Myhill-Nerode Theorem

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

6 September 2016

Outline

- 2 Myhill-Nerode Theorem
- 3 Correspondence between DA's and MN relations
- (4) Canonical DA for L
- 5 Computing canonical DFA

Myhill-Nerode Theorem: Overview

- Every language *L* has a "canonical" deterministic automaton accepting it.
 - Every other DA for L is a "refinement" of this canonical DA.
 - There is a unique DA for *L* with the minimal number of states.

- Holds for any *L* (not just regular *L*).
- L is regular iff this canonical DA has a finite number of states.
- There is an algorithm to compute this canonical DA from any given finite-state DA for *L*.

DA for any language

Note that every language L has DA accepting it (we call this the "free" DA for L).

The free DA for $L = \{a^n b^n \mid n \ge 0\}$:

Illustrating "refinement" of DA: Example 0

- Replicate each state in the first automaton some number of times, and add an edge labelled a from p_i (a copy of state p) to q_j provided δ(p, a) = q. Then "split" DFA accepts the same language.
- Conversely, every DA for L is a "splitting" of the canonical DA for L.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Illustrating "refinement" of DA: Example 1

Every DA for L is a "refinement" of this canonical DA:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Illustrating "refinement" of DA: Example 2

Every DA for L is a "refinement" of this canonical DA:

Myhill-Nerode Theorem

Canonical equivalence relation \equiv_L on A^* induced by $L \subseteq A^*$:

Theorem (Myhill-Nerode)

L is regular iff \equiv_L is of finite index (that is has a finite number of equivalence classes).

Describe the equivalence classes for L = "Odd number of a's".

Describe precisely the equivalence classes of \equiv_L for the language $L \subseteq \{a, b\}^*$ comprising strings in which the 2nd last letter is a *b*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Describe precisely the equivalence classes of \equiv_L for the language $L \subseteq \{a, b\}^*$ comprising strings in which the 2nd last letter is a *b*.

ε, a, .*aa	b, . * ab
. * bb	. * ba

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Exercise 3

Describe the equivalence classes of \equiv_L for the language $L = \{a^n b^n \mid n \ge 0\}.$

Describe the equivalence classes of \equiv_L for the language $L = \{a^n b^n \mid n \ge 0\}.$

・ロト・日本・モート モー うへぐ

Describe the equivalence classes of \equiv_L for the language $L = \{a^n b^n \mid n \ge 0\}.$

Note: The natural deterministic PDA for L gives this DA.

Myhill-Nerode (MN) relations for a language

- An MN relation for a language *L* on an alphabet *A* is an equivalence relation *R* on *A*^{*} satisfying
 - **1** R is right-invariant (i.e. $xRy \implies xaRya$ for each $a \in A$.)
 - **2** *R* refines (or "respects") *L* (i.e. $xRy \implies x, y \in L \text{ or } x, y \notin L$).

Deterministic Automata for L and MN relations for L

DA for L and MN relations for L are in 1-1 correspondence (they represent eachother).

Maps $\mathcal{A} \mapsto \mathcal{R}_{\mathcal{A}}$ and $\mathcal{A}_{R} \leftarrow \mathcal{R}$ are inverses of eachother, is inverses $\mathcal{A} \mapsto \mathcal{R}_{\mathcal{A}}$ and $\mathcal{A}_{R} \leftarrow \mathcal{R}$ are inverses of eachother.

Example DA and its induced MN relation

L is "Odd number of a's":

Deterministic Automata for L and MN relations for L

DA (with no unreachable states) for L and MN relations for L are in 1-1 correspondence.

Maps $\mathcal{A} \mapsto \mathcal{R}_{\mathcal{A}}$ and $\mathcal{A}_{R} \leftarrow \mathcal{R}$ are inverses of eachother, is inverses $\mathcal{A} \mapsto \mathcal{R}_{\mathcal{A}}$ and $\mathcal{A}_{R} \leftarrow \mathcal{R}$ are inverses of eachother.

Equivalence relations and Refinement

An equivalence relation R on a set X refines another equivalence relation S on X if for each $x, y \in X$, $xRy \implies xSy$.

Exercise: Consider the relations R: "equal mod 2" and S: "equal mod 4". Which refines which? Picture R and S.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Any MN-relation for L refines the relation \equiv_L

Lemma

Let L be any language over an alphabet A. Let R be any MN-relation for L. Then R refines \equiv_L .

Any MN-relation for L refines the relation \equiv_L

Lemma

Let L be any language over an alphabet A. Let R be any MN-relation for L. Then R refines \equiv_L .

Proof: To prove that xRy implies $x \equiv_L y$. Suppose $x \not\equiv_L y$. Then there exists z such that (WLOG) $xz \in L$ and $yz \notin L$. Suppose xRy. Since its an MN relation for L, it must be right invariant; and hence xzRyz. But this contradicts the assumption that R respects L.

