
Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Languages defined by a first order logic over an
alphabet

Ishan Agarwal Sayantan Khan

Indian Institute of Science

Friday 16th September, 2016

1 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Outline

1 Ways of defining a language
First order logic over an alphabet
Counter free languages and automata
Temporal logic over an alphabet

2 On the of equivalence of the three classes of languages
The Equivalence Theorem
Temporal logic definable implies first order logic definable
First order definable implies counter free
Counter free implies temporal logic definable

2 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

First order logic over an alphabet Σ

Sentences in this logic assign True/False values to elements of
Σ∗.

The atomic predicates in this logic are <, which is a binary
predicate, and Qk for each k ∈ Σ, which is a unary predicate.

One can make larger formulae using the boolean connectives,
namely ¬, ∧, and ∨.

One can also make formulae of the form ∀xψ or ∃xψ, where
ψ is a first order formula, and x is a variable in the domain,
i.e. a subset of natural numbers.

3 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Interpreting the first order logic over Σ∗

If w ∈ Σ∗, then the domain over which the variables take
value is the set {0, 1, . . . , |w | − 1}.
Qa(x) is true if the letter at position x is a (the first letter is
at position 0).

x < y is true if x < y when x and y are interpreted as natural
numbers.

∀xψ is true if ψ(x) is true for all x ∈ {0, 1, . . . , |w | − 1}. ∃xψ
is interpreted in an analogous manner.

For a given sentence ψ, the subset of Σ∗ for which the
sentence evaluates to True is the language defined by ψ.

Theorem (Corollary of Büchi’s theorem)

A language defined by a first order logical sentence is regular.

4 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Counter free languages and automata

A DFA has a counter if there exist states q0, q1, . . . qn−1,
where n ≥ 2, such that for some word w ∈ Σ∗,
δ̂(qi ,w) = qi+1 for 0 ≤ i ≤ n − 2 and δ̂(qn−1,w) = q0.

A regular language is counter free if its minimal DFA does not
have a counter.

5 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Temporal logic over an alphabet Σ

Atomic predicates in this logic are > (True), ⊥ (False), and a
for each a ∈ Σ.

Larger formulae are made using the boolean connectives ¬, ∧,
and ∨.

One can also use temporal modalities like X (next), F
(eventually), and U (until) to get formulae of the form Xψ,
Fψ, or φUψ.

6 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Interpreting temporal logic over Σ∗

> is satisfied by all words in Σ∗ and ⊥ is satisfied by no word
in Σ∗.

Given a word u ∈ Σ∗, u(0) is the first letter in the word. The
atomic predicate a is satisfied by u if u(0) = a.

Given a word u, u(i , ∗) is the suffix of u obtained by
truncating the first i letters. A word u satisfies Xψ if u(1, ∗)
satisfies ψ.

Given a word u, u satisfies Fψ if for some i > 0, u(i , ∗)
satisfies ψ.

φUψ is satisfied by a word u if there exists 0 < i < |u| such
that for all 0 < j < i , u(j , ∗) satisfies φ and u(i , ∗) satisfies ψ.

7 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

The Equivalence Theorem

Theorem (CF ≡ FO ≡ TL)

Given a language L over an alphabet Σ, L is counter free iff L is
defined by a sentence in first order logic over Σ, and L is defined
by a sentence in first order logic iff it is defined by a sentence in
temporal logic.

8 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Outline of proof

We will show that a language defined by a sentence in TL can
be defined by a sentence in FOL. Then we’ll show a language
defined by an FOL sentence is counter free. And finally, we’ll
show a counter free language can be defined by a sentence in
TL.

To show TL =⇒ FOL, we’ll inductively define a way of
translating a TL sentence to an FOL sentence that defines the
same language.

To show FOL =⇒ CF, we’ll adapt the proof of Büchi’s
theorem, and show that if we restrict ourselves to first order
quantifiers, we indeed get a counter free automaton.

To show CF =⇒ TL, we’ll induct on |Q|, where Q is the
state space of DFA for the language, and also induct on |Σ|,
where Σ is the alphabet.

9 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Translating TL atomic predicates to FOL

We can translate > into FOL by writing a tautology:
∀x(x = x). Similarly, ⊥ gets translated to ¬∀x(x = x).

For a ∈ Σ, the predicate a in TL is satisfied by a word if the
first letter is a. Translating that into FOL gives us
∃x(¬∃y(y < x) ∧ Qa(x)).

10 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Translating Xψ to FOL

To translate Xψ, we need to come up with an FOL sentence
that satisfies a word u iff the FOL translate χ of ψ is satisfied
by the word u(1, ∗). We need to modify χ somehow such that
for all quantifiers in χ, the domain is {1, 2, . . . , |u| − 1}
instead of {0, 1, . . . , |u| − 1}.
Consider the following FOL sentence: ∃f (¬∃y(y < f) ∧ χ′),
where χ′ is obtained by modifying each quantifier in χ in the
following manner:

∃xψ is replaced by ∃x((x > f) ∧ ψ′).
∀xψ is replaced by ∀x((x ≤ f) ∨ ψ′).

We’ll call this transformation of χ to χ′ as suffixing χ by f .

11 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Translating Fψ to FOL

Given a first order translation χ of the temporal logic formula
ψ, we write Fψ in a manner similar to the translation of Xψ.

The sentence ∃f (χ′), where χ′ is χ suffixed by f .

12 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Translating φUψ to FOL

A similar technique can be used to translate φUψ to FOL.

Given TL formulae φ and ψ, with their first order translations
being ρ and χ respectively, the translation for φUψ is

∃f ((∀g(g ≥ f) ∨ ρ′) ∧ χ′)

Here, ρ′ is obtained by suffixing ρ by g , and χ′ is obtained by
suffixing χ by f .

13 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Showing FOL =⇒ CF

The automata corresponding to the atomic predicates x < y ,
and Qa(x) are counter free.

Counter free languages are closed under finite union,
intersection, and complementation. This shows if the
automaton for ψ and φ is counter free, then the automatons
for ψ ∧ φ, ψ ∨ φ, and ¬ψ are also counter free.

All we need to show now is that the automaton for ∃xψ is
counter free if the automaton for ψ is counter free. The
analogous result for ∀xψ will follow because
∀xψ ⇐⇒ ¬∃x¬ψ.

14 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Showing automaton for ∃xψ is counter free

In general, counter free languages are not closed under
geometric projections.

However, when constructing automaton for ∃xψ, the row
being projected away has the property that it has exactly one
1, and the other letters are 0.

Given a DFA D for ψ, we construct an NFA for ∃xψ by taking
two copies D1 and D2 of D, and keeping transitions within D1

to be the transition corresponding to x = 0, and do the same
for D2. We keep a transition from D1 to D2 which
corresponds to the transition that happens when x = 1. The
start state of the NFA is the start state of D1, and the final
states are the final states of D2.

15 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Example of NFA construction for ∃xψ

astart b

(m, 1)

(m, 0)

(m, 0)

(m, 1)

Figure: DFA for some predicate ψ over the alphabet {m} × {0, 1}.

16 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Example of NFA construction for ∃xψ

a1start

a2

b1

b2

m

m

m

m

m

m

Figure: NFA for ∃xψ obtained by projecting away the x row.

17 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Showing automaton for ∃xψ is counter free

We need to show if the automaton for ψ is counter free, then the
NFA obtained for ∃xψ by the described method is also counter free.
The proof follows from the following lemma:

Lemma

A language L is not counter free iff there exist words u, v , and w ,
and an increasing sequence of natural numbers k1, k2, . . . such that
uvkiw belongs to L for odd i and does not belong to L for even i .

18 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Using pre-automata

A pre-automaton is an automaton without specially
distinguished start and final states.

Let Q be the set of states of a pre-automaton A.A
transformation of a string u, relative to the pre-automaton A,
is denoted by uA and is a map from Q to Q given by
uA(q) = δ̂(q, u).

Define SA = {uA : u ∈ Σ∗}. This is called the transformation
semi-group of A.

We also need some notion of a pre-automaton accepting a
language. We define LAα = {u ∈ Σ+ : uA = α}. Here α is a
map from Q to Q.

We will now show that for all A which arise from counter free
automata, and all α ∈ SA, any language in LAα is expressible in
temporal logic. This is enough to show the required
equivalence.

19 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Proof by induction

We first show that if α is a surjection then it must be the
identity if A is counter free.

For single state automata we are done.

We now show the result using automata with same state
number but smaller alphabet (LBβ), as well as assuming the
result for lower state number but a much larger alphabet size
(LCγ).

The proof proceeds by induction on both |Q| and |Σ|.

20 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Lemmas

We know by induction hypothesis that for all β in SB and all
γ in SC , LBβ and LCγ are expressible in temporal logic. We now

write LAα in terms of unions and intersections of LBβ , LCγ , Σ∗,
T ∗ etc. We can show by induction that these unions and
intersections are all expressible in temporal logic.

Thus we use the fact that the terms in which we finally
express LAα are indeed Temporal logic expressible but these are
easy to show by straight-forward inductions.

21 / 22

Ways of defining a language On the of equivalence of the three classes of languages Conclusion

Conclusion

We have shown that TL implies FOL implies CF implies TL.
Thus we have proved the equivalence of all three classes.

Thus we can use TL in situations where it provides a more
intuitive way of proceeding without any loss of expressive
power from FOL.

Further we see that while dealing with statements in FOL or in
FOL fragments of other logics, we can safely assume we have
a counter free automata for any regular language as counters
do not add any expressive power under these conditions.

In some sense we see that allowing counters in automata is a
trade-off for gaining expressive power, for example if we have
an MSO sentence that is not in the first order fragment it
cannot be represented by a CFA.

22 / 22

Appendix

For Further Reading

Büchi, J.R.
On a decision method in restricted second order arithmetic
Proc. International Congress on Logic, Method, and
Philosophy of Science

Thomas Wilke
Classifying Discrete Temporal Properties
Lecture Notes in Computer Science, Volume 1563, pp 32-46

23 / 22

	Ways of defining a language
	First order logic over an alphabet
	Counter free languages and automata
	Temporal logic over an alphabet

	On the of equivalence of the three classes of languages
	The Equivalence Theorem
	Temporal logic definable implies first order logic definable
	First order definable implies counter free
	Counter free implies temporal logic definable

