Gödel's Incompleteness Theorem

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

28 November 2016

Proof of Gödel's theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gödel's Incompleteness Theorem

Theorem (Gödel (1931))

There cannot exist a sound and complete proof system for arithmetic (i.e. First-Order Logic of natural numbers with addition and multiplication $(\mathbb{N}, +, \cdot)$).

Arithmetic

First-order logic of $(\mathbb{N}, +, \cdot)$:

- Domain is $\mathbb{N}=\{0,1,2,\ldots\}.$
- Terms: 0, 1, 0 + 1, $1 \cdot x$, x + y, $x \cdot y$, etc.
- Atomic formulas: t = t
- Note that relations like "<" are definable in the logic: t < t' is definable as ∃x(x ≠ 0 ∧ t + x = t').
- Formulas:
 - Atomic formulas
 - Quantification: $\forall x \varphi$, $\exists x \varphi$
 - Boolean combinations: $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What we can say in $FO(\mathbb{N}, +, \cdot)$

• "Integer division of x by y gives quotient q and leaves remainder r"

$$intdiv(x, y, q, r) \stackrel{\text{def}}{=} x = (q \cdot y) + r \wedge r < y.$$

• "y divides x"

$$divides(y, x) \stackrel{\text{def}}{=} \exists q(x = q \cdot y).$$

What we can say in $FO(\mathbb{N}, +, \cdot)$

• "Integer division of x by y gives quotient q and leaves remainder r"

$$intdiv(x, y, q, r) \stackrel{\text{def}}{=} x = (q \cdot y) + r \wedge r < y.$$

• "y divides x"

$$divides(y, x) \stackrel{\text{def}}{=} \exists q(x = q \cdot y).$$

• "x is prime"

What we can say in $FO(\mathbb{N}, +, \cdot)$

• "Integer division of x by y gives quotient q and leaves remainder r"

$$intdiv(x, y, q, r) \stackrel{\text{def}}{=} x = (q \cdot y) + r \wedge r < y.$$

• "y divides x"

$$divides(y, x) \stackrel{\text{def}}{=} \exists q(x = q \cdot y).$$

• "x is prime"

$$\textit{prime}(x) \stackrel{\text{def}}{=} x \geq 2 \land \forall y (\textit{divides}(y, x) \implies (y = 1 \lor y = x)).$$

What we can say in $FO(\mathbb{N}, +, \cdot)$

• "Integer division of x by y gives quotient q and leaves remainder r"

$$intdiv(x, y, q, r) \stackrel{\text{def}}{=} x = (q \cdot y) + r \wedge r < y.$$

• "y divides x"

$$divides(y, x) \stackrel{\text{def}}{=} \exists q(x = q \cdot y).$$

• "x is prime"

 $prime(x) \stackrel{\text{def}}{=} x \ge 2 \land \forall y (divides(y, x) \implies (y = 1 \lor y = x)).$

• "x is a power of 2"

What we can say in $FO(\mathbb{N}, +, \cdot)$

• "Integer division of x by y gives quotient q and leaves remainder r"

$$intdiv(x, y, q, r) \stackrel{\text{def}}{=} x = (q \cdot y) + r \wedge r < y.$$

• "y divides x"

$$divides(y, x) \stackrel{\text{def}}{=} \exists q(x = q \cdot y).$$

• "x is prime"

$$\textit{prime}(x) \stackrel{\text{def}}{=} x \ge 2 \land \forall y (\textit{divides}(y, x) \implies (y = 1 \lor y = x)).$$

• "x is a power of 2"

 $power_2(x) \stackrel{\text{def}}{=} \forall p((prime(p) \land divides(p, x)) \implies p = 2).$

What we can say in $FO(\mathbb{N}, +, \cdot)$

• "Every number has a successor"

$$\forall n \exists m (m = n + 1).$$

• "Every number has a predecessor"

$$\forall n \exists m (n = m + 1).$$

• "There are only finitely many primes"

$$\exists n \forall p(prime(p) \implies p < n).$$

• "There are infinitely many primes"

$$\forall n \exists p(prime(p) \land p > n).$$

Theory of $FO(\mathbb{N}, +, \cdot)$

 $Th(\mathbb{N}, +, \cdot)$ is the set of sentences of $FO(\mathbb{N}, +, \cdot)$ that are true. For example:

• "Every number has a successor"

$$\forall n \exists m (m = n + 1).$$

belongs to $Th(\mathbb{N}, +, \cdot)$, while

• "There are only finitely many primes"

$$\exists n \forall p(prime(p) \implies p < n).$$

does not.

Note that there is a mathematical definition of truth based on the mathematical definition of the semantics of the logic.

Peano's Proof System for Arithmetic

• Axioms:

$$\begin{array}{l} \forall x \neg (0 = x + 1) \\ \forall x \forall y (x + 1 = y + 1 \implies x = y) \\ \forall x (x + 0 = x) \\ \forall x \forall y \forall z (x + (y + z) = (x + y) + z) \\ \forall x (x \cdot 0 = 0) \\ \forall x \forall y \forall z (x \cdot (y + z) = ((x \cdot y) + (x \cdot z))) \\ \varphi(0) \land \forall x (\varphi(x) \implies \varphi(x + 1))) \implies \forall x \varphi(x). \end{array}$$

- Other axioms like $(\varphi \land \psi) \implies \varphi, \forall x(\varphi) \implies \varphi(17).$
- Inference rules like 'Modus Ponens''

Given
$$\varphi$$
 and $\varphi \implies \psi$, infer ψ .

A proof of φ in a proof system is a finite sequence of sentences

 $\varphi_0, \varphi_1, \ldots, \varphi_n$

such that each φ_i is either an axiom or follows from two previous ones by an inference rule, and $\varphi_n = \varphi$.

A proof system is "sound" if whatever it proves is indeed true (i.e. in $Th(\mathbb{N})$).

A proof system is "complete" if whatever it can prove whatever is true (i.e. in $Th(\mathbb{N})$).

Gödel's Incompleteness Theorem

Theorem (Gödel (1931))

There cannot exist a sound and complete proof system for arithmetic (i.e. First-Order Logic of natural numbers with addition and multiplication $(\mathbb{N}, +, \cdot)$).

Proof of Gödel's theorem

• Gödel's original proof was an intricate construction of an $FO(\mathbb{N}, +, \cdot)$ sentence φ which (for a given proof system like Peano's) asserts that

"I am not provable in the given proof system"

- It follows that the proof system is either unsound (if ⊢ φ) or incomplete (if ⊭ φ).
- Here we will follow a subsequent proof given by Turing which shows

$$\neg \mathrm{HP} \leq Th(\mathbb{N}).$$

Hence *Th*(ℕ) is not even r.e. and hence there cannot be a proof system that is sound and complete (why?).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Encoding computations of M on x

Let
$$M = (Q, A, \Gamma, s, \delta, \vdash, \flat, t, r)$$
 be a given TM and let $x = a_1a_2\cdots a_n$ be an input to it.
We can represent a configuration of M as follows:

$$\vdash b_1 \quad b_2 \quad b_3 \quad \cdots \quad b_m \\ - \quad - \quad q \quad - \quad -$$

Thus a configuration is encoded over the alphabet $\Gamma \times (Q \cup \{-\})$.

Proof of Gödel's theorem

Encoding computations of M on x

A computation of M on x is a string of the form

 $c_0 \# c_1 \# \cdots \# c_N \#$

such that

- Each c_i is the encoding of a configuration of M.
- 2 c_0 is (encoding of) the start configuration of M on x.

 $\vdash a_1 \quad a_2 \quad a_3 \quad \cdots \quad a_n$ $s \quad - \quad - \quad - \quad -$

- 3 All c_i 's are of the same length.
- Each $c_i \stackrel{1}{\Rightarrow} c_{i+1}$, and

5 c_N is a halting configuration (i.e. state component is t or r).

View a computation of *M* on *x* as a number whose representation in base $p \ge |\Delta|$ looks like:

Now construct a sentence $\varphi_{M,x}$ which asserts that "there is a number *n* whose base-*p* representation encodes a valid halting computation of *M* on *x*."

The sentence $\varphi_{M,x}$

• Define $valcomp_{M,x}(v)$ to be

$$\exists c \exists d (power_p(c) \land power_p(d) \land length(v, d) \land start(v, c) \land move(v, c, d) \land halt(v, d)).$$

• Define $\varphi_{M,x}$ to be

 $\exists v \ valcomp_{M,x}(v).$

Expressing the components of $\varphi_{M,x}$

The key predicate we need is " $digit_p(v, d, a)$ ": which says that d is a power of p (say $d = p^k$), and in the base-p representation, the k-th digit (from the least significant end) is a.

$$digit_p(v, d, a) \stackrel{\text{def}}{=} \exists u \exists r (v = u \cdot p \cdot d + a \cdot d + r \wedge r < d).$$