Reachability in Pushdown Systems

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

03 November 2016

Outline

2 Definitions

- 8 Reachability in Pushdown Systems
- Saturation algorithm for Pre*
- 5 Correctness of saturation algo

Modelling programs with procedures

▲□▶▲舂▶▲≧▶▲≧▶ 差 のへの

Pushdown system induced by program

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Pushdown Systems

A pushdown system is of the form

$$\mathcal{P} = (\mathcal{P}, \Gamma, \Delta)$$

where

- P is a finite set of states
- Γ is the stack alphabet,
- $\Delta \subseteq P \times \Gamma \times P \times \Gamma^*$ is the non-deterministic transition relation.
 - Each transition is of the form $pa \rightarrow q\gamma$.

A pushdown system is thus like a PDA but with no input and no initial/final states.

Can model several useful classes of systems

- PDA with input abstracted away
- Programs with finite state but with procedure calls (or "Boolean Programs")

Example Pushdown System

Sequence of configurations reachable from $p_2 cbba$:

 $p_2cbba \stackrel{1}{\Rightarrow} p_0bba \stackrel{1}{\Rightarrow} p_0bba \stackrel{1}{\Rightarrow} p_0ba \stackrel{1}{\Rightarrow} p_0a \stackrel{1}{\Rightarrow} p_1ba \stackrel{1}{\Rightarrow} p_2caa \stackrel{1}{\Rightarrow} p_0baa$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Configuration graph induced by a pushdown system

 $\mathcal P$ induces a (possibly infinite) graph whose

- nodes are configurations of *P* represented by strings in *P* · Γ*
- edges are $c \to c'$ iff $c \stackrel{1}{\Rightarrow} c'$ in \mathcal{P} .

Given a set of configurations C of \mathcal{P} we can define

$$Pre^*(C) = \{c \mid \exists c' \in C : c \stackrel{*}{\Rightarrow} c'\}.$$

And similarly

$$Post^*(C) = \{c' \mid \exists c \in C : c \stackrel{*}{\Rightarrow} c'\}.$$

・ロト・西ト・ヨト・ヨー シック

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Reachability in Pushdown Systems

Theorem (Büchi, 1964)

Let \mathcal{P} be a pushdown system, and let C be a regular set of configurations of \mathcal{P} . Then $\operatorname{Pre}^*(C)$ and $\operatorname{Post}^*(C)$ are also regular sets. Moreover given an NFA for C we can construct an NFA accepting $\operatorname{Pre}^*(C)$ and $\operatorname{Post}^*(C)$ respectively.

Saturation algorithm for Pre*

Let $\mathcal{P} = (\mathcal{P}, \Gamma, \Delta)$ be a pushdown system, and *C* be a set of configurations of \mathcal{P} .

A *P*-automaton for *C* is an NFA $\mathcal{A} = (Q, \Gamma, P, \Delta', F)$ that accepts from an initial state $p \in P$ exactly the words *w* such that $pw \in C$.

- The control states of \mathcal{P} are used as initial states of \mathcal{A} .
- \mathcal{A} must not have a transition to an initial state.

Example *P*-automaton for $\{p_0 aac\}$:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example P-automaton

Example *P*-automaton for $\{p_0aa\}$:

Saturation algo for Pre*

Input: Pushdown system $\mathcal{P} = (P, \Gamma, \Delta)$, and *P*-automaton \mathcal{A} for *C*. Output: $\overline{\mathcal{A}}$ accepting $Pre^*(C)$.

• Repeat until no more new edges can be added to \mathcal{R} :

• If $pa \to p'v \in \Delta$ and $p' \stackrel{v}{\to} q$ in \mathcal{A} , then add $p \stackrel{a}{\to} q$ to \mathcal{A} .

Run saturation algo for Pre*

Example pushdown system

p ₀ a	\rightarrow	p₁ba
p1b	\rightarrow	p2ca
р ₂ с	\rightarrow	p_0b
p_0b	\rightarrow	$p_0\epsilon$.

P-automaton for $C = \{p_0 aa\}$:

Run saturation algo for Pre*

Example pushdown system

$o_0 a$	\rightarrow	p₁ba
o ₁ b	\rightarrow	p ₂ ca
0 ₂ C	\rightarrow	p_0b
b_0b	\rightarrow	<i>p</i> ₀ <i>ε</i> .

P-automaton for $C = \{p_0 aa\}$:

Saturated *P*-automaton:

Correctness

- $Pre^*(C) \subseteq L(\overline{\mathcal{A}}).$
 - Prove by induction on *n* that if $pw \stackrel{n}{\Rightarrow} p'w' \in C$ then $pw \in L(\overline{\mathcal{A}})$.
- $L(\overline{\mathcal{A}}) \subseteq Pre^*(C)$.
 - Let \mathcal{R}_i be *P*-automaton after *i*-th step of algo.
 - Claim 1: If $pw \in L(\mathcal{A}_i)$ then $pw \stackrel{*}{\Rightarrow} p'w' \in Pre^*(C)$.
 - Proof by induction on *i* gets into rough weather.
 - Strengthen Claim to: If $p \xrightarrow{w} q$ in \mathcal{R}_i then there exists p'w' such that $p' \xrightarrow{w'} q$ in \mathcal{R} and $pw \xrightarrow{*} p'w'$.

 Observe that strengthened Claim implies Claim 1 and completes proof.

Proof of Claim

Claim

If $p \xrightarrow{w} q$ in \mathcal{A}_i then there exists p'w' such that $p' \xrightarrow{w'} q$ in \mathcal{A} and $pw \xrightarrow{*} p'w'$.

Proof: By induction on *i*. For the induction step, suppose we added the edge (p_1, a, q_1) in \mathcal{R}_{i+1} due to the PDA transition $p_1 a \rightarrow p_2 v$. Suppose $p \xrightarrow{w} q$ in \mathcal{R}_{i+1} .

Proof of Claim - II

If this path does not use the new edge, it is a path in \mathcal{R}_i itself and by induction hypothesis we are done. If it uses the new edge 1 or more times consider the representative case of when it uses it exactly once. Say the path is $p \xrightarrow{u_1} p_1 \xrightarrow{a} q_1 \xrightarrow{u_2} q$.

- By IH there has to be a path $p_3 u_3$ to p_1 in \mathcal{A} such that $pu_1 \stackrel{*}{\Rightarrow} p_3 u_3$. But since \mathcal{A} has no incoming edges to the *P*-states, we must have $p_3 = p_1$ and $u_3 = \epsilon$. So $pu_1 \stackrel{*}{\Rightarrow} p_1$.
- By IH we also have a path p₄u₄ to q in A such that p₂vu₂ ^{*}⇒ p₄u₄.
- Putting these together: $pw = pu_1 au_2 \stackrel{*}{\Rightarrow} p_1 au_2 \stackrel{1}{\Rightarrow} p_2 vu_2 \stackrel{*}{\Rightarrow} p_4 u_4$, and $p_4 u_4$ is the required p'w'.

Proof of Claim - III (General argument)

By a second induction on the number of times the path $p \stackrel{w}{\rightarrow} q$ uses the edge $p_1 \stackrel{a}{\rightarrow} q_1$, we prove that $\exists p'w'$ such that $pw \stackrel{*}{\Rightarrow} p'w'$ and $p' \stackrel{w'}{\rightarrow} q$ in \mathcal{A} . Base: If *w* does not use the new edge, it is a path in \mathcal{A}_i itself and by IH-1 we are done. Ind-step: If it uses the new edge k + 1 times, let the path be $p \stackrel{u_1}{\rightarrow} p_1 \stackrel{a}{\rightarrow} q_1$. where u_2 does not use the new edge.

- Since $p \xrightarrow{u_1} p_1$ uses the new edge k times, by IH-2 there is a path $p_3 u_3$ to p_1 in \mathcal{A} such that $pu_1 \xrightarrow{*} p_3 u_3$. But since \mathcal{A} has no incoming edge to P-states, we have $p_3 = p_1$ and $u_3 = \epsilon$. So $pu_1 \xrightarrow{*} p_1$.
- By IH-1 we also have a path p₄u₄ to q in A such that p₂vu₂ ⇒ p₄w₄.

• Thus:
$$pw = pu_1au_2 \Rightarrow p_1au_2 \Rightarrow p_2vu_2 \Rightarrow p_4u_4$$
, and p_4u_4 is the required $p'w'$.

