▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

# Automata-based decision procedure for Presburger Logic

### Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

25 August 2016













### Presburger Logic

- First-Order logic of  $(\mathbb{N}, <, +)$ .
- Interpreted over  $\mathbb{N} = \{0, 1, 2, 3, \ldots\}.$
- What you can say:

$$x + 2y < z + 1$$
,  $\exists x \varphi$ ,  $\forall x \varphi$ ,  $\neg$ ,  $\land$ ,  $\lor$ .

#### • Examples:

**2** Solutions to a system of linear inequalities:  $\exists x \exists y (x + 2y \le 1 \land x = y).$ 

- So "Every number is odd or even":  $\forall x \exists y (x = 2y \lor x = 2y + 1)$ .
- Studied by Mojzesz Presburger, who gave a sound and complete axiomatization, as well as a decision procedure for validity, circa 1929.

### Problems to solve

### Questions:

- Is there an algorithm to decide if a given Presburger logic sentence is true or not (validity problem)?
- Given a Presburger logic formula φ(x, y), do there exist natural numbers x and y satisfying φ (satisfiability problem)?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Presburger Logic more formally

• Terms t are of the form:

$$0 \mid 1 \mid x \mid y \mid t + t$$

• Atomic formulas (f) are of the form:

$$t = t \mid t < t \mid t \leq t \mid \ldots$$

• General formulas ( $\varphi$ ):

$$f \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x \varphi \mid \forall x \varphi.$$

## Overall idea

 Represent interpretation of variables as (rows of) binary strings

x 001111y 100011z 011100

- Construct automata over such words, that accept all satisfying assignments of the variables, for atomic formulas.
- Use closure properties of automata to inductively construct automata for more complex formulas.

### Representing numbers as binary strings

- Represent the number 3 by "011" or "0011" or "00011" etc.
- The automata will read the strings from right to left.
- Will read a tuple of bits: For example for the formula x ≤ 2y + 1 it will read inputs from the alphabet

$$\{0,1\}^2$$

which we represent as:

$$\left(\begin{array}{c}0\\0\end{array}\right), \left(\begin{array}{c}0\\1\end{array}\right), \left(\begin{array}{c}1\\0\end{array}\right), \left(\begin{array}{c}1\\1\end{array}\right).$$

• Thus, automaton constructed for a given formula will accept the reverse of actual interpretations.

### Automaton for x + 2y - 3z = 1

### Accepting run on:

| x (= 0):   | 000    |
|------------|--------|
| ( )        |        |
| y (= 2):   | 010    |
| z(=1):     | 001    |
|            |        |
| x (= 15):  | 001111 |
| y (= 35) : | 100011 |
| z(=28)     | 011100 |

#### but none on:

$$x (= 1) : 001$$
  
 $y (= 2) : 010$   
 $z (= 1) : 001$ 



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### Construction for atomic formulas: Idea

Consider formula x + 2y - 3z = 1.

x 001111
y 100011
z 011100

Keep track of the weighted sum needed in the future to reach a weighted sum of *b*.



## Construction for atomic formulas

Consider formula x + 2y - 3z = 1.

- x 001111y 100011z 011100
- In general for formula  $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$ , with  $a_i \in \mathbb{Z}$ :
  - Begin with a state labelled *b*.
  - On reading bit vector  $(\theta_1, \ldots, \theta_n)$ 
    - Check if  $(a_1\theta_1 + \cdots + a_n\theta_n) = b \pmod{2}$ .
    - Move to state labelled  $\frac{b-(a_1\theta_1+\cdots+a_n\theta_n)}{2}$ .
  - Make state with label 0 as only final state.

### Bounded state claim

#### Claim

The number of states is bounded by 2M + 1 where

$$M = \max(|b|, |a_1| + \cdots + |a_n|).$$

The "remaining" weighted sum is always in the interval [-M, M]. Observe that the remaining weighted sum is an order less (the place value of bits goes down by a factor of 2).

Handling inequalities:

$$a_1x_1+a_2x_2+\cdots+a_nx_n\leq b.$$

• Replace by 
$$\exists z(a_1x_1 + \cdots + a_nx_n + z = b)$$
.

- Another approach:
  - Begin with initial state label b
  - From state c on input  $(\theta_1, \ldots, \theta_n)$  go to state

$$\lfloor \frac{c - (a_1\theta_1 + \cdots + a_n\theta_n)}{2} \rfloor$$

- and make all states with labels  $c \ge 0$ , final.
- State labels are still in the range [-M, M].
- Correctness?
- Use closure under intersection (for ∧), union (for ∨), complement (for ¬), and geometric projections (for ∃), to inductively construct automaton for φ.

### Correctness of construction

 Argue the basic property that for any word w ∈ ({0,1}<sup>n</sup>)<sup>+</sup>, the automaton A<sub>φ</sub> accepts w starting from state c iff the weighted sum of w is c. That is:

$$a_1k_1+\cdots+a_nk_n=c,$$

where *w* represents the numbers  $k_1, \ldots, k_n$ .

• Proof by induction on length of w.

### Deciding the logical questions

Given a Presburger logic formula  $\varphi$  we contruct the automaton  $\mathcal{A}_{\varphi}$  as described, which accepts all the satisfying assignments that make  $\varphi$  true.

- If φ is a sentence (no free variables), then A<sub>φ</sub> can be viewed as running on a dummy single-letter alphabet {a}. Then φ is valid iff L(A<sub>φ</sub>) = a<sup>+</sup>. This can be checked algorithmically, by complementing A<sub>φ</sub>, intersecting with A<sub>a<sup>+</sup></sub> and checking for emptiness.
- If φ has free variables, then φ is satisfiable iff L(Aφ) accepts a non-empty word. Again this can be algorithmically checked in linear time in size of Aφ.

## Summary

- Another application of automata-theory to solve a problem in logic.
- Automata approach gives us a convenient representation of the set of all satisfying assignments for a Presburger formula.
- Automata-based approach can be expensive (tower of exponentials), but more efficient decision procedures are known (triple exponential).