< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Undecidability of the Halting Problem

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

17 November 2016

Universal Turing machine

- We can construct a TM U that takes the encoding of a TM M and its input x, and "interprets" M on the input x.
- U accepts if M accepts x, rejects if M rejects x, and loops if M loops on x.

Encoding a TM as a $\{0, 1\}$ -string

 $0^{n}10^{m}10^{k}10^{s}10^{t}10^{r}10^{u}10^{v}10^{p}10^{a}10^{q}10^{b}1010^{p'}10^{a'}10^{q'}10^{b'}100\cdots 10^{p''}10^{a''}10^{q''}10^{b''}10.$

represents a TM M with

- states $\{1, 2, ..., n\}$.
- Tape alphabet $\{1, 2, ..., m\}$.
- Input alphabet $\{1, 2, \ldots, k\}$ (with k < m).
- Start state $s \in \{1, 2, \dots, n\}$.
- Accept state $t \in \{1, 2, \ldots, n\}$.
- Reject state $r \in \{1, 2, \ldots, n\}$.
- Left-end marker symbol $u \in \{k + 1, \dots, m\}$.
- Blank symbol $v \in \{k+1,\ldots,m\}$.
- Each string $0^p 10^a 10^q 10^b 10$ represents the transition $(p, a) \rightarrow (q, b, L)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example encoding of TM and its input

Input is encoded as $0^a 10^b 10^c$ etc.

Exercise: What does the following TM do on input 001010?

Example encoding of a TM

[Assume accept and reject states are sink states]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example encoding of TM and its input

Input is encoded as $0^a 10^b 10^c$ etc.

Exercise: What does the following TM do on input 001010?

Example encoding of a TM

[Assume accept and reject states are sink states]

How the universal Turing machine works

- Use 3 tapes: for input M # x, for current configuration, and for current state and position of head.
- Repeat:
 - Execute the transition of M applicable in the current config.
- Accept if *M* gets into *t* state, Reject if *M* gets into *r* state.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Halting Problem for Turing machines

- Fix an encoding *enc* of TM's as above.
- Define the language

 $HP = \{enc(M) \# enc(x) \mid M \text{ halts on } x\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Undecidability of HP

Theorem (Turing 1936)

The language HP is not recursive.

Proving undecidability of HP

Assume that we have a Turing machine M which decides HP. Then we can compute the entries of the table below:

	ϵ	0	1	00	01	10	11	000	001	010	011	111	
M_{ϵ}	L	Н	L	L	L	Н	Н	L	L	L	L	L	
M ₀	L	L	L	L	L	L	L	L	L	L	L	L	
M_1	н	н	L	н	L	н	н	L	L	н	L	н	
M ₀₀	L	L	L	L	L	L	L	L	L	L	L	L	
M ₀₁	L	н	L	L	L	н	н	L	L	L	L	L	
M ₁₀	н	н	L	н	L	н	н	L	L	н	L	н	
M_{11}	L	н	L	L	L	н	н	L	L	L	L	L	
M ₀₀₀	L	L	L	L	L	L	н	L	L	L	н	L	
:													

• For each $x \in \{0,1\}^*$ let M_x denote the TM

- M, if x is the encoding of TM M with input alphabet 0, 1.
- *M_{loop}* otherwise, where *M_{loop}* is a one-state Turing machine that loops on all its inputs.
- Table entry (x, y) tells whether TM M_x halts on the input y. Note that y is an (unencoded) input in {0,1}*.

A TM N that behaves differently from all TM's

- Let us assume we have a TM *M* that decides HP.
- Then we can define a TM N as follows: Given input $x \in \{0,1\}^*$, it
 - runs as M on x # enc(x).
 - If *M* accepts (i.e. *M_x* halts on *x*), goes to a new "looping" state *l* and loops there.
 - If M rejects (i.e. M_x loops on x), goes to the accept state t'.
- N essentially "complements the diagonal" of the table: Given input x ∈ {0,1}* it halts iff M_x loops on x.
- Consider y = enc(N). Then y cannot occur as any row of the table since the behaviour of N differs from all rows in the table. This is a contradiction.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How *N* behaves

	ϵ	0	1	00	01	10	11	000	001	010	011	111	
M_{ϵ}	L	Н	L	L	L	Н	Н	L	L	L	L	L	
M ₀	L	L	L	L	L	L	L	L	L	L	L	L	
M_1	н	н	L	н	L	н	н	L	L	н	L	Н	
M ₀₀	L	L	L	L	L	L	L	L	L	L	L	L	
M ₀₁	L	н	L	L	L	н	н	L	L	L	L	L	
M_{10}	н	н	L	н	L	н	н	L	L	н	L	н	
M_{11}	L	н	L	L	L	н	н	L	L	L	L	L	
M ₀₀₀	L	L	L	L	L	L	н	L	L	L	н	L	
:													
N	н	н	н	н	н	L	L	н					
:													

The constructed TM N complements the diagonal of the table, and hence does not occur as any of the TM's listed. This is not possible!

Complement of HP is not r.e.

Fact 1: If L and \overline{L} are both r.e. then L (and \overline{L}) must be recursive.

- Let M accept L and M' accept \overline{L} .
- We can construct a total TM that simulates *M* and *M'* on given input, one step at a time.
- Accept if M accepts, Reject if M' accepts.
- Fact 2: HP is recursively enumerable.
 - Just run the universal TM U on input M#x; accept iff U halts (i.e. M accepts or rejects x).

Corollary

The language \neg HP is not even recursively enumerable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Where HP lies

