
- Each state represents a property of the input string read so far:
 - State e: Number of a's seen is even.
 - State o: Number of a's seen is odd.

Example DFA 2

Accept strings over $\{0,1\}$ which have even parity in each length 4 block.

- Accept "0101 · 1010"
- Reject "0101 · 1011"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

DFA for "Strings over $\{a, b\}$ that contain the substring *abb*"

Example DFA 3

Each state represents a property of the input string read so far:

- State ϵ : Not seen *abb* and no suffix in *a* or *ab*.
- State a: Not seen abb and has suffix a.
- State *ab*: Not seen *abb* and has suffix *ab*.
- State *abb*: Seen *abb*.

NFA's

Definitions and notation

- An *alphabet* is a finite set of symbols or "letters". Eg. $A = \{a, b, c\}$ or $\Sigma = \{0, 1\}$.
- A *string* or *word* over an alphabet A is a finite sequence of letters from A. Eg. *aaba* is string over {*a*, *b*, *c*}.
- Empty string denoted by ϵ .
- Set of all strings over A denoted by A*.
 - What is the "size" or "cardinality" of A*?

NFA's

Definitions and notation

- An *alphabet* is a finite set of symbols or "letters". Eg. $A = \{a, b, c\}$ or $\Sigma = \{0, 1\}$.
- A *string* or *word* over an alphabet A is a finite sequence of letters from A. Eg. *aaba* is string over {*a*, *b*, *c*}.
- Empty string denoted by ϵ .
- Set of all strings over A denoted by A*.
 - What is the "size" or "cardinality" of A^* ?
 - Infinite but Countable: Can enumerate in lexicographic order:

$$\epsilon$$
, a, b, c, aa, ab,...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definitions and notation

- An *alphabet* is a finite set of symbols or "letters". Eg. $A = \{a, b, c\}$ or $\Sigma = \{0, 1\}$.
- A *string* or *word* over an alphabet A is a finite sequence of letters from A. Eg. *aaba* is string over {*a*, *b*, *c*}.
- Empty string denoted by ϵ .
- Set of all strings over A denoted by A*.
 - What is the "size" or "cardinality" of A^* ?
 - Infinite but Countable: Can enumerate in lexicographic order:

$$\epsilon$$
, a, b, c, aa, ab,...

- Operation of *concatenation* on words: String *u* followed by string *v*: written *u* · *v* or simply *uv*.
 - Eg. $aabb \cdot aaa = aabbaaa$.

Definitions and notation: Languages

- A language over an alphabet A is a set of strings over A. Eg. for A = {a, b, c}:
 - L = {abc, aaba}.
 L₁ = {ε, b, aa, bb, aab, aba, baa, bbb, ...}.
 L₂ = {}.
 L₃ = {ε}.
- How many languages are there over a given alphabet A?

Definitions and notation: Languages

- A *language* over an alphabet A is a set of strings over A. Eg. for A = {a, b, c}:
 - L = {abc, aaba}.
 L₁ = {ε, b, aa, bb, aab, aba, baa, bbb, ...}.
 L₂ = {}.
 L₃ = {ε}.

• How many languages are there over a given alphabet A?

- Uncountably infinite
- Use a diagonalization argument:

	ϵ	а	b	aa	ab	ba	bb	aaa	aab	aba	abb	bbb	
L ₀	0	1	0	0	0	1	1	0	0	0	0	0	
L_1	0	0	0	0	0	0	0	0	0	0	0	0	
L_2	1	1	0	1	0	1	1	0	0	1	0	1	
L ₃	0	0	0	0	0	0	0	0	0	0	0	0	
L_4	0	1	0	0	0	1	1	0	0	0	0	0	
L_5	1	1	0	1	0	1	1	0	0	1	0	1	
L_6	0	1	0	0	0	1	1	0	0	0	0	0	
L_7	0	0	0	0	0	0	1	0	0	0	1	0	
•													
·									< • • •	< @ >	< ≡ →	< ⊒→	3

200

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definitions and notation: Languages

• Concatenation of languages:

$$L_1 \cdot L_2 = \{u \cdot v \mid u \in L_1, v \in L_2\}.$$

• Eg.
$$\{abc, aaba\} \cdot \{\epsilon, a, bb\} = \{abc, aaba, abca, aabaa, abcab, aababb\}.$$

Definitions and notation: DFA

A Deterministic Finite-State Automaton \mathcal{A} over an alphabet A is a structure of the form

$$(Q, s, \delta, F)$$

where

- Q is a finite set of "states"
- $s \in Q$ is the "start" state
- $\delta: Q \times A \rightarrow Q$ is the "transition function."
- $F \subseteq Q$ is the set of "final" states.

NFA's

Definitions and notation: DFA

A Deterministic Finite-State Automaton \mathcal{A} over an alphabet A is a structure of the form

$$(Q, s, \delta, F)$$

where

- Q is a finite set of "states"
- $s \in Q$ is the "start" state
- $\delta: Q \times A \rightarrow Q$ is the "transition function."
- $F \subseteq Q$ is the set of "final" states.

Example of "Odd *a*'s" DFA: Here: $Q = \{e, o\}, s = e, F = \{o\},$ and δ is given by:

- $\widehat{\delta}$ tells us how the DFA ${\mathcal A}$ behaves on a given word u.
- Define $\widehat{\delta}: \mathcal{Q} imes \mathcal{A}^* o \mathcal{Q}$ as
 - $\hat{\delta}(q, \epsilon) = q$ • $\hat{\delta}(q, w \cdot a) = \delta(\hat{\delta}(q, w), a).$

• Language *accepted* by A, denoted L(A), is defined as:

$$L(\mathcal{A}) = \{ w \in \mathcal{A}^* \mid \widehat{\delta}(s, w) \in F \}.$$

• Eg. For $\mathcal{A} = \mathsf{DFA}$ for "Odd a's",

 $L(\mathcal{A}) = \{a, ab, ba, aaa, abb, bab, bba, \ldots\}.$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Regular Languages

- A language L ⊆ A* is called *regular* if there is a DFA A over A such that L(A) = L.
- Examples of regular languages: "Odd *a*'s", "strings that don't end inside a C-style comment", {}, any finite language.

Regular

All languages over A

• Are there non-regular languages?

Regular Languages

- A language $L \subseteq A^*$ is called *regular* if there is a DFA A over A such that L(A) = L.
- Examples of regular languages: "Odd *a*'s", "strings that don't end inside a C-style comment", {}, any finite language.

Regular

All languages over A

- Are there non-regular languages?
 - Yes, uncountably many, since Reg is only countable while class of all languages is uncountable.

Closure properties

- Class of Regular languages is closed under
 - Complement, intersection, and union.
 - Concatenation, Kleene iteration.
- Non-deterministic Finite-state Automata (NFA) = DFA.

All strings over A

All languages over A

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Closure under complementation

- Idea: Flip final states.
- Formal construction:
 - Let $\mathcal{A} = (Q, s, \delta, F)$ be a DFA over alpahet A.
 - Define $\mathcal{B} = (Q, s, \delta, Q F)$.
 - Claim: $L(B) = A^* L(A)$.

Proof of claim

•
$$L(\mathcal{B}) \subseteq A^* - L(\mathcal{A}).$$

 $w \in L(\mathcal{B}) \implies \widehat{\delta}(s, w) \in (Q - F).$
 $\implies \widehat{\delta}(s, w) \notin F$
 $\implies w \notin L(\mathcal{A})$
 $\implies w \in A^* - L(\mathcal{A}).$

• $L(\mathcal{B}) \supseteq A^* - L(\mathcal{A}).$

Closure under intersection

Product construction. Given DFA's $\mathcal{A} = (Q, s, \delta, F)$, $\mathcal{B} = (Q', s', \delta', F')$, define product \mathcal{C} of A and B:

$$\mathcal{C} = (Q \times Q', (s, s'), \delta'', F \times F'),$$

where $\delta''((p, p'), a) = (\delta(p, a), \delta'(p', a)).$

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Correctness of product construction

Claim: $L(\mathcal{C}) = L(\mathcal{A}) \cap L(\mathcal{B}).$

Proof of claim $L(\mathcal{C}) = L(\mathcal{A}) \cap L(\mathcal{B})$.

•
$$L(\mathcal{C}) \subseteq L(\mathcal{A}) \cap L(\mathcal{B}).$$

 $w \in L(\mathcal{C}) \implies \widehat{\delta}''((s,s'),w) \in F \times F'.$
 $\implies (\widehat{\delta}(s,w), \widehat{\delta}'(s',w)) \in F \times F' \text{ (by subclaim)}$
 $\implies \widehat{\delta}(s,w) \in F \text{ and } \widehat{\delta}'(s',w) \in F'$
 $\implies w \in L(\mathcal{A}) \text{ and } w \in L(\mathcal{B})$
 $\implies w \in L(\mathcal{A}) \cap L(\mathcal{B}).$

• $L(\mathcal{C}) \supseteq L(\mathcal{A}) \cap L(\mathcal{B}).$

Subclaim: $\widehat{\delta}''((s,s'),w) = (\widehat{\delta}(s,w), \widehat{\delta}'(s',w)).$

• Follows from closure under complement and intersection since $L_1 \cup L_2 = \overline{\overline{L_1} \cap \overline{L_2}}$.

(ロ)、(型)、(E)、(E)、 E) のQの

Closure under union

- Follows from closure under complement and intersection since $L_1 \cup L_2 = \overline{\overline{L_1} \cap \overline{L_2}}$.
- Can also do directly by product construction: Given DFA's $\mathcal{A} = (Q, s, \delta, F), \ \mathcal{B} = (Q', s', \delta', F'), \ define \ \mathcal{C}:$ $\mathcal{C} = (Q \times Q', (s, s'), \delta'', (F \times Q') \cup (Q \times F')), \ where \delta''((p, p'), a) = (\delta(p, a), \delta(p', a)).$

Principle of Mathematical Induction

•
$$\mathbb{N} = \{0, 1, 2 \ldots\}$$

- P(n): A statement P about a natural number n.
- Example:
 - P(n) = "n is even."
 - $P_1(n) =$ "Sum of the numbers $1 \dots n$ equals n(n+1)/2."

•
$$P_2(n) =$$
 "For all $w \in A^*$, if length of w is n then $\widehat{\delta}''((s,s'), w) = (\widehat{\delta}(s,w), \widehat{\delta}'(s',w))$."

Principle of Induction

If a statement P about natural numbers

- is true for 0 (i.e P(0) is true), and,
- is true for n + 1 whenever it is true for n (i.e.

$$P(n) \implies P(n+1))$$

then P is true of all natural numbers (i.e. "For all n, P(n)" is true).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of subclaim

Exercise: Prove the Subclaim:

$$\widehat{\delta}''((s,s'),w) = (\widehat{\delta}(s,w),\widehat{\delta}'(s',w)).$$

using induction.

NFA's

Nondeterministic Finite-state Automata (NFA)

- Allows multiple start states.
- Allows more than one transition from a state on a given letter.

• A word is accepted if there is some path on it from a start to a final state.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example NFA's

NFA for "contains abb as a subword"

NFA's

NFA definition

- Mathematical representation of NFA
 - $\mathcal{A} = (Q, S, \Delta, F)$, where $S \subseteq Q$, and $\Delta : Q \times A \rightarrow 2^Q$.
 - Define relation p → q which says there is a path from state p to state q labelled w.
 - $p \stackrel{\epsilon}{\rightarrow} p$
 - $p \stackrel{ua}{\to} q$ iff there exists $r \in Q$ such that $p \stackrel{u}{\to} r$ and $q \in \Delta(r, a)$.
 - Define $L(\mathcal{A}) = \{ w \in \mathcal{A}^* \mid \exists s \in S, f \in F : s \xrightarrow{w} f \}.$
- NFA \rightarrow DFA: Subset construction
 - Example: determinize NFA for "contains abb."
 - Formal construction
 - Correctness

NFA's

Closure under concatenation and Kleene iteration

• Concatenation of languages:

$$L \cdot M = \{ u \cdot v \mid u \in L, v \in M \}.$$

• Kleene iteration of a language:

$$L^* = \{\epsilon\} \cup L \cup L^2 \cup L^3 \cup \cdots,$$

where

$$L^n = L \cdot L \cdots L \text{ (}n \text{ times).}$$

= { $w_1 \cdots w_n$ | each $w_i \in L$ }.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @