Automata-based decision procedure for Presburger
Logic

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

25 August 2016

Outline

@ Presburger Logic
© Automata-based procedure

© Decision Procedure

Q@ Summary

Presburger Logic

Presburger Logic

First-Order logic of (N, <, +).
Interpreted over N = {0,1,2,3,...}.
What you can say:

X+2y <z+1, Ixp, Vxp, 2, A, V.

Examples:
Q YxVy((x <y) = 3Fz(x <z <y)) (Also in FO(<)).
@ Solutions to a system of linear inequalities:
IxJy(x+2y <1Ax=y).
© “Every number is odd or even”: VxJy(x =2y V x =2y +1).

Studied by Mojzesz Presburger, who gave a sound and
complete axiomatization, as well as a decision procedure for
validity, circa 1929.

Presburger Logic

Problems to solve

Questions:
@ Is there an algorithm to decide if a given Presburger logic
sentence is true or not (validity problem)?

@ Given a Presburger logic formula ¢(x,y), do there exist
natural numbers x and y satisfying ¢ (satisfiability problem)?

Presburger Logic

Presburger Logic more formally

@ Terms t are of the form:
0|1 |x|y|t+t
e Atomic formulas (f) are of the form:
t=tlt<t|t<t] ...
e General formulas (¢):

flopleVvel|lpeAp]|3xe | Vxp.

Automata-based procedure

Overall idea

@ Represent interpretation of variables as (rows of) binary

strings
x 001111
y 100011
z 011100

o Construct automata over such words, that accept all satisfying
assignments of the variables, for atomic formulas.

@ Use closure properties of automata to inductively construct
automata for more complex formulas.

Automata-based procedure

Representing numbers as binary strings

@ Represent the number 3 by “011" or “0011" or “00011" etc.
@ The automata will read the strings from right to left.

@ Will read a tuple of bits: For example for the formula
x <2y + 1 it will read inputs from the alphabet

{01}

which we represent as:

(2):(2)-(e)(1)

@ Thus, automaton constructed for a given formula will accept
the reverse of actual interpretations.

Automata-based procedure

Automaton for x +2y — 3z =1

Accepting run on:

0 10 1
1 10 0
XE: Og ;000 0 10 1
y(=2): 010 1 0
z(=1): 001 0 _ 1
{ =)i { { |
x(=15): 001111 \/ 0 A 0 N
y(=35): 100011 11 0 0
z(=28): 011100 o 1 o 1
1
0
. 0 1 1 0 01
but none on: o 1 008 o1
0 1 N 1 TN 0 1
x(=1): 001 1) /\k\l)=
— \/ —
y(=2): o010 U |
z(=1): 001 1 | 0

oo
[}

Automata-based procedure

Construction for atomic formulas: Idea

Consider formula x +2y — 3z = 1.

x 001111
y 100011
z 011100

Keep track of the weighted sum needed in the future to reach a
weighted sum of b.

0 0
—M m M
T T T T A T T T T T T T T
1 0
-6 -5 -4 -3 -2 -1 0o 1 o 2 4 5 6
N AL

Automata-based procedure

Construction for atomic formulas

Consider formula x + 2y — 3z = 1.

x 001111
y 100011
z 011100

@ In general for formula a;x3 4+ axxo + - - - + apx, = b, with
aj € Z:
o Begin with a state labelled b.
o On reading bit vector (61,...,6,)
o Check if (161 + -+ + ay0,) = b (mod 2).

e Move to state labelled M.

o Make state with label 0 as only final state.

Automata-based procedure

Bounded state claim

The number of states is bounded by 2M + 1 where

M = max(|b|, |a1] + - - - + |an]).

The “remaining” weighted sum is always in the interval [-M, M].
Observe that the remaining weighted sum is an order less (the
place value of bits goes down by a factor of 2).

Automata-based procedure

@ Handling inequalities:

aixy + axxo + -+ + apx, < b.

o Replace by 3z(a1x1 + - -+ + anx, + z = b).
e Another approach:
o Begin with initial state label b
o From state ¢ on input (61,...,60,) go to state

Cc— (3161 +---+ anen)
L .)
@ and make all states with labels ¢ > 0, final.

o State labels are still in the range [-M, M].
o Correctness?

@ Use closure under intersection (for A), union (for V),
complement (for =), and geometric projections (for 3), to
inductively construct automaton for ¢.

Automata-based procedure

Correctness of construction

@ Argue the basic property that for any word w € ({0,1}")*,
the automaton A, accepts w starting from state c iff the
weighted sum of w is ¢. That is:

arki+---+ apnk, = ¢,

where w represents the numbers kq, ..., ky.

@ Proof by induction on length of w.

Decision Procedure

Deciding the logical questions

Given a Presburger logic formula ¢ we contruct the automaton A,
as described, which accepts all the satisfying assignments that
make ¢ true.

e If ¢ is a sentence (no free variables), then A, can be viewed
as running on a dummy single-letter alphabet {a}. Then ¢ is
valid iff L(A,) = a™. This can be checked algorithmically, by
complementing A, intersecting with A,+ and checking for
emptiness.

o If ¢ has free variables, then ¢ is satisfiable iff L(A,) accepts a
non-empty word. Again this can be algorithmically checked in
linear time in size of A,.

Summary

Summary

@ Another application of automata-theory to solve a problem in
logic.

@ Automata approach gives us a convenient representation of
the set of all satisfying assignments for a Presburger formula.

@ Automata-based approach can be expensive (tower of
exponentials), but more efficient decision procedures are
known (triple exponential).

	Presburger Logic
	Automata-based procedure
	Decision Procedure
	Summary