Any MN-relation for L refines the relation \equiv_L

Lemma

Let L be any language over an alphabet A. Let R be any MN-relation for L. Then R refines \equiv_L .

Proof: To prove that xRy implies $x \equiv_L y$. Suppose $x \not\equiv_L y$. Then there exists z such that (WLOG) $xz \in L$ and $yz \notin L$. Suppose xRy. Since its an MN relation for L, it must be right invariant; and hence xzRyz. But this contradicts the assumption that R respects L.

As a corollary we have:

Theorem (Myhill-Nerode)

L is regular iff \equiv_L is of finite index (that is has a finite number of equivalence classes).

Canonical DA for L

- We call \mathcal{A}_{\equiv_L} the "canonical" DA for L.
- In what sense is \mathcal{A}_{\equiv_L} canonical?
 - Every other DA for L is a refinement of \mathcal{A}_{\equiv_L} .
 - A is a refinement of B if there is a stable partitioning ~ of A such that quotient of A under ~ (written A/~) is isomorphic to B.
 - Stable partitioning of $\mathcal{A} = (Q, s, \delta, F)$ is an equivalence relation \sim on Q such that:
 - $p \sim q$ implies $\delta(p, a) \sim \delta(q, a)$.
 - If $p \sim q$ and $p \in F$, then $q \in F$ also.
 - Note that if \sim is a stable partitioning of $\mathcal{A},$ then \mathcal{A}/\sim accepts the same language as $\mathcal{A}.$

A stable partitioning shown by pink and light pink classes, and below, the quotiented automaton:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

Proving canonicity of $\mathcal{A}_{=,i}$

Let \mathcal{A} be a DA for L with no unreachable states. Then $\mathcal{A}_{\equiv_{I}}$ represents a stable partitioning of \mathcal{A} . (Use the refinement of \equiv_I by the MN relation R_A .)

e	а
ааа	аа

Stable partitioning pprox

- Let $\mathcal{A} = (Q, s, \delta, F)$ be a DA for L with no unreach. states.
- The canonical MN relation for L (i.e. ≡_L) induces a "coarsest" stable partitioning ≈_L of A given by

$$p \approx_L q$$
 iff $\exists x, y \in A^*$ such that $\widehat{\delta}(s, x) = p$ and $\widehat{\delta}(s, y) = q$,
with $x \equiv_L y$.

 \bullet Define a stable partitioning \approx of ${\cal A}$ by

 $p \approx q \text{ iff } \forall z \in A^*: \ \widehat{\delta}(p,z) \in F \text{ iff } \widehat{\delta}(q,z) \in F.$

Example of \approx partitioning relation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stable partitioning pprox is coarsest

Claim: \approx coincides with \approx_L .

 $\approx_L = \approx$.

Proof:

$$p \not\approx q \text{ iff } \exists x, y, z : \widehat{\delta}(s, x) = p, \ \widehat{\delta}(s, y) = q, \text{ and}$$

 $\widehat{\delta}(p, z) \in F \text{ but } \widehat{\delta}(q, z) \notin F.$
iff $p \not\approx_L q.$

Algorithm to compute pprox for a given DFA

Input: DFA $\mathcal{A} = (Q, s, \delta, F)$. Output: \approx for \mathcal{A} .

- Initialize entry for each pair in table to "unmarked".
- **2** Mark (p, q) if $p \in F$ and $q \notin F$ or vice-versa.
- Scan table entries and repeat till no more marks can be added:
 - If there exists unmarked (p, q) with a ∈ A such that δ(p, a) and δ(q, a) are marked, then mark (p, q).

• Return \approx as: $p \approx q$ iff (p, q) is left unmarked in table.

Run minimization algorithm on DFA below:

Run minimization algorithm on DFA below:

Run minimization algorithm on DFA below:

Run minimization algorithm on DFA below:

Correctness of minimization algorithm

Claim: Algo always terminates.

- n(n-1)/2 table entries in each scan, and at most n(n-1)/2 scans.
- In fact, number of scans in algo is $\leq n$, where n = |Q|.
 - Consider modified step 3.1 in which mark check is done wrt the table at the end of previous scan.
 - 2 Argue that at end of *i*-th scan algo computes \approx_i , where

 $p \approx_i q \text{ iff } \forall w \in A^* \text{ with } |w| \leq i : \widehat{\delta}(p, w) \in F \text{ iff } \widehat{\delta}(q, w) \in F.$

- Observe that ≈_{i+1} strictly refines ≈_i, unless the algo terminates after scan i + 1. So modified algo does at most n scans.
- Both versions mark the same set of pairs. Also if modified algo marks a pair, original algo has already marked it.

Correctness of minimization algorithm

Claim: Algo marks (p, q) iff $p \not\approx q$.

● (⇒) ● (⇐)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @