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Modelling programs with procedures
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void main() {

a = fact(3);

int a;

}

int fact(int x) {

int res;

if (x==1)

res = 1;

else

res = x * fact(x−1);

return res;

}
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arg

After call to fact in line 2 After call to fact in line 8

arg 2

ret addr 8

x 3

res 0
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Pushdown system induced by program

0

1

2

3

4

5

6

7

8

9

void main() {

a = fact(3);

int a;

}

int fact(int x) {

int res;

if (x==1)

res = 1;

else

res = x * fact(x−1);

return res;

}
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Pushdown Systems

A pushdown system is of the form

P = (P, Γ,∆)

where

P is a finite set of states
Γ is the stack alphabet,
∆ ⊆ P × Γ × P × Γ∗ is the non-deterministic transition relation.

Each transition is of the form pa → qγ.

A pushdown system is thus like a PDA but with no input and no
initial/final states.
Can model several useful classes of systems

PDA with input abstracted away
Programs with finite state but with procedure calls (or
“Boolean Programs”)
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Example Pushdown System

Example pushdown system P1

p0a → p1ba
p1b → p2ca
p2c → p0b
p0b → p0ε.

Diagram representation

p2

a/ba b/ca

c/b

p0 p1

b/ε

Sequence of configurations reachable from p2cbba:

p2cbba
1
⇒ p0bbba

1
⇒ p0bba

1
⇒ p0ba

1
⇒ p0a

1
⇒ p1ba

1
⇒ p2caa

1
⇒ p0baa

1
⇒ p0aa

1
⇒ · · · .
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Configuration graph induced by a pushdown system

P induces a (possibly infinite) graph whose

nodes are configurations of P represented by strings in P · Γ∗

edges are c → c′ iff c
1
⇒ c′ in P.

Given a set of configurations C of P we can define

Pre∗(C) = {c | ∃c′ ∈ C : c
∗
⇒ c′}.

And similarly

Post∗(C) = {c′ | ∃c ∈ C : c
∗
⇒ c′}.
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Reachability in Pushdown Systems

Theorem (Büchi, 1964)

Let P be a pushdown system, and let C be a regular set of
configurations of P. Then Pre∗(C) and Post∗(C) are also regular
sets. Moreover given an NFA for C we can construct an NFA
accepting Pre∗(C) and Post∗(C) respectively.

CPre∗(C) Post∗(C)
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Saturation algorithm for Pre∗

Let P = (P, Γ,∆) be a pushdown system, and C be a set of
configurations of P.
A P-automaton for C is an NFA A = (Q , Γ,P,∆′,F) that accepts
from an initial state p ∈ P exactly the words w such that pw ∈ C.

The control states of P are used as initial states of A.

A must not have a transition to an initial state.

Example P-automaton for {p0aac}:

2
a a c

p0

p1
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Example P-automaton

Example P-automaton for {p0aa}:

p2

p0

p1

a a
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Saturation algo for Pre∗

Input: Pushdown system P = (P, Γ,∆), and P-automaton A for C.
Output: A accepting Pre∗(C).

Repeat until no more new edges can be added to A:

If pa → p′v ∈ ∆ and p′
v
→ q in A, then add p

a
→ q to A.

p

p′
v

a

Return A.
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Run saturation algo for Pre∗

Example pushdown system

p0a → p1ba
p1b → p2ca
p2c → p0b
p0b → p0ε.

P-automaton for C = {p0aa}:

p2

p0

p1

a a
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Run saturation algo for Pre∗

Example pushdown system

p0a → p1ba
p1b → p2ca
p2c → p0b
p0b → p0ε.

P-automaton for C = {p0aa}:

p2

p0

p1

a a

Saturated P-automaton:

p2

p0

p1

a a

b

c

b b

a
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Correctness

Pre∗(C) ⊆ L(A).
Prove by induction on n that if pw

n
⇒ p′w′ ∈ C then

pw ∈ L(A).
L(A) ⊆ Pre∗(C).

Let Ai be P-automaton after i-th step of algo.
Claim 1: If pw ∈ L(Ai) then pw

∗
⇒ p′w′ ∈ Pre∗(C).

Proof by induction on i gets into rough weather.

Strengthen Claim to: If p
w
→ q inAi then there exists p′w′ such

that p′
w′
→ q in A and pw

∗
⇒ p′w′.

p′

p

w′

q

w

Observe that strengthened Claim implies Claim 1 and
completes proof.
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Proof of Claim

Claim

If p
w
→ q in Ai then there exists p′w′ such that p′

w′
→ q in A and

pw
∗
⇒ p′w′.

p′

p

w′

q

w

Proof: By induction on i. For the induction step, suppose we added
the edge (p1, a, q1) in Ai+1 due to the PDA transition p1a → p2v.

Suppose p
w
→ q in Ai+1.
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Proof of Claim - II
If this path does not use the new edge, it is a path in Ai itself and
by induction hypothesis we are done.
If it uses the new edge 1 or more times consider the representative
case of when it uses it exactly once. Say the path is
p

u1
→ p1

a
→ q1

u2
→ q.

By IH there has to be a path p3u3 to
p1 in A such that pu1

∗
⇒ p3u3. But

since A has no incoming edges to
the P-states, we must have
p3 = p1 and u3 = ε. So pu1

∗
⇒ p1.

By IH we also have a path p4u4 to
q in A such that p2vu2

∗
⇒ p4u4.

Putting these together: pw =

pu1au2
∗
⇒ p1au2

1
⇒ p2vu2

∗
⇒ p4u4,

and p4u4 is the required p′w′.

p2

p1

v

a
q1

p
u1

u2

u4

q

p4
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Proof of Claim - III (General argument)
By a second induction on the number of times the path p

w
→ q uses the

edge p1
a
→ q1, we prove that ∃p′w′ such that pw

∗
⇒ p′w′ and p′

w′
→ q in

A. Base: If w does not use the new edge, it is a path in Ai itself and by
IH-1 we are done. Ind-step: If it uses the new edge k + 1 times, let the
path be p

u1
→ p1

a
→ q1

u2
→ q. where u2 does not use the new edge.

Since p
u1
→ p1 uses the new edge k

times, by IH-2 there is a path p3u3 to
p1 in A such that pu1

∗
⇒ p3u3. But

since A has no incoming edge to
P-states, we have p3 = p1 and u3 = ε.
So pu1

∗
⇒ p1.

By IH-1 we also have a path p4u4 to q
in A such that p2vu2

∗
⇒ p4w4.

Thus: pw = pu1au2
∗
⇒ p1au2

1
⇒

p2vu2
∗
⇒ p4u4, and p4u4 is the required

p′w′.

p2

p1

v

a
q1

p
u1

u2

u4

q

p4
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