Undecidable problems about CFL's

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

22 November 2016

Outline

Problem (a)

Is it decidable whether a given CFG accepts a non-empty language?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem (a)

Is it decidable whether a given CFG accepts a non-empty language?

Yes, it is. We can find out which non-terminals of *G* can derive a terminal string: i.e. there exists a derivation $X \stackrel{*}{\Rightarrow} w$ for some terminal string *w*.

- Maintain a set of "marked" non-terminals. Initially $N_{marked} = \emptyset$.
- Mark all non-terminals X such that $X \to w$ is a production in G.
- Repeat untill we are unable to mark any more non-terminals:
 - Mark X if there exists a production $X \to \alpha$ such that $\alpha \in (A \cup N_{marked})^*$.
- Return "Non-emtpy" if $S \in N_{marked}$, else return "Empty."

Some Decidable/Undecidable problems about CFL's

Problems about CFL's

Problem (b)

Is it decidable whether a given CFG accepts a finite language?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problem (b)

Is it decidable whether a given CFG accepts a finite language?

Yes, it is.

- Convert G to CNF.
- Check if there is a parse tree within a height of 3n, where n is the number of non-terminals in G, that contains a pump.
 L(G) is infinite iff such a parse tree exists. (Essentially, since each basic pump is bounded by height 2n.)

Some Decidable/Undecidable problems about CFL's

Problems about CFL's

Problem (c)

Is it decidable whether a given CFG G is universal. That is, is $L(G) = A^*$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem (c)

Is it decidable whether a given CFG G is universal. That is, is $L(G) = A^*$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

No, it is undecidable (not even r.e.).

Undecidability of universality of a CFL

• We can reduce \neg HP to the problem of universality of a CFG:

 $\neg HP \leq Universality of CFG.$

• Given a TM *M* and input *x*, we can construct a CFG $G_{M,x}$ over an input alphabet Δ such that

M does not halt on x iff $G_{M,x}$ is universal (i.e. $L(G_{M,x}) = \Delta^*$).

• Hence the problem is non-r.e.

Encoding computations of M on x

Let
$$M = (Q, A, \Gamma, s, \delta, \vdash, \flat, t, r)$$
 be a given TM and let $x = a_1 a_2 \cdots a_n$ be an input to it.
We can represent a configuration of M as follows:

$$\vdash b_1 \quad b_2 \quad b_3 \quad \cdots \quad b_m \\ - \quad - \quad q \quad - \quad -$$

Thus a configuration is encoded over the alphabet $\Gamma \times (Q \cup \{-\})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Encoding computations of M on x

A computation of M on x is a string of the form

 $c_0 \# c_1 \# \cdots \# c_N \#$

such that

- Each c_i is the encoding of a configuration of M.
- 2 c_0 is (encoding of) the start configuration of M on x.

All c_i's are of same length, and maximal (in at least one config the head is at the last position).

• Each
$$c_i \stackrel{1}{\Rightarrow} c_{i+1}$$
, and

• c_N is a halting configuration (i.e. state component is t or r).

Describing Valcomp_{M,x}

The language $Valcomp_{M,x}$ over the alphabet

 $\Delta = \mathsf{\Gamma} \times (\mathsf{Q} \cup \{-\}) \cup \{\#\}$

can be described as the intersection of

- L₁ ⊆ (C · #)* where C is the set of valid encodings of configurations of M, beginning with initial config, and containing one config with a t or r state.
- L_2 which makes sure each c_i is of the same length.

•
$$L_3 = \{c_0 \# \cdots \# c_N \# \mid N \geq 1, c_i \stackrel{1}{\Rightarrow} c_{i+1}\}.$$

Hence $\neg Valcomp_{M,x} = \overline{L_1} \cup \overline{L_2} \cup \overline{L_3}$.

Claim

 $\neg Valcomp_{M,x}$ is a CFL (in fact *regular*) and given M and x, we can construct a PDA/CFG $G_{M,x}$ that accepts it.

Proof of claim

Claim

Given *M*, *x*, we can construct a PDA/CFG $G_{M,x}$ for $\neg Valcomp_{M,x}$.

- We know $\neg Valcomp_{M,x} = \overline{L_1} \cup \overline{L_2} \cup \overline{L_3}$.
- L₁ is regular, and L₂ is a CFL (L₂ = L₂^o ∩ L₂^e, and each is DCFL).
- $\overline{L_3}$ is a CFL
 - Claim: $c \stackrel{1}{\Rightarrow} d$ iff at every position *i* the 3 symbols c(i), c(i+1), c(i+2) in *c* and d(i), d(i+1), d(i+2) in *d*, are "valid" pairs of triples.
 - Example: if (s,⊢), (p,⊢, R) is a move of M then foll pair of triples is valid:

So is

Proof of claim

So is

Example: if (p, a) → (q, b, R) is a move of M then foll is invalid:

$$\left\langle \begin{array}{cccc} a & b & c & b & b & c \\ p & - & - & , & - & - & - \end{array} \right\rangle$$
$$\left\langle \begin{array}{cccc} a & b & c & & a & b & c \\ - & - & - & , & - & - & - \end{array} \right\rangle$$

- Thus there is a finite table of valid triples that we can compute based on *M*.
- Now use a (non-det) PDA to guess a config c_k and a position i in it, and accept if the triple at $c_k(i)$ and $c_{k+1}(i)$ are not valid.
- So $\overline{L_3}$ is a CFL.
- Construct a PDA/CFG $G_{M,x}$ that accepts the union of $\overline{L_1}$, $\overline{L_2}$, and $\overline{L_3}$.

Problem (d)

Is it decidable whether the intersection of two given CFG's is non-empty?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem (d)

Is it decidable whether the intersection of two given CFG's is non-empty?

No, it is undecidable. Given M and x, describe 2 PDA's that accept computations of the form:

$$c_0$$
 # c_1 # c_2 # c_3 # \cdots # c_N #

Here each shaded configuration is in reversed form.

- PDA M_1 checks that each even-numbered configuration is correctly followed by the next configuration.
- PDA M_2 checks that each odd-numbered configuration is correctly followed by the next configuration.
- In fact, a DPDA can check correct consecution of consecutive even-odd (respectively odd-even) configurations.

Other undecidable problems about CFL's

Problem (e)

Is it decidable whether the intersection of two given CFL's is a CFL?

Problem (f)

Is it decidable whether the complement of a given CFL is a CFL?

Problem (g)

Is it decidable whether a given CFL is a DCFL?

Other undecidable problems about CFL's

Problem (e)

Is it decidable whether the intersection of two given CFL's is a CFL?

Problem (f)

Is it decidable whether the complement of a given CFL is a CFL?

Problem (g)

Is it decidable whether a given CFL is a DCFL?

All undecidable. Exercise!