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3 Proof of Gödel’s theorem



Theory of Arithmetic Peano’s Proof System for Arithmetic Proof of Gödel’s theorem

Gödel’s Incompleteness Theorem

Theorem (Gödel (1931))

There cannot exist a sound and complete proof system for
arithmetic (i.e. First-Order Logic of natural numbers with addition
and multiplication (N,+, ·)).
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Arithmetic

First-order logic of (N,+, ·):

Domain is N = {0, 1, 2, . . .}.
Terms: 0, 1, 0 + 1, 1 · x , x + y , x · y , etc.

Atomic formulas: t = t

Note that relations like “<” are definable in the logic: t < t ′

is definable as ∃x(x 6= 0 ∧ t + x = t ′).

Formulas:

Atomic formulas
Quantification: ∀xϕ, ∃xϕ
Boolean combinations: ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ.
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What we can say in FO(N,+, ·)

“Integer division of x by y gives quotient q and leaves
remainder r”

intdiv(x , y , q, r)
def
= x = (q · y) + r ∧ r < y .

“y divides x”

divides(y , x)
def
= ∃q(x = q · y).

“x is prime”

prime(x)
def
= x ≥ 2 ∧ ∀y(divides(y , x) =⇒ (y = 1 ∨ y = x)).

“x is a power of 2”

power2(x)
def
= ∀p((prime(p) ∧ divides(p, x)) =⇒ p = 2).
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What we can say in FO(N,+, ·)

“Every number has a successor”

∀n∃m(m = n + 1).

“Every number has a predecessor”

∀n∃m(n = m + 1).

“There are only finitely many primes”

∃n∀p(prime(p) =⇒ p < n).

“There are infinitely many primes”

∀n∃p(prime(p) ∧ p > n).
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Theory of FO(N,+, ·)

Th(N,+, ·) is the set of sentences of FO(N,+, ·) that are true. For
example:

“Every number has a successor”

∀n∃m(m = n + 1).

belongs to Th(N,+, ·), while

“There are only finitely many primes”

∃n∀p(prime(p) =⇒ p < n).

does not.
Note that there is a mathematical definition of truth based on the
mathematical definition of the semantics of the logic.
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Peano’s Proof System for Arithmetic

Axioms:

∀x¬(0 = x + 1)
∀x∀y(x + 1 = y + 1 =⇒ x = y)

∀x(x + 0 = x)
∀x∀y∀z(x + (y + z) = (x + y) + z)

∀x(x · 0 = 0)
∀x∀y∀z(x · (y + z) = ((x · y) + (x · z)))

(ϕ(0) ∧ ∀x(ϕ(x) =⇒ ϕ(x + 1))) =⇒ ∀xϕ(x).

Other axioms like (ϕ ∧ ψ) =⇒ ϕ, ∀x(ϕ) =⇒ ϕ(17).

Inference rules like ‘Modus Ponens”

Given ϕ and ϕ =⇒ ψ, infer ψ.
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Proof

A proof of ϕ in a proof system is a finite sequence of sentences

ϕ0, ϕ1, . . . , ϕn

such that each ϕi is either an axiom or follows from two previous
ones by an inference rule, and ϕn = ϕ.
A proof system is “sound” if whatever it proves is indeed true (i.e.
in Th(N)).
A proof system is “complete” if whatever it can prove whatever is
true (i.e. in Th(N)).
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Proof of Gödel’s theorem

Gödel’s original proof was an intricate construction of an
FO(N,+, ·) sentence ϕ which (for a given proof system like
Peano’s) asserts that

“I am not provable in the given proof system”

It follows that the proof system is either unsound (if ` ϕ) or
incomplete (if 6` ϕ).

Here we will follow a subsequent proof given by Turing which
shows

¬HP ≤ Th(N).

Hence Th(N) is not even r.e. and hence there cannot be a
proof system that is sound and complete (why?).
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Encoding computations of M on x

Let M = (Q,A, Γ, s, δ,`, [, t, r) be a given TM and let
x = a1a2 · · · an be an input to it.
We can represent a configuration of M as follows:

` b1 b2 b3 · · · bm
− − q − −

Thus a configuration is encoded over the alphabet Γ× (Q ∪ {−}).
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Encoding computations of M on x

A computation of M on x is a string of the form

c0#c1# · · ·#cN#

such that

1 Each ci is the encoding of a configuration of M.
2 c0 is (encoding of) the start configuration of M on x .

` a1 a2 a3 · · · an
s − − − −

3 All ci ’s are of the same length.

4 Each ci
1⇒ ci+1, and

5 cN is a halting configuration (i.e. state component is t or r).

c0 # c2# # # # cNc3c1 #
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Basic idea

View a computation of M on x as a number whose representation
in base p ≥ |∆| looks like:

cRocRN cR2cR3

c

Now construct a sentence ϕM,x which asserts that “there is a
number n whose base-p representation encodes a valid halting
computation of M on x .”
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The sentence ϕM,x

cRocRN cR2cR3

c

Define valcompM,x(v) to be

∃c∃d( powerp(c) ∧ powerp(d)
∧ length(v , d) ∧ start(v , c)
∧ move(v , c, d) ∧ halt(v , d)).

Define ϕM,x to be

∃v valcompM,x(v).
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Expressing the components of ϕM,x

The key predicate we need is “digitp(v , d , a)”: which says that d is

a power of p (say d = pk), and in the base-p representation, the
k-th digit (from the least significant end) is a.

digitp(v , d , a)
def
= ∃u∃r(v = u · p · d + a · d + r ∧ r < d).
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